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Abstract

In this paper, a discrete version of the well-known Montgomery’s identity
is generalized, and a refinement of an inequality derived by B.G. Pach-
patte in 2007 is presented. Finally, the results obtained are applied for
expanding a complex multinomial formula in different way of the classical
expansion.
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1 Introduction

In [4] appeared the following discrete version of the well-known Montgomery’s
identity. It which will be used later on to prove our main results is stated as
follows

n n—1
vk =1/nY xi+ Y Dn(k,i)Ax;,
=1 i=1

where {z} for 1 < k < n is a finite sequence of real numbers, Az; = z;41 —x;,
and where Dy, (k,i) =i/nfor1 <i < k—1and D,(k,i) =i/n—1fork <i <n.
Putting H,(k) = 3.7 |Dpn(k,4)| for all 1 < k < n, and taking into account
the computation from [5], yields
_ n?—1
=5

n n 2
1|n?2-1 n+1
H,(k) = — — k=
ILACEDY (n ! —-(-57)
The aim of this paper is to generalize this discrete version of Montgomery’s

k=1 k=1
identity and to use it to refine and inequality derived by B.G. Pachpatte in 2007
and published in [3]. Furthermore, as an application of the results obtained we
have expanded in a different way of the usual expansions a classical multino-
mial formulae. Multinomial expansions have many applications in probability,
stochastic processes and number theory ([1],[2]).

as can be immediately checked.
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2 Generalization of Discrete Montgomery Identity

In the following a generalization of discrete Montgomery’s identity for n se-
quences of numbers, namely, {x1x}, {zor},...,{znk} for 1 <k < n, is given.

Theorem 1 Let {x1;}, {xor}, s {Tmr}, m > 2, k = 1,....,n be finite se-
quences of real numbers, then

m m—1 n m—2 n
Hxik = nm— 1xmk H E w]z xkam 1k H § x]z
=1 7j=1 =1 7=1 =1
1
t o TmkTm-k o T3 Xok E Tl + Tk Tm—1k * - T2k X1k,
=1

fork=1,...,n, where X;, = Z?:_ll Dy (k,i)Axj; forj=1,....,m—1.

Proof. To prove the preceding the identity by argue by induction. First,
multiplying Montgomery’s identity for {x1x}, 1 < k < n by zg, yields

n

1
TokL1k = L2k § T1; + o Xk,
i1

which is exactly the identity claimed for the case when m = 2. Now, we
assume that the identity holds for a positive integer m, and we have to proof
that it also holds for m + 1. Indeed, multiplying the identity for m sequences
of real numbers by x,, 1%, yields

m—+1 1 m—1 n m—2 n
H Tik = = =1 Fm+1kTmk H g Tj; + = me—l—lkxkam 1k H E Ljg
=1 Jj=1 i=1 7j=1 i=1
1
+ ..+ —TmAkTmk T3k Xok E Tl + Tt 1kTmk * - * T2k X1k
=1

Taking into account the identity for two sequences of real numbers, which is
true, applying it to the sequences {z;, 11k}, {Zmk}, (1 < k < n), and changing
the first term of the RHS of previous identity, we obtain for all 1 < k <n

m+1 m—1 n

H Tik = 7$m+1k H ijz merlkak H ijz
=1 j=11=1 7j=1 =1
1 n
o Tme1kTmk - T3k X ok > @i+ Tk Tk oo T2k X1
i=1
So, by the Principle of Mathematical Induction, the proof is complete. O

An immediate consequence of the previous result is the following



Popescu and Diaz-Barrero 3

Corollary 1 Let {z1;},{xok}, s {Tmk}, m > 2, k = 1,...,n be finite se-
quences of real numbers, then

2 n
1

m—
- Tik = —- vkt oy Tk * Lok Xm—1k
Ml = Iy IPIEI pEEI

k=11i=1 =1 k=1 =
+ .+ ﬁ ka; : Z (TmkTm—1k - - - 231X 2k)
k=1 k=1

1
+ - Z (TrmkTm—1k - - - T2xX1k) 5

where X, = > " 'D, (k,i)Axj; for j=1,...,m—1.

Proof. Adding up the identities of Theorem 1 for £ = 1,...,n, and finally
multiplying by 1/n the result follows. O

3 Gruss like Inequalities

Hereafter, we give a direct refinement of the first inequality of Theorem 2.2
from [3] derived by B.G. Pachpatte, using discrete Montgomery identity for
two sequences of numbers. It is stated as follows

Theorem 2 Let {xy},{yr} (1 <k < n) be two finite sequences of real num-
bers such that maxi<p<n—1{|Azk|} = A and max;<p<n—1{|Ayx|} = B, where
A, B are nonnegative constants. Then the following inequality holds

%Z%yk - <7ll Z$k> (711 Z%) < min{ Z Yk [ Ho (K Z |k Hn (K }
k=1 k=1 k=1

Proof. Writing the identity of Montgomery for each element z;, of the sequence
{zr} (1 <k < n), and multiplying it by yx, we get

n n—1
1
_Z = D, (k. i)Ax;.
Tl nykzﬂc ykz (k,i)Ax

=1 i=1

Adding up the previous identities for 1 < k < n, we obtain

n n n n n—1
= vakyk - (1 Z l’k) <1 Z yk> = ! Z Yk Z D, (k,i)Ax;
" k=1 " n k=1 " k=1 i=1

k=1

1o 1o 1 o AL

_ | = — < =

S (z) (nzyk) < AN el b
k=1 k=1 k=1 k=1

after taking the absolute value in both sides of the preceding identity.

Likewise, a similar inequality is obtained if we carry out the same procedure
using the elements of the sequence {y;} (1 < k < n), multiplied by the corre-
sponding x. Then, we get

IS 1 ¢ 1 ¢
n Zxkyk - (nzﬂck) (nzyk>
k=1 k=1 k=1

B’I’L
< — H,(k
SEONBTAC
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Finally, using the above results the inequality claimed in the statement follows
and the proof is complete. O

Observe that the inequality presented in Theorem 2 is a refinement of the
result given in [3] by Pachpatte.

A similar result is the following

Theorem 3 Let {xi}, {yx} for k = 1,....,n be two finite sequences of real
numbers such that maxi<g<p{|zi|} = A and maxi<p<n{|lyx|} = B, where
A, B are nonnegative constants. Then the following inequality holds

1 < 1 & 1 &
k=1 k=1 k=1

Proof. Since maxj<k<p{|zx|} = A and max;<p<n{|yx|} = B, then on account
of the modulus properties we obtain |Axg| < 24 and |Ay| < 2B, for k =
1,...,n — 1. Now following the steps of the proof of Theorem 2 we get the
result we wanted to prove. O

2AB
< > Hy(k).
k=1

Next taking into account the above results, we give some generalizations of
the discrete Gruss type inequality.

Theorem 4 Let {z1;}, {xor}, .. {Tmr}, m > 2, k = 1,....,n be finite se-
quences of real numbers, such that maxi<g<n—1{|Az|} = A;, where the Als
are nonnegative constants, for i = 1,...,m — 1. Then the following inequality

holds

1 n o m m 1 n A m—2 n n

-1
HZ fEik*Hﬁzxik < LI D lwael - D (wmn Ha(k)) + ..

k=1i=1 i=1 k=1 =1 k=1 k=1
A n n m
2
+ nQZ!mM-Z( \xm\-Hdk))
k=1 k=1 \i=3

Al n m
+ — (H |2k - Hn(k:)> .
k=1 \i=2

Proof. Applying the modulus property to the previous identity and taking
into account that

n—1 n—1 n—1
Xkl = Y Dulk,i)Azji| < |Dlk, i) | Axji| < A; Y [Dn(k,i)| = A;Hy(k),
i=1 i=1 i=1
for j=1,...,m — 1, we get the result stated. O

Finally, changing the conditions as we have done before, we obtain another
generalization of the discrete Gruss like inequality.
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Theorem 5 Let {z1;}, {xor}, .. {Tmr}, m > 2, k = 1,....,n be finite se-
quences of real numbers, such that maxi<g<n{|zik|} = Ai, where the Als are
nonnegative constants, for i = 1,....,m. Then the following inequality holds

| EE | EPSEEE e oA

k=11i=1

Proof. From maxj<g<n{|zit|} = Ai, ¢ = 1,...,m, and taking into account the
modulus properties we obtain |Axy| < 24;, k=1,...,n—1and i =1,...,m.
Furthermore, applying the modulus property to the identity from Theorem 4
we get the wanted result. O

4 A multinomial expansion

In the following we will apply the results presented so far to expand a complex
formula. For general purposes, let us consider the following formula

n m
n

I = fk: — ( > n1 N2 M

(kzzl Z ny,ng,...,Mm Lz m

nitnz2+...+nm=n

where m and n are positive integers, ni,ns, ..., n, are nonnegative integers,
and f is an arbitrary expression. A complete set of multinomial expansions
was presented in [2], which shows the detailed structure of each decomposed
term. Here we present a different way to expand I' based on the identity given
in Corollary 1. It is stated in the following

Theorem 6 Let m, n be positive integers, with m > 2 and fr, 1 <k <n be
arbitrary expressions, then

n n m=2
= nm”zf;i”— n(ka) ‘kaXk+---
k=1 k=1 k=1
mQka Zflzn 2X +nm IZflzn le]
k=1

where X, = S0 Dy (k,9) A fi.

Proof. Tt follows directly from Corollary 1, where all the elements of the
sequence of numbers are f, 1 < k < n. a
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