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SOME PERTURBED OSTROWSKI TYPE INEQUALITY FOR
TWICE DIFFERENTIABLE FUNCTIONS

IHUSEYIN BUDAK, !MEHMET ZEKI SARIKAYA, AND 2:3S. SEVER DRAGOMIR

ABSTRACT. The main aim of this paper is to establish some perturbed Os-
trowski type integral inequalities for functions whose second derivatives are
either bounded or of bounded variation.

1. INTRODUCTION
In 1938, Ostrowski [27] established a following useful inequality:

Theorem 1. Let f : [a,b] — R be a differentiable mapping on (a,b) whose deriva-
tive " : (a,b) = R is bounded on (a,b), i.e. |f'|| := sup |f'(t)| < co. Then, we
te(a,b)

have the inequality

1 (@)’
PN

] (b—a)[[f'llo >

b
) ) - [ o] <

for all z € [a, b].
The constant % is the best possible.

Definition 1. Let P:a =129 < z1 < ... < &, = b be any partition of [a,b] and let
Af(z;) = f(xig1) — f(x;), then f is said to be of bounded variation if the sum

> 1Af ()]
i=1
is bounded for all such partitions.

Definition 2. Let f be of bounded variation on [a,b], and > Af (P) denotes the
sum Y |Af(x;)| corresponding to the partition P of [a,b]. The number
i=1

b
V() i=sw{> as(P): PePa)},

is called the total variation of f on [a,b]. Here P([a,b]) denotes the family of par-
titions of [a,b] .

In [15], Dragomir proved the following Ostrowski type inequalities for functions
of bounded variation:
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Theorem 2. Let f : [a,b] — R be a mapping of bounded variation on [a,b]. Then

(1.2) /b J(dt — (b—a) f(@)| < [1 (b—a)+ ]w— ““’H \b/(f)

2 2

a

holds for all x € [a,b]. The constant % is the best possible.

In [12], authors obtained the following Ostroski type inequalities for functions
whose second derivatives are bounded:

Theorem 3. Letf : [a,b] — R be continuous on [a,b] and twice differentiable on
(a,b), whose second derivative f" : (a,b) — R is bounded on (a;b). Then we have
the inequality

o= [ L2100 ()

2

1 _ atb)? 1 1

i [WU fa 0
T .

< Tg-a)

for all x € [a,b].

Ostrowski inequality has potential applications in Mathematical Sciences. In
the past, many authors have worked on Ostrowski type inequalities for functions
(bounded, of bounded variation, etc.) see for example ([1]-[17], [25],[26],[28]-[33]).
Moreover, Dragomir proved some perturbed Ostrowski type inequalities for bounded
functions and functions of bounded variation, please refer to [18]-[24]. In this study,
we establish some perturbed Ostrowski type inequalities for twice differentiable
functions whose second derivatives are either bounded or of bounded variation.

2. SOME IDENTITIES

Before we start our main results, we state and prove the following lemma:

Lemma 1. Let f : [a,b] = C be a twice differantiable function on (a,b). Then for
any A (z) and Aa(x) complex number the following identity holds

e (o= 550) 1w - w0+ / (o)t

1 [)\1(3:)(33—&)3 +)\2($)(b—x)3}
2(b—a) 3

1

T b
% bfa/(t—a)Q [f7(t) = A ()] dt + bia/(t—b)g [F7(t) = Xo(@)] dt |

a x

where the integrals in the right hand side are taken in the Lebesgue sense.



SOME PERTURBED OSTROWSKI TYPE INEQUALITY 3

Proof. Using the integration by parts, we have

x

(2.2) / (t— ) [f"(t) — M(x)]dt

- /(t a)f(t)dt—)\l()/(t—a)zdt
_ 2 ool g [ a) s M@ ’
= -’ r) -2 [ - rma- 20 >3a

= (@-0a) (@) - [t—a \—/f d] a)*
= @-0)f@)-2@—a)f +2/f ~a)’
and
b
(2.3) /(H)) () — o)) d
3vb b
= [0 it - xal) [ ¢-vd
b b
- (t—0) / dt—i()(t—b)
= (-2 f(2) - [t—b |— ] 7)’

= (b—x)Zf’(x)72(b—x)f(:c)+2/f(t)dtfAlT(x)(x—a)g.

If we add the equality (2.2) and (2.3) and devide by 2(b— a), we obtain required
identity. ([

Corollary 1. Under assumption of Lemma 1 with Ai(x) = A2(x) = A(z), we have

b
e (o= ) @ - )+ / byt - 6(2”

- ;[bfa/u—a)? 17(6) -

a

) [(a: —a)®*+ (b— x)ﬂ

<

(t—b)>[f"(t) — )]d].
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Remark 1. If we choose A(z) =0 in (2.4), then we have the following identity

(25) (e 57) 1@ - s+ 52 /b or:

T b
- [bia/(t—a)Qf”(t)dt—&-b_la/(t—b)2f”(t)dt]

for all x € [a,b].

Corollary 2. Under assumption of Lemma 1 with A\1(x) = A\ € C and \y(z) =
Ay € C, we get

2o (o= F0) F@ -+ /b o

—ﬁ [)\1 (.1' — a)3 + )\Q(b — l‘)g]

- b
- ;[bla/(t—a)Q[f”(t)—Al]dt""bla <t—b>2[f”<t>—k2ldt]~

a T

In particular, taking Ay = Ao = A we have

b
1) (o= 50) £ - 1) + 725 [0 - g2 [ + - )

—a
a T

< b
= % [bla/(ﬁ—a)2 [£7(t) = Al dt + & ! /(t—b)2 [f"(t)_Mdt] ,

Corollary 3. Under assumption of Lemma 1 with A1 (x)
(a,b), we have the equality

b
(2.8) (w - “;b) £a) = 1)+ [ fde - 6{1) (_“"”ZL) (@ —a)* + (b—2)°]

= b
_ ;[bia / (t— @ [F"(8) — (@) dt + —— (tb)Q[f”(t)f”(ﬂfﬂdt]-

b—a

a x

Corollary 4. Under assumption of Lemma 1, we assume that the lateral derivatives

Y(a) and f(b) exist and finite. If we take \i(x) = fi(a) and Xz(x) = f"(b) in
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(2.1), then we have

2(b—a) 3
11 7 b
- 2[6@/(t_ ) [F1(0) = fl@)] de+ o [ (£ =b)* [f"(t) = £/ ()] dt

In particular, we get

b

a —a 2
(2.10) bla/f(t)dt—f< ;rb> _ b 48) [ (a) + £ (b)]

a

2

+b ,
1 2 // 1%
= 0w {/ (t—a)” [f"(t) - fi(a dt++/ (t —b)” (b)]dt].

a

Corollary 5. Under assumption of Lemma 1, we assume that the derivatives f(a),
f(b) and f"(x) exist and finite. If we choose Ai(xz) = W and Ao(x) =
M n (2.1), then we have

b
r—a 3 — X 3
[ #tode = E= O

—a

[(z —a)*f{(a) + (b— )" (b)]
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In particular,

212?}—/]“ t)dt — <“+b> (b24“)2f”(“;b) - (biga) (£ (a) + f7(b)]

2 1 ﬂ
! bia/“—“f[f"“)‘ ta)+ 1 (24 )1&

3. INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVES ARE BOUNDED

Recall the sets of complex-valued functions:

U[a,b] (’% F)

- {f  [a,b] = C] [(r — f(t) (W) - ﬂ > 0 for almast every t € [a, b]}
and

14T
2

Ay (7,T) = {f : [a, 0] = C| ‘f(t) - < % Il —~| for a.e. t € [a,b]}.

Proposition 1. For any v,T € C, v # I, we have that U[a,b] (v,T) and Z[a,b] (v,T)
are nonempty and closed sets and

Uiap) (1,T) = Ajap) (7,T).

Theorem 4. Let f : [a,b] — C be a twice differantiable function on (a,b) and
€ (a,b). Suppose that v;, Ty € C, v # Ty, i = 1,2 and " € Ul g (71,T2) N
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Ulzp) (72,12), then we have the inequalities

(3.) (e 52) @) - s+ 52 /b o

(M +T1) (x—a)® + (12 +T2) (b—2)°
12(b—a)

(b—a)? z—a\’ b—az\°
< — _
< D T =l b —al T T2 — 72| b —a

[ 3 3
(722)" + ()| maxtirs = sl P2 = el )

1
I 3p 3p| 1
w_a) +(§%§) } (0 = m|* + T2 = 2|") 7,
1
+1=1

IA

S
|

S

a+b
x—

b—a

3
] 01 = ] + 172 = 2]

[1
_§+

Proof. Taking the modulus identity (2.1) for A\ (z) = %Fl and Ag(x) = %Fz,
since f” € Ulgz) (71.T2) N Uz p) (72, T2), we have

(x - “;b) Fa)— fa) + /b Ftyit

(m+T1) (@ —a)® 4+ (2 +T2) (b—x)°
12(b — a)

1 ’ 2 7 ’}/1 —|—F1
D — - = -
S 20—a) /(t a)” | f"(t) 5 dt
/ +TI
—l—/(t—b)2 f”(t)—L 5 2l at
1 \F — | ’ [Ty — 79| /
1~ "N 2 2 — 72 2
< — = = —
30— a) 5 /(t a)”dt + 5 /(t b)” dt

B (b—a)? z—a\® b—az\°
= B Ty — 71 — + T2 — 72| -

which completes the first inequality in (3.1).
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The proof of first and third branches of second inequality in (3.1) are obvious.
Using the Holder’s inequality

1
B

1 1 1
mn—l—pqg(m“—i—pa)<i (nﬂ—i—qﬁ)*, m,n,p,q>0and a >1with —+—==1
o

B

we can easily obtain the second branch of second inequality in (3.1). (]

Corollary 6. Let f : [a,b] — C be a twice differantiable function on (a,b) and
€ (a,b). If v, T € C, v #Tand f" € U[a,b] (v,T), then we have

b
(0= "52) @ = )+ 5= [ £ = s [(a = o+ 0= o]

el
> m[($—d)3+(b—l‘)3].

Corollary 7. Under assumption of Theorem 4 with x = ‘17'”’, we have

b
1 (b—a)® [y1+T1 v +Ty
_— / Fle)de — () + ke

L
96

<

[T —y1| + T2 — 2] (b —a)®.

4. INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVES ARE OF
BOUNDED VARIATION

Assume that f : f : [a,b] — C be a twice differantiable function on I° (the
interior of I) and [a,b] C I°. Then, as in (2.11), we have the identity

b
@) (o="50) @ - s+ g [ roa - EEEEOSI g
S (= 0 @)+ 0= 27 0)

x

- bia/(tfaf {f”(t)f”(a);fn(x)] dt

+bia/b<tb>2 e e il

for any « € [a, ] .
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Theorem 5. Let: f : [a,b] — C be a twice differantiable function on I° and [a,b] C
I°. If the second derivative f" is of bounded variation on [a,b], then

b
a o , y 3
" (x : ;Lb> f@) = e+ ﬁ/f(t)dt - 6)(b+(:) ) 7(x)
) 6<bl— o L@ = @)*1"(@) + (b —2)*1"(0) '

1 1 _
p>1,5+a—17
1 93—aT+b N "
3+ |52 v,

for any x € [a,b].
Proof. Taking modulus (4.1), we get

43 (o= 50 r@ - o+ / oy - = 2O gy
s @ @+ 0= 0P 0)
<! [bia/x@—a)? gy - LT g
+ﬁ b(t—b)2 F(t) - fﬂ(x);fﬂ(b)’dt] .

Since f” is of bounded variation on [a, ], we get

f//(t) _ w < |2f”(t) _ f';(a) . f”(x)\
o O = @) 1)~ )

IN
DN =
<
—
=
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Thus,

ay  [e-arro- P D a < Sy [u-ota

a a

(.Z‘—a)3 y "
EEV

IN
DO =

IN

Similarly, Since f” is of bounded variation on [z, b], we have

f//(t) _ f//(CL') ;‘ f”<b)’ < %\/(f//)

//x " 7‘%3 b

x

x

If we substitute the inequalities (4.4) and (4.5) in (4.3), we obtain the first inequality
n (4.2). The second inequality follows by Holder’s inequality

1 1 1 1
mn—l—pqg(m(’—i—p(’“)é (nB—I—qﬁ)ﬁ, m,n,p,qEOanda>1With——|—E:1.
a

Corollary 8. Under assumptions of Theorem & with x = ‘%rb, we have the inequal-

ity

i [ (50) - S5 (52) - S v+ e

IA
—
S
\
)
~—
[\v]
i
—

5. INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVES ARE
LIPSCHITZIAN

Theorem 6. Let: f : [a,b] — C be a twice differantiable function on I° and [a,b] C
I°. If the second derivative f" is Lipschitzian with the costant Ly(z) on [a,z] and
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Lo(z) on [x,b], then we have

(5.1)

b—a 6(b—a)

(& — )£ (a) + (b — 2)° F(8) |

for any x € [a,b].

Proof. Since f” is Lipschitzian with the costant Ly (z) on [a, z], we get

_ @) + (=) 2f"(t) = f"(a) = f"(2)]

- OO .

< O = @)+ 1) — @)
- 2
< SL@[it—all +lz—1
- 2
- %Ll(x)(x—a).

Thus,

(5.2) /(t—a)2 f”(t)—w &t < %Ll(@(x—a)/(t—a)?dt

< - L),

Similarly, f” is Lipschitzian with the costant Lo(z) on [z, b], we get

L L
and thus,
b
(5.3) /(t 02| - f(””)";f(b)’ dt < %(b — 1) La(a).

b
a z—a)’ — )3
(2= 52) @) - fla)+ 5= [ s E= g E O

11
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If we substitute the inequalities (5.2) and (5.3) in (4.3), we obtain the first inequality
in (5.1). The second inequalities con be proved as in Theorem 4 and Theorem 5. [

Corollary 9. Under assumption of Theorem 6 with Ly(x) = Lo(x) = L, we have

b
a T —a)d — )3
(54) (w— ;rb) fi(w) = fl) + ﬁ/f(t)dt— ( 6)(b+(;) " p1(ay

“gza%fﬁi Kar_’a)3f”(a)4‘(b“1ﬁ3f”(bﬂ’

B i T —a 4+ b—z\* Lib— )3
12 b—a b—a v

atb
2

Corollary 10. If we choose © =

L /b s () - L () - S + )

1
< —L{b-a)d.
< qgpllt-a)

in (5.4), we get the inequality
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