
SOME ASYMMETRIC REVERSES OF YOUNG�S SCALAR AND
OPERATOR INEQUALITIES WITH APPLICATIONS

S. S. DRAGOMIR1;2

Abstract. In this paper we obtain some new reverses of Young�s scalar and
operator inequalities. They are compared with some previous results due to
Kittaneh-Manasrah, Furuichi-Tominaga, Zou et al. and Liao et al. Applica-
tions related to the Heinz mean for positive operators are given as well.

1. Introduction

We consider the weighted arithmetic mean, geometric mean and harmonic mean
de�ned as

A� (a; b) := (1� �) a+ �b; G� (a; b) := a1��b�

and

H� (a; b) := A
�1
�

�
a�1; b�1

�
=
�
(1� �) a�1 + �b�1

��1
=

ab

(1� �) b+ �a ;

where a; b > 0 and � 2 [0; 1] : When � = 1
2 we denote the arithmetic mean,

geometric mean and harmonic mean as A (a; b) ; G (a; b) and H (a; b) :
We also de�ne Heinz mean as

�H� (a; b) =
1

2
(G� (a; b) +G1�� (a; b)) = A (G� (a; b) ; G1�� (a; b)) :

The famous Young inequality for scalars says that if a; b > 0 and � 2 [0; 1]; then
(1.1) H� (a; b) � G� (a; b) � A� (a; b)
with equality if and only if a = b. The inequality (1.1) is also called �-weighted
arithmetic-geometric-harmonic mean inequality.
We also have the fundamental inequality for Heinz mean

G (a; b) � �H� (a; b) � A (a; b)
for any a; b > 0 and � 2 [0; 1]:
We recall that Specht�s ratio is de�ned by [19]

(1.2) S (h) :=

8>><>>:
h

1
h�1

e ln

�
h

1
h�1

� if h 2 (0; 1) [ (1;1) ;

1 if h = 1:
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2 S. S. DRAGOMIR1;2

It is well known that limh!1 S (h) = 1; S (h) = S
�
1
h

�
> 1 for h > 0; h 6= 1. The

function is decreasing on (0; 1) and increasing on (1;1) :
The following inequality provides a re�nement and a multiplicative reverse for

Young�s inequality

(1.3) S
��a
b

�r�
G� (a; b) � A� (a; b) � S

�a
b

�
G� (a; b) ;

where a; b > 0, � 2 [0; 1]; r = min f1� �; �g.
The second inequality in (1.3) is due to Tominaga [20] while the �rst one is due

to Furuichi [9].
We consider the Kantorovich�s constant de�ned by

(1.4) K (h) :=
(h+ 1)

2

4h
; h > 0:

The function K is decreasing on (0; 1) and increasing on [1;1) ; K (h) � 1 for any
h > 0 and K (h) = K

�
1
h

�
for any h > 0:

The following multiplicative re�nement and reverse of Young inequality in terms
of Kantorovich�s constant holds

(1.5) Kr
�a
b

�
G� (a; b) � A� (a; b) � KR

�a
b

�
G� (a; b) ;

where a; b > 0, � 2 [0; 1]; r = min f1� �; �g and R = max f1� �; �g :
The �rst inequality in (1.5) was obtained by Zou et al. in [21] while the second

by Liao et al. [16]. We also have shown in [3] that it can also be obtained from a
more general result for convex functions from [1].
Kittaneh and Manasrah [13], [14] provided a re�nement and an additive reverse

for Young inequality as follows:

(1.6) r
�p
a�

p
b
�2
� A� (a; b)�G� (a; b) � R

�p
a�

p
b
�2

where a; b > 0, � 2 [0; 1]; r = min f1� �; �g and R = max f1� �; �g : The case
� = 1

2 reduces (1.6) to an identity. We also have shown in [2] that it can also be
obtained from a more general result for convex functions from [1].
For some operator versions of (1.6) see [13] and [14]. Other recent results for

operators may be found in [4]-[8].
Motivated by the above results we establish in this paper some new additive and

multiplicative reverses of Young�s scalar and operator inequalities. To do these, we
employ some new discovered inequalities for convex functions that are important
in themselves as well. Applications for Heinz mean are also provided.

2. Preliminary Facts for Convex Functions

Suppose that I is an interval of real numbers with interior �I and f : I ! R is
a convex function on I. Then f is continuous on �I and has �nite left and right
derivatives at each point of �I . Moreover, if x; y 2�I and x < y; then

f 0� (x) � f 0+ (x) � f 0� (y) � f 0+ (y) ;

which shows that both f 0� and f 0+ are nondecreasing functions on �I : It is also
known that a convex function must be di¤erentiable except for at most countably
many points.
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For a convex function f : I ! R ; the subdi¤erential of f denoted by @f is
the set of all functions ' : I ! [�1;1] such that '(�I ) � R and

(2.1) f (x) � f (a) + (x� a)' (a) for any x; a 2 I:
It is also well known that if f is convex on I , then @f is nonempty, f 0+; f

0
� 2

@f and if ' 2 @f ; then
(2.2) f 0� (x) � ' (x) � f 0+ (x)

for every x 2�I : In particular, ' is a nondecreasing function. If f is di¤erentiable
convex on �I ; then @f = ff 0g :

Theorem 1. Let f : I ! R be a convex function on I and ' 2 @f: Then for any
x; y 2 I and p 2 [0; 1] we have

(0 �) (1� p) f (x) + pf (y)� f ((1� p)x+ py)(2.3)

�

8<: p [f (y)� f (x)� ' (x) (y � x)] ;

(1� p) [' (y) (y � x)� f (y) + f (x)] ;
and

(0 �) f (x) + f (y)
2

� f ((1� p)x+ py) + f ((1� p) y + px)
2

(2.4)

� 1

2
min fp; 1� pg [' (y)� ' (x)] (y � x) � 1

4
[' (y)� ' (x)] (y � x) :

Proof. By the gradient inequality (2.1) we have

f ((1� p)x+ py) � f (x) + ((1� p)x+ py � a)' (x)
= f (x) + p (y � x)' (x)

for any x; y 2 I and p 2 [0; 1] :
This is equivalent to

�p (y � x)' (x) � f (x)� f ((1� p)x+ py)
and by adding in both sides pf (y)� pf (x) ; to

pf (y)� pf (x)� p (y � x)' (x) � (1� p) f (x) + pf (y)� f ((1� p)x+ py)
for any x; y 2 I and p 2 [0; 1] ; which is equivalent to the �rst branch of the
inequality in (2.3).
If in this inequality we replace x by y we get

pf (x) + (1� p) f (y)� f ((1� p) y + px)(2.5)

� p [f (x)� f (y)� ' (y) (x� y)]

for any x; y 2 I and p 2 [0; 1] :
If we replace in the same �rst branch of (2.3) p by 1� p we get

pf (x) + (1� p) f (y)� f (px+ (1� p) y)(2.6)

� (1� p) [f (y)� f (x)� ' (x) (y � x)]

for any x; y 2 I and p 2 [0; 1] :
Moreover, if we replace in the �rst branch of (2.3) x by y and p by 1� p we get

the second branch in (2.3).
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If we add the �rst branch in (2.3) with (2.5) and divide by 2, then we get

(0 �) f (x) + f (y)
2

� f ((1� p)x+ py) + f ((1� p) y + px)
2

(2.7)

� 1

2
p [' (y)� ' (x)] (y � x) ;

for any x; y 2 I and p 2 [0; 1] :
If we replace p by 1� p in (2.7) we get

(0 �) f (x) + f (y)
2

� f ((1� p)x+ py) + f ((1� p) y + px)
2

(2.8)

� 1

2
(1� p) [' (y)� ' (x)] (y � x) :

By (2.7) and (2.8) we get the �rst part of (2.4). The second part of (2.4) is obvious.
�

Remark 1. If for a ' 2 @f; we have
B1 (f; '; I) := sup

(x;y)2I2
[f (y)� f (x)� ' (x) (y � x)] <1

and
B2 (f; '; I) := sup

(x;y)2I2
[' (y) (y � x) + f (x)� f (y)] <1

then
B3 (f; '; I) := sup

(x;y)2I2
[[' (y)� ' (x)] (y � x)] <1

and
B3 (f; '; I) � B1 (f; '; I) +B2 (f; '; I) :

Moreover, we have from (2.3) that

(0 �) (1� p) f (x) + pf (y)� f ((1� p)x+ py)(2.9)

� min fpB1 (f; '; I) ; (1� p)B2 (f; '; I)g
and from

(0 �) f (x) + f (y)
2

� f ((1� p)x+ py) + f ((1� p) y + px)
2

(2.10)

� 1

2
min fp; 1� pgB3 (f; '; I) :

for any x; y 2 I and p 2 [0; 1] :

Corollary 1. With the assumptions of Theorem 1 we have

(0 �) f (x) + f (y)
2

� f
�
x+ y

2

�
(2.11)

� 1

2
min ff (y)� f (x)� ' (x) (y � x) ; ' (y) (y � x)� f (y) + f (x)g

� 1

4
[' (y)� ' (x)] (y � x)

and

(2.12) (0 �) f (x) + f (y)
2

�
Z 1

0

f ((1� p)x+ py) dp � 1

8
[' (y)� ' (x)] (y � x)

for any x; y 2 I:
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Proof. The �rst inequality in (2.11) follows by (2.3) for p = 1
2 : The second part of

this inequality follows by the fact that for a; b > 0; min fa; bg � 1
2 (a+ b) :

If we integrate the inequality (2.4) over p 2 [0; 1] we get

(0 �) f (x) + f (y)
2

(2.13)

� 1
2

�Z 1

0

f ((1� p)x+ py) dp+
Z 1

0

f ((1� p) y + px) dp
�

� 1

2
[' (y)� ' (x)] (y � x)

Z 1

0

min fp; 1� pg dp;

for any x; y 2 I:
Since Z 1

0

f ((1� p)x+ py) dp =
Z 1

0

f ((1� p) y + px) dp

and Z 1

0

min fp; 1� pg dp =
Z 1

0

�
1

2
�
����p� 12

����� dp
=
1

2
�
Z 1

0

����p� 12
���� dp = 1

4

then by (2.13) we get the desired result (2.12). �

Remark 2. If the function f : I ! R is di¤erentiable convex on �I and x; y 2 �I
then ' can be replaced with f 0 in all the results above.

3. Scalar Inequalities for Weighted Means

We have:

Theorem 2. For any a; b > 0 and � 2 [0; 1] we have the inequalities

(0 �)A� (a; b)�G� (a; b)(3.1)

� min
�
�a

�
b

a
� 1� ln b

a

�
; (1� �) b

�
ln
b

a
� 1 + a

b

��
and

(0 �)A (a; b)� �H� (a; b)(3.2)

� 1

2
min f�; 1� �g (b� a) (ln b� ln a) � 1

4
(b� a) (ln b� ln a) :

Proof. If we write the inequalities (2.3) and (2.4) for the convex function f (x) =
exp (x) and real numbers x; y we get

(0 �)A� (expx; exp y)�G� (expx; exp y)(3.3)

�

8<: � [exp y � expx� (y � x) expx] ;

(1� �) [(y � x) exp y � exp y + expx] ;



6 S. S. DRAGOMIR1;2

and

(0 �)A� (expx; exp y)� �H� (expx; exp y)(3.4)

� 1

2
min f�; 1� �g (exp y � expx) (y � x) � 1

4
(exp y � expx) (y � x) :

Let x = ln a and y = ln b in (3.3) and (3.4) to get

(0 �)A� (a; b)�G� (a; b) �

8<: � [b� a� a (ln b� ln a)] ;

(1� �) [b (ln b� ln a)� b+ a] ;

=

8<: �a
�
b
a � 1� ln

b
a

�
;

(1� �) b
�
ln b

a � 1 +
a
b

�
;

and

(0 �)A (a; b)� �H� (a; b)

� 1

2
min f�; 1� �g (b� a) (ln b� ln a) � 1

4
(b� a) (ln b� ln a) :

�

Consider the function D : (0;1)! [0;1) de�ned by
(3.5) D (h) := h� 1� lnh:
We have

D0 (h) := 1� 1

h
=
h� 1
h

; D00 (h) =
1

h2
;

which shows that the function D is decreasing on (0; 1) ; increasing on (1;1) and
convex on (0;1) :
If we tale b

a = h 2 (0; 1) ; then

b

�
ln
b

a
� 1 + a

b

�
= ah

�
lnh� 1 + 1

h

�
= ah

�
1

h
� 1� ln 1

h

�
= ahD

�
1

h

�
= a ~D (h)

where

(3.6) ~D (h) := hD

�
1

h

�
= h lnh� h+ 1; h > 0:

We have
~D0 (h) = lnh; ~D00 =

1

h
;

which shows that the function ~D is decreasing on (0; 1) ; increasing on (1;1) and
convex on (0;1) :
Consider also the function �D : (0;1)! [0;1) de�ned by

(3.7) �D (h) := (h� 1) lnh:
We have

�D0 (h) = lnh+ 1� 1

h
; ~D00 =

1

h
+
1

h2
;
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which shows that the function �D is decreasing on (0; 1) ; increasing on (1;1) and
convex on (0;1) :
With these notations we have

Corollary 2. For any a; b > 0 and � 2 [0; 1] ; if we put h := b
a ; then we have we

have the inequalities

(3.8) (0 �)A� (a; b)�G� (a; b) � amin
n
�D (h) ; (1� �) ~D (h)

o
and

(3.9) (0 �)A (a; b)� �H� (a; b) �
1

2
amin f�; 1� �g �D (h) � 1

4
a �D (h) :

We observe that from (1.6) we also have the inequality

(3.10) (0 �)A� (a; b)�G� (a; b) � amax f�; 1� �gM (h)

where h = b
a and M (h) =

�p
h� 1

�2
:

For x > 0 and y 2 [0; 1] we consider the functions

B1 (x; y) := min
n
yD (x) ; (1� y) ~D (x)

o
and

B2 (x; y) := max f�; 1� �gM (x)

as provided by the upper bounds in the inequalities (3.8) and (3.10).
The plot of the di¤erence D1 (x; y) := B1 (x; y)�B2 (x; y) in the box [0; 2]�[0; 1] ;

see Figure 1 below, shows that it takes both positive and negative values meaning
that neither of the upper bounds B1 or B2 is always best.

Figure 1. Plot of D1 (x; y) in the box [0; 2]� [0; 1]
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Corollary 3. Let a; b > 0 with b
a 2 [m;M ] for some M > m > 0 and � 2 [0; 1],

then we have we have the inequalities

A� (a; b)�G� (a; b)(3.11)

� a

8>>>>>>>>><>>>>>>>>>:

min
n
�D (m) ; (1� �) ~D (m)

o
if M < 1;

min
n
�max fD (m) ; D (M)g ; (1� �)max

n
~D (m) ; ~D (M)

oo
if m � 1 �M

min
n
�D (M) ; (1� �) ~D (M)

o
if 1 < m;

and

A� (a; b)� �H� (a; b)(3.12)

� 1

2
amin f�; 1� �g

8>>>>><>>>>>:

�D (m) if M < 1

max
n
�D (m) ; �D (M)

o
if m � 1 �M

�D (M) if 1 < m;

� 1

4
a

8>>>>><>>>>>:

�D (m) if M < 1

max
n
�D (m) ; �D (M)

o
if m � 1 �M

�D (M) if 1 < m:

:

Proof. Using the properties of the functions D; ~D and �D we have

max
h2[m;M ]

D (h) =

8<: D (m) if M < 1
max fD (m) ; D (M)g if m � 1 �M
D (M) if 1 < m;

and the same bounds for the other two functions ~D and �D:
By applying the inequalities (3.8) and (3.9) we then obtain the desired results.

�

We have:

Theorem 3. For any a; b > 0 and � 2 [0; 1] we have the inequalities

(1 �) A� (a; b)
G� (a; b)

(3.13)

� min

8><>:
 
exp

�
b
a � 1

�
b
a

!�
;

0@ b
a

exp
�
1� 1

b
a

�
1A1��

9>=>;
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and

(1 �) G (A� (a; b) ; A1�� (a; b))
G (a; b)

(3.14)

� exp
"
min f�; 1� �g (b� a)

2

2ab

#
� exp

"
(b� a)2

4ab

#
Proof. If we write the inequalities (2.3) and (2.4) for the convex function f (t) =
� ln t; t > 0; then we have

(0 �) ln ((1� �) a+ �b)� (1� �) ln a� � ln b(3.15)

�

8<: �
�
1
a (b� a)� ln b+ ln a

�
;

(1� �)
�
� 1
b (b� a) + ln b� ln a

�
;

=

8><>:
�
�
b
a � 1� ln

b
a

�
;

(1� �)
�
ln b

a � 1 +
1
b
a

�
;
=

8>>>>>><>>>>>>:

ln

�
exp( ba�1)

b
a

��
;

ln

0@ b
a

exp

�
1� 1

b
a

�
1A1��

;

and

(0 �) ln ((1� �) a+ �b) + ln ((1� �) b+ �a)
2

� ln a+ ln b
2

(3.16)

� min f�; 1� �g (b� a)
2

2ab
� (b� a)2

4ab
;

for any a; b > 0 and � 2 [0; 1] :
These are clearly equivalent to the desired results (3.13) and (3.14). �

We have:

Corollary 4. For any a; b > 0 and � 2 [0; 1] ; if we put h := b
a ; then we have we

have the inequalities

(3.17) (1 �) A� (a; b)
G� (a; b)

� exp
�
min

�
�D (h) ; (1� �)D

�
1

h

���
and

(1 �) G (A� (a; b) ; A1�� (a; b))
G (a; b)

� exp [2min f�; 1� �g [K (h)� 1]](3.18)

� exp [K (h)� 1] ;

where K is Kantorovich�s constant.

We consider the following upper bounds for the quantity A�(a;b)
G�(a;b)

as provided by
the inequalities (2.1), (1.5) and (3.13)

(3.19) C1 (x; y) := S (x) ;

(3.20) C2 (x; y) := [K (x)]
maxfy;1�yg
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and

(3.21) C3 (x; y) := min

8<:
�
exp (x� 1)

x

�y
;

 
x

exp
�
1� 1

x

�!1�y
9=;

de�ned for x > 0 and y 2 [0; 1] :
The plots of the di¤erences

D2 (x; y) := C1 (x; y)� C3 (x; y) and D3 (x; y) := C2 (x; y)� C3 (x; y)

in the box [0; 2]�[0; 1] ; which are depicted below, show that they take both positive
and negative values, meaning that neither of the corresponding bounds are better
always.

Plot of D2 (x; y) in the box [0; 2]� [0; 1] Plot of D3 (x; y) in the box [0; 2]� [0; 1]

We observe that the function ` (t) := D
�
1
t

�
= ln t�1+ 1

t ; t > 0 has the derivatives

`0 (t) =
1

t
� 1

t2
=
t� 1
t2

;

`00 (t) =
2� t
t3

;

which shows that the function ` is decreasing on (0; 1) ; increasing on (1;1), convex
on (0; 2) and concave on (2;1) :
By the use of Corollary 4 we then have:

Corollary 5. Let a; b > 0 with b
a 2 [m;M ] for some M > m > 0 and � 2 [0; 1] ;

then we have we have the inequalities
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(1 �) A� (a; b)
G� (a; b)

(3.22)

�

8>>>>>><>>>>>>:

exp
�
min

�
�D (m) ; (1� �)D

�
1
m

�	�
if M < 1;

exp
�
min

�
�max fD (m) ; D (M)g ; (1� �)max

�
D
�
1
m

�
; D
�
1
M

�		�
if m � 1 �M

exp
�
min

�
�D (M) ; (1� �)D

�
1
M

�	�
if 1 < m;

and

(1 �) G (A� (a; b) ; A1�� (a; b))
G (a; b)

(3.23)

� exp

242min f�; 1� �g
8<: [K (m) � 1] if M < 1
[max fK (m) ;K (M)g � 1] if m � 1 �M
[K (M)� 1] if 1 < m;

35
�

8<: exp [K (m) � 1] if M < 1
exp [max fK (m) ;K (M)g � 1] if m � 1 �M
exp [K (M)� 1] if 1 < m:

:

4. Operator Inequalities

Throughout this section A; B are positive operators on a complex Hilbert space
(H; h�; �i) : We use the following notations for operators

Ar�B := (1� �)A+ �B; � 2 [0; 1]
the weighted operator arithmetic mean and

A]�B := A
1=2
�
A�1=2BA�1=2

��
A1=2; � 2 [0; 1]

the weighted operator geometric mean. When � = 1
2 we write ArB and A]B for

brevity, respectively.
Let � be a continuous function de�ned on the interval J of real numbers, B a

selfadjoint operator on the Hilbert space H and A a positive invertible operator on
H: Assume that the spectrum Sp

�
A�1=2BA�1=2

�
� �J: Then by using the contin-

uous functional calculus, we can de�ne the noncommutative perspective P� (B;A)
by setting

(4.1) P� (B;A) := A1=2�
�
A�1=2BA�1=2

�
A1=2:

If A and B are commutative, then

P� (B;A) = A�
�
BA�1

�
provided Sp

�
BA�1

�
� �J:

We observe that if � (t) = t� then

P� (B;A) = A]�B:
Kamei and Fujii [11], [12] de�ned the relative operator entropy S (AjB) ; for

positive invertible operators A and B; by

(4.2) S (AjB) := A 1
2

�
lnA�

1
2BA�

1
2

�
A

1
2 ;
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which is a relative version of the operator entropy considered by Nakamura-Umegaki
[18].
Consider the logarithmic function ln : Then the relative operator entropy can be

interpreted as the perspective of ln, namely

Pln (B;A) = S (AjB) :

If we consider the entropy function � (t) = �t ln t; then it is well known that for
any positive invertible operators A; B we have

(4.3) S (AjB) = B1=2�
�
B�1=2AB�1=2

�
B1=2:

The function f (t) = t ln t = �� (t) ; t > 0; is convex, then the perspective of this
function is

P(�) ln(�) (B;A) = �A1=2�
�
A�1=2BA�1=2

�
A1=2 = �S (BjA) ;

where for the last equality we used (4.3) for A replacing B:

Theorem 4. Let A; B be positive invertible operators and � 2 [0; 1] : Then we have

(4.4) (0 �)Ar�B �A]�B �

8<: � (B �A� S (AjB))

(1� �) (A�B � S (BjA))
and

(0 �)ArB � A]�B +A]1��B
2

� �1
2
min f�; 1� �g (S (BjA) + S (AjB))(4.5)

� �1
4
(S (BjA) + S (AjB)) :

Proof. We have from (3.1) for a = 1 and b = x > 0 that

(0 �) 1� � + �x� x� �

8<: � (x� 1� lnx)

(1� �) (x lnx� x+ 1)
;

for any � 2 [0; 1] :
If we use the continuous functional calculus, then we have for an operator X > 0

that

(4.6) (0 �) (1� �) 1H + �X �X� �

8<: � (X � 1H � lnX)

(1� �) (X lnX �X + 1H)
;

for any � 2 [0; 1] :
Now, if we take in (4.6) X = A�1=2BA�1=2; then we have

(0 �) (1� �) 1H + �A�1=2BA�1=2 �
�
A�1=2BA�1=2

��
(4.7)

�

8<: �
�
A�1=2BA�1=2 � 1H � lnA�1=2BA�1=2

�
(1� �)

�
A�1=2BA�1=2 lnA�1=2BA�1=2 �A�1=2BA�1=2 + 1H

� ;

for any � 2 [0; 1] :
If we multiply both sides of (4.7) by A1=2 we get the desired result (4.4).
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From the inequality (3.2) we have for a = 1 and b = x > 0 that

(0 �) x+ 1
2

� x
� + x1��

2
� 1

2
min f�; 1� �g (x� 1) lnx(4.8)

� 1

4
(x� 1) lnx:

for any � 2 [0; 1] :
If we use the continuous functional calculus, then we have for an operator X > 0

that

(0 �) X + 1H
2

� X
� +X1��

2
� 1

2
min f�; 1� �g (X lnX � lnX)(4.9)

� 1

4
(X lnX � lnX) :

Now, if we take in (4.9) X = A�1=2BA�1=2; then we have

(0 �) A
�1=2BA�1=2 + 1H

2
�
�
A�1=2BA�1=2

��
+
�
A�1=2BA�1=2

�1��
2

(4.10)

� 1

2
min f�; 1� �g

�
A�1=2BA�1=2 lnA�1=2BA�1=2 � lnA�1=2BA�1=2

�
� 1

4

�
A�1=2BA�1=2 lnA�1=2BA�1=2 � lnA�1=2BA�1=2

�
:

If we multiply both sides of (4.10) by A1=2 we get the desired result (4.5). �

Theorem 5. Let A; B be positive invertible operators such that there exists M >
m > 0 with the property that

(4.11) mA � B �MA

and � 2 [0; 1] : Then we have

(0 �)Ar�B �A]�B(4.12)

�

8>>>>>>>>><>>>>>>>>>:

min
n
�D (m) ; (1� �) ~D (m)

o
A if M < 1;

min
n
�max fD (m) ; D (M)g ; (1� �)max

n
~D (m) ; ~D (M)

oo
A

if m � 1 �M

min
n
�D (M) ; (1� �) ~D (M)

o
A if 1 < m:
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and

(0 �)ArB � A]�B +A]1��B
2

(4.13)

� 1

2
min f�; 1� �g

8>>>>><>>>>>:

�D (m)A if M < 1

max
n
�D (m) ; �D (M)

o
A if m � 1 �M

�D (M)A if 1 < m;

� 1

4

8>>>>><>>>>>:

�D (m)A if M < 1

max
n
�D (m) ; �D (M)

o
A if m � 1 �M

�D (M)A if 1 < m;

where the functions D; ~D and �D are de�ned in (3.5)-(3.7).

Proof. From the inequality (3.11) we have for x 2 [m;M ] � (0;1) that

(0 �) 1� � + �x� x�(4.14)

�

8>>>>>>>>><>>>>>>>>>:

min
n
�D (m) ; (1� �) ~D (m)

o
if M < 1;

min
n
�max fD (m) ; D (M)g ; (1� �)max

n
~D (m) ; ~D (M)

oo
if m � 1 �M

min
n
�D (M) ; (1� �) ~D (M)

o
if 1 < m:

If X is a selfadjoint operator with m1H � X �M1H ; then by (4.14) we have

(0 �) (1� �) 1H + �X �X�(4.15)

�

8>>>>>>>>><>>>>>>>>>:

min
n
�D (m) ; (1� �) ~D (m)

o
if M < 1;

min
n
�max fD (m) ; D (M)g ; (1� �)max

n
~D (m) ; ~D (M)

oo
if m � 1 �M

min
n
�D (M) ; (1� �) ~D (M)

o
if 1 < m:
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From the inequality (4.11) we have by multiplying both sides by A�1=2 that m1H �
A�1=2BA�1=2 �M1H and by writing (4.15) for X = A�1=2BA�1=2 we have

(0 �) (1� �) 1H + �A�1=2BA�1=2 �
�
A�1=2BA�1=2

��
(4.16)

�

8>>>>>>>>><>>>>>>>>>:

min
n
�D (m) ; (1� �) ~D (m)

o
if M < 1;

min
n
�max fD (m) ; D (M)g ; (1� �)max

n
~D (m) ; ~D (M)

oo
if m � 1 �M

min
n
�D (M) ; (1� �) ~D (M)

o
if 1 < m:

If we multiply both sides of (4.16) by A1=2 we get the desired result (4.12).
By the inequality (3.12) we have for x 2 [m;M ] that

(0 �) x+ 1
2

� x
� + x1��

2

� 1

2
min f�; 1� �g

8>>>>><>>>>>:

�D (m) if M < 1

max
n
�D (m) ; �D (M)

o
if m � 1 �M

�D (M) if 1 < m;

� 1

4

8>>>>><>>>>>:

�D (m) if M < 1

max
n
�D (m) ; �D (M)

o
if m � 1 �M

�D (M) if 1 < m;

:

which, by a similar argument produces the desired result (4.13). �

Finally, we have

Theorem 6. With the assumptions of Theorem 5 we have

(1 �)Ar�B(4.17)

�

8>>>>>><>>>>>>:

exp
�
min

�
�D (m) ; (1� �)D

�
1
m

�	�
A]�B if M < 1;

exp
�
min

�
�max fD (m) ; D (M)g ; (1� �)max

�
D
�
1
m

�
; D
�
1
M

�		�
�A]�B if m � 1 �M

exp
�
min

�
�D (M) ; (1� �)D

�
1
M

�	�
A]�B if 1 < m;

for any � 2 [0; 1] :

The proof follows in a similar way by the inequality (3.22) and we omit the
details.
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