SOME APPLICATIONS OF YOUNG-TYPE INEQUALITIES FOR OPERATORS

LOREDANA CIURDARIU

ABSTRACT. The aim of this paper is to present some applications of several new Young-type and Holder's inequalities given by Alzer, H., Fonseca, C. M. and Kovacec, A. for operators.

1. Introduction

The famous Young's inequality, as a classical result, state that:

$$a^{\nu}b^{1-\nu} < \nu a + (1-\nu)b$$
,

when a and b are positive numbers, $a \neq b$ and $\nu \in (0, 1)$.

In these years, there are many interesting generalizations of this well-known inequality and its reverse, see for example [9, 10, 8, 7, 1] many others and references therein.

As in [1], we consider $A_{\nu}(a,b) = \nu a + (1-\nu)b$, and $G_{\nu}(a,b) = a^{\nu}b^{1-\nu}$. The following result, given in [7] is a refinement of the left-hand side of a refinement of the inequality of Young proved in 2010 and 2011 by Kittaneh and Manasrah, [9], [10].

Proposition 1. For all a, b > 0 we have

$$3\nu \left(A_{\frac{1}{3}}(a,b) - G_{\frac{1}{3}}(a,b)\right) \le A_{\nu}(a,b) - G_{\nu}(a,b)$$

if $0 < \nu \leq \frac{1}{3}$, and

$$3\nu(1-\nu)\left(A_{\frac{2}{3}}(a,b)-G_{\frac{2}{3}}(a,b)\right) \le A_{\nu}(a,b)-G_{\nu}(a,b)$$

if
$$\frac{1}{3} \le \nu < 1$$
.

More recently, in [1] are given new results which extend many generalizations of Young's inequality given before. We recall these results below in order to use them in the next sections.

Date: March 19, 2016.

²⁰⁰⁰ Mathematics Subject Classification. 26D20.

Key words and phrases. Young inequality, selfadjoint operators .

Theorem 1. Let λ , ν and τ be real numbers with $\lambda \geq 1$ and $0 < \nu < \tau < 1$. Then

$$\left(\frac{\nu}{\tau}\right)^{\lambda} < \frac{A_{\nu}(a,b)^{\lambda} - G_{\nu}(a,b)^{\lambda}}{A_{\tau}(a,b)^{\lambda} - G_{\tau}(a,b)^{\lambda}} < \left(\frac{1-\nu}{1-\tau}\right)^{\lambda},$$

for all positive and distinct real numbers a and b. Moreover, both bounds are sharp.

Theorem 2. Let $\nu \in (0,1)$. For all real numbers a, b with 0 < a < b we have

$$\frac{\nu(1-\nu)}{2}a\log^2\left(\frac{b}{a}\right) < A_{\nu}(a,b) - G_{\nu}(a,b) < \frac{\nu(1-\nu)}{2}b\log^2\left(\frac{b}{a}\right)$$

and

$$\exp\left(\frac{\nu(1-\nu)}{2}\left(1-\frac{a}{b}\right)^2\right) < \frac{A_{\nu}(a,b)}{G_{\nu}(a,b)} < \exp\left(\frac{\nu(1-\nu)}{2}\left(1-\frac{b}{a}\right)^2\right).$$

In each inequality, the factor $\frac{\nu(1-\nu)}{2}$ is the best possible.

2. The Young-type inequalities for operators

As in [4], it is necessary to recall that for selfadjoint operators $A, B \in B(H)$ we write $A \leq B$ (or $B \geq A$) if $Ax, x \leq Bx, x \leq Bx$ for every vector $x \in H$. We will consider for beginning A as being a selfadjoint linear operator on a complex Hilbert space (H; < ... >). The Gelfand map establishes a *- isometrically isomorphism Φ between the set C(Sp(A)) of all continuous functions defined on the spectrum of A, denoted Sp(A), and the C^* - algebra $C^*(A)$ generated by A and the identity operator 1_H on H as follows: For any $f, f \in C(Sp(A))$ and for any $\alpha, \beta \in \mathbf{C}$ we

- (i) $\Phi(\alpha f + \beta g) = \alpha \Phi(f) + \beta \Phi(g)$;
- (ii) $\Phi(fg) = \Phi(f)\Phi(g)$ and $\Phi(f) = \Phi(f^*);$
- (iii) $||\Phi(f)|| = ||f|| := \sup_{t \in Sp(A)} |f(t)|;$ (iv) $\Phi(f_0) = 1_H$ and $\Phi(f_1) = A$, where $f_0(t) = 1$ and $f_1(t) = t$ for $t \in Sp(A)$. Using this notation, as in [4] for example, we define

$$f(A) := \Phi(f)$$
 for all $f \in C(Sp(A))$

and we call it the *continuous functional calculus* for a selfadjoint operator A. It is known that if A is a selfadjoint operator and f is a real valued continuous function on Sp(A), then $f(t) \geq 0$ for any $t \in Sp(A)$ implies that $f(A) \geq 0$, i.e. f(A) is a positive operator on H. In addition, if and f and g are real valued functions on Sp(A) then the following property holds:

 $f(t) \ge g(t)$ for any $t \in Sp(A)$ implies that $f(A) \ge g(A)$ in the operator order of B(H).

We consider A, B two positive operators on a complex Hilbert space (H, < ... >)and the following notations for operators:

$$A\nabla_{\nu}B = (1 - \nu)A + \nu B, \ \nu \in [0, 1],$$

the weighted operator arithmetic mean and

$$A\sharp_{\nu}B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)^{\nu}A^{\frac{1}{2}},\ \nu\in[0,1],$$

the weighted operator geometric mean.

The following inequalities operators will use the results given in previous section.

Theorem 3. For any A, B positive invertible operators on H we have

$$\begin{split} \left(\frac{\nu}{\tau}\right)^{\lambda} \left[\left(A^{-\frac{1}{2}}(\tau B + (1-\tau)A)A^{-\frac{1}{2}}\right)^{\lambda} - \left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)^{\tau\lambda} \right] < \\ < \left(A^{-\frac{1}{2}}(\nu B + (1-\nu)A)A^{-\frac{1}{2}}\right)^{\lambda} - \left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)^{\nu\lambda} < \\ < \left(\frac{1-\nu}{1-\tau}\right)^{\lambda} \left[\left(A^{-\frac{1}{2}}(\tau B + (1-\tau)A)A^{-\frac{1}{2}}\right)^{\lambda} - \left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)^{\tau\lambda} \right] \end{split}$$

which can be also written,

or

$$\left(\frac{\nu}{\tau}\right)^{\lambda} \left[\left(A^{-\frac{1}{2}}(A\nabla_{\tau}B)A^{-\frac{1}{2}}\right)^{\lambda} - A^{-\frac{1}{2}}(A\sharp_{\tau}B)A^{-\frac{1}{2}} \right] <$$

$$< \left(A^{-\frac{1}{2}}(A\nabla_{\nu}B)A^{-\frac{1}{2}}\right)^{\lambda} - A^{-\frac{1}{2}}(A\sharp_{\nu}B)A^{-\frac{1}{2}} <$$

$$< \left(\frac{1-\nu}{1-\tau}\right)^{\lambda} \left[\left(A^{-\frac{1}{2}}(A\nabla_{\tau}B)A^{-\frac{1}{2}}\right)^{\lambda} - A^{-\frac{1}{2}}(A\sharp_{\tau}B)A^{-\frac{1}{2}} \right]$$

$$\left(\frac{\nu}{\tau}\right)^{\lambda} \left[A\sharp_{\lambda}(A\nabla_{\tau}B) - A\sharp_{\tau\lambda}B\right] <$$

$$< A\sharp_{\tau}(A\nabla_{\nu}B) - A\sharp_{\nu\lambda}B <$$

$$< \left(\frac{1-\nu}{1-\tau}\right)^{\lambda} \left[A\sharp_{\lambda}(A\nabla_{\tau}B) - A\sharp_{\tau\lambda}B\right],$$

for any real numbers λ , ν and τ with $\lambda \geq 1$ and $0 < \nu < \tau < 1$.

Proof. In Theorem 1 if we divide the inequality

$$\left(\frac{\nu}{\tau}\right)^{\lambda} < \frac{A_{\nu}(a,b)^{\lambda} - G_{\nu}(a,b)^{\lambda}}{A_{\tau}(a,b)^{\lambda} - G_{\tau}(a,b)^{\lambda}} < \left(\frac{1-\nu}{1-\tau}\right)^{\lambda},$$

by b^{λ} we get the following:

$$\left(\frac{\nu}{\tau}\right)^{\lambda} < \frac{(\nu \frac{a}{b} + (1-\nu))^{\lambda} - (\frac{a}{b})^{\nu \lambda}}{(\tau \frac{a}{b} + (1-\tau))^{\lambda} - (\frac{a}{b})^{\tau \lambda}} < \left(\frac{1-\nu}{1-\tau}\right)^{\lambda}.$$

Now we use the continuous functional calculus as in [5] and we have for an operator ${\cal C}>0$ that

$$\left(\frac{\nu}{\tau}\right)^{\lambda} \left[(\tau C + (1-\tau)1_H)^{\lambda} - C^{\tau\lambda} \right] <$$

$$< (\nu C + (1-\nu)1_H)^{\lambda} - C^{\nu\lambda} <$$

$$< \left(\frac{1-\nu}{1-\tau}\right)^{\lambda} \left[(\tau C + (1-\tau)1_H)^{\lambda} - C^{\tau\lambda} \right].$$

We take $C = A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$ and we have

$$\left(\frac{\nu}{\tau}\right)^{\lambda} \left[\left(\tau A^{-\frac{1}{2}} B A^{-\frac{1}{2}} + (1-\tau) 1_{H}\right)^{\lambda} - \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\tau \lambda} \right] <$$

$$< \left(\nu A^{-\frac{1}{2}} B A^{-\frac{1}{2}} + (1-\nu) 1_{H}\right)^{\lambda} - \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\nu \lambda} <$$

$$< \left(\frac{1-\nu}{1-\tau}\right)^{\lambda} \left[\left(\tau A^{-\frac{1}{2}} B A^{-\frac{1}{2}} + (1-\tau) 1_{H}\right)^{\lambda} - \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\tau \lambda} \right]$$
or
$$\left(\frac{\nu}{\tau}\right)^{\lambda} \left[\left(A^{-\frac{1}{2}} (\tau B + (1-\tau A) A^{-\frac{1}{2}})\right)^{\lambda} - \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\tau \lambda} \right] <$$

$$< \left(A^{-\frac{1}{2}} (\nu B + (1-\nu A) A^{-\frac{1}{2}})\right)^{\lambda} - \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\nu \lambda} <$$

$$< \left(\frac{1-\nu}{1-\tau}\right)^{\lambda} \left[\left(A^{-\frac{1}{2}} (\tau B + (1-\tau A) A^{-\frac{1}{2}})\right)^{\lambda} - \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\tau \lambda} \right].$$

Now if we multiply both sides of previous inequality with $A^{\frac{1}{2}}$ we deduce last inequality of this theorem.

Proposition 2. For $\lambda = n \in \mathbb{N}$ and A, B positive invertible operators on H we have:

$$\begin{split} &\frac{\nu^n}{\tau^n} \left[\sum_{k=0}^n \left(\begin{array}{c} n \\ k \end{array} \right) (1-\tau)^{n-k} \tau^k A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^k A^{\frac{1}{2}} - A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^{\tau n} A^{\frac{1}{2}} \right] < \\ &< \sum_{k=0}^n \left(\begin{array}{c} n \\ k \end{array} \right) (1-\nu)^{n-k} \nu^k A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^k A^{\frac{1}{2}} - A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^{\nu n} A^{\frac{1}{2}} < \\ &< \frac{(1-\nu)^n}{(1-\tau)^n} \left[\sum_{k=0}^n \left(\begin{array}{c} n \\ k \end{array} \right) (1-\tau)^{n-k} \tau^k A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^k A^{\frac{1}{2}} - A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^{\tau n} A^{\frac{1}{2}} \right], \\ or \end{split}$$

$$\frac{\nu^n}{\tau^n} \left[\sum_{k=0}^n \binom{n}{k} (1-\tau)^{n-k} \tau^k A \sharp_k B - A \sharp_{\tau n} B \right] <$$

$$< \sum_{k=0}^n \binom{n}{k} (1-\nu)^{n-k} \nu^k A \sharp_k B - A \sharp_{\nu n} B <$$

$$< \frac{(1-\nu)^n}{(1-\tau)^n} \left[\sum_{k=0}^n \binom{n}{k} (1-\tau)^{n-k} \tau^k A \sharp_k B - A \sharp_{\tau n} B \right]$$

for any real numbers ν and τ with $0 < \nu < \tau < 1$.

Proof. We use the same method as in Tkeorem 3.

Theorem 4. (i) If A, B are positive invertible operators on H with A < B and $\nu \in (0,1)$ then we have:

$$\frac{\nu(1-\nu)}{2}A^{\frac{1}{2}}\left(\log^{2}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})\right)A^{\frac{1}{2}} <$$

$$<\nu A + (1-\nu)B - A^{\frac{1}{2}}\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)^{1-\nu}A^{\frac{1}{2}} <$$

$$<\frac{\nu(1-\nu)}{2}A^{\frac{1}{2}}\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\log^{2}\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)\right)A^{\frac{1}{2}}$$

(ii) (a) If A, B are positive invertible operators on H with A < B then

$$\nu A + (1 - \nu)B < A^{\frac{1}{2}} \left[(A^{-\frac{1}{2}}BA^{\frac{1}{2}})^{1 - \nu} \exp \frac{\nu(1 - \nu)}{2} (I - A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^2 \right] A^{\frac{1}{2}},$$

where $\nu \in (0,1)$.

(b) If A, B are positive invertible operators on H with A > B then

$$\nu A + (1-\nu)B > A^{\frac{1}{2}} \left[(A^{-\frac{1}{2}}BA^{\frac{1}{2}})^{1-\nu} \exp \frac{\nu(1-\nu)}{2} (I-A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^2 \right] A^{\frac{1}{2}},$$

where $\nu \in (0,1)$.

Proof. (i) We divide by $a \neq 0$ in inequality

$$\frac{\nu(1-\nu)}{2}a\log^2\left(\frac{b}{a}\right) < A_{\nu}(a,b) - G_{\nu}(a,b) < \frac{\nu(1-\nu)}{2}b\log^2\left(\frac{b}{a}\right)$$

from Theorem 2 and we get the scalar inequality

$$\frac{\nu(1-\nu)}{2}\log^2\left(\frac{b}{a}\right) < \nu + (1-\nu)\frac{b}{a} - \frac{b^{1-\nu}}{a^{1-\nu}} < \frac{\nu(1-\nu)}{2}\frac{b}{a}\log^2\left(\frac{b}{a}\right),$$

when $\frac{b}{a} > 1$. Therefore we can write:

$$\frac{\nu(1-\nu)}{2}\log^2{(c)} < \nu + (1-\nu)c - c^{1-\nu} < \frac{\nu(1-\nu)}{2}c\log^2{c},$$

with c > 1. Now using the continous functional calculus as in [5] we find that

$$\frac{\nu(1-\nu)}{2}\log^2\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right) < \nu 1_H + (1-\nu)A^{-\frac{1}{2}}BA^{-\frac{1}{2}} - \left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)^{1-\nu} < \frac{\nu(1-\nu)}{2}\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)\log^2\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right),$$

where $C = A^{-\frac{1}{2}}BA^{-\frac{1}{2}} > 1_H$ because B > A. Then we multiply both sides of previous inequality with $A^{\frac{1}{2}}$ and we get:

$$\frac{\nu(1-\nu)}{2}A^{\frac{1}{2}}\left(\log^{2}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})\right)A^{\frac{1}{2}} <$$

$$<\nu A + (1-\nu)B - A^{\frac{1}{2}}\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)^{1-\nu}A^{\frac{1}{2}} <$$

$$<\frac{\nu(1-\nu)}{2}A^{\frac{1}{2}}\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\log^{2}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})\right)A^{\frac{1}{2}}.$$

(ii) (b) This time we divide the inequality

$$\exp\left(\frac{\nu(1-\nu)}{2}\left(1-\frac{a}{b}\right)^2\right) < \frac{A_{\nu}(a,b)}{G_{\nu}(a,b)} < \exp\left(\frac{\nu(1-\nu)}{2}\left(1-\frac{b}{a}\right)^2\right).$$

from Theorem 2 by $b \neq 0$ and we get

$$\exp\left(\frac{\nu(1-\nu)}{2}\left(1-\frac{a}{b}\right)^2\right)<\frac{\nu^{\frac{a}{b}}+(1-\nu)}{\left(\frac{a}{b}\right)^{\nu}}$$

with $c = \frac{a}{b} < 1$. By continous functional calculus we get

$$C^{\nu} \exp\left(\frac{\nu(1-\nu)}{2} (1_H - C)^2\right) < \nu C + (1-\nu)1_H$$

when $C<1_H$ Now we put $C=A^{-\frac{1}{2}}BA^{-\frac{1}{2}}<1_H$ and we have,

$$(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\nu}\exp\left(\frac{\nu(1-\nu)}{2}\left(1_{H}-(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})\right)^{2}\right)<\nu(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})+(1-\nu)1_{H}.$$

We multiply both sides of previous inequality with $A^{\frac{1}{2}}$ and we obtain the desired inequality.

For (a) we take into account the second part of inequality from Theorem 2 and we use the same method.

References

- Alzer, H., Fonseca, C. M., Kovacec, A., Young-type inequalities and their matrix analogues, Linear and Multilinear Algebra, 63, 3, (2015), 622-635.
- [2] Ciurdariu L., Craciunescu A., On spectral representation on gramian normal operators on pseudo-Hilbert spaces, Analele Universitatii de Vest din Timisoara, Seria Matematica Informatica, XLV, 1, pp.131-149, (2007).
- [3] Ciurdariu L., Inequalities for selfadjoint operators on Hilbert spaces and pseudo-Hilbert spaces, RGMIA, Res. Rep. Coll., 2015.
- [4] Dragomir S. S., Cebysev's type inequalities for functions on selfadjoint operators in Hilbert spaces, Res. Rep. Coll., RGMIA, 2009.
- [5] Dragomir S. S., Some asymmetric reverses of Young's scalar and operator inequalities with applications, RGMIA, Res. Rep. Coll., 19, 2016, Art 44.
- [6] Dragomir S. S., New refinements and reverses of Hermite-Hadamard inequality and applications to Young's operator inequality, RGMIA, Res. Rep. Coll., 19, 2016, Art. 42.
- [7] Feng, Y., Refinements of Young's inequalities for matrices, Far East J. Math. Sci., (FJMS), 2012;63:45-55.
- [8] Furuichi S., Minculete, N., Alternative reverse inequalities for Young's inequality, *Journal of Mathematical inequalities*, 5, 4 (2011), 595–600.
- [9] Kittaneh, F., Manasrah, Y., Reverse Young and Heinz inequalities for matrices, *Linear and Multilinear Algebra*, 59, 9 (2011), 1031–1037.
- [10] Kittaneh, F., Manasrah, Y., Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl., 361 (2010), 262–269.

Department of Mathematics, "Politehnica" University of Timisoara, P-ta. Victoriei, No.2, 300006-Timisoara