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SOME WEIGHT FUNCTIONALS ASSOCIATED TO CONVEX
FUNCTIONS WITH APPLICATIONS

S. S. DRAGOMIR!:2

ABSTRACT. The superadditivity and monotonicity of some weight function-
als in the general setting of Lebesgue integral associated to convex functions
are established. Applications for discrete inequalities and for arithmetic and
geometric means are also given.

1. INTRODUCTION

Let (2, A, ) be a measurable space consisting of a set 2, a o-algebra A of subsets
of  and a countably additive and positive measure p on A with values in RU{oco} .
For a p-measurable function w :  — R, with w (x) > 0 for p-a.e. (almost every)
x € €, consider the Lebesgue space

Ly (Qp):={f:Q—R, fis up-measurable and / w(x) |f (z)|dp (x) < oo}
Q

For simplicity of notation we write everywhere in the sequel fQ wdp instead of

Sy (@) dps ().
For a p-measurable function w : @ — R, with w (z) > 0 for y -a.e. = € Q and
fQ wdp > 0, we consider the functional

Jowfdp
w(<I>of)d,u—<I><};wd#)/deuzﬂ7

where @ : I — R is a continuous convex function on the interval of real numbers I,
f:Q — R is p-measurable and such that f, ® o f € L, (Q, ).
In [7] we proved the following result:

(1.1) J (w; @, f) ::/

Q

Theorem 1. Let w; : @ — R, with w; (z) > 0 for p-a.e. (almost every) x € Q
and fQ widp > 0,4 € {1,2}. If ® : T — R is a continuous convex function on the
interval of real numbers I, f : Q0 — R is u-measurable and such that f, ® o f €
Ly, (2, 1) N Ly, (2, 1), then

(1.2) J(wy +we; @, f) > J(wy; @, f) + J (we; @, f) >0,

i.e. J is a superadditive functional of weights.
Moreover, if we > w1 > 0 p-a.e. on S, then

i.e. J is a monotonic nondecreasing functional of weights.
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The above theorem has a simple however interesting consequence that provides
both a refinement and a reverse for the Jensen’s integral inequality:

Corollary 1. Let w; : @ — R, with w; (z) > 0 for p-a.e. © € Q, [, widp > 0,
i € {1,2} and there exists the nonnegative constants v, I' such that

(1.4) 0§7§%§F<oo,u—a.e. on .
w1

If ® : I — R is a continuous convex function on the interval of real numbers I,
f:Q — R is p-measurable and such that f, ® o f € Ly, (Q, 1) N Ly, (Q, 1), then

Jowidp [ [qwi (®o f)dp Jo w1 fdp
(15) 0=7 fQ wadp [ Jowidp -® < Jowidp >}
wig (Pof)du & (wiQfdu>
- Jo wadp Jo wadp
wildu [fgwl (®of)du o (wilfd,uﬂ
fQ wadp Jo widp Jowidn )|

Remark 1. Assume that p(Q2) < oo and let w : @ — R, with w(zx) > 0 for
p-a.e. x© €, fQ wdp > 0 and w is essentially bounded, i.e. essinf,cqw () and
essup,co w (x) are finite.

If ®: I — R is a continuous convex function on the interval of real numbers I,
f:Q — R is u-measurable and such that f, ® o f € Ly, (Q,u) N L(Q, ), then

essinfoeqw (z) [ Jo (Ro fldu ([ fdu
(+0) R Ny S e (o))
Jow(®ofldu [ Jowfdu
: Jo wdp ? ( Jo wdp >
essup,eqw (2) [Jo (R0 f)du ([ fdu
= T wd { () q’(mm ﬂ

This result can be used to provide the following result related to the Hermite-
Hadamard inequality for convex functions that states that

1 b a+b
®(t)dt > D
s voaze (13

for any convex function @ : [a,b] — R.
Indeed , if w : [a,b] — [0, 00) is Lebesgue integrable, then we have by (1.6) that
(1.7) 0< :

1 b a+b
w0 =IALERICY
Jow(®)®(t)dt ( Jyw tdt)

essinf,cjqp) w (2)

IN

f;w(t) dt f (1) dt
€S8P c(q,5) W (z) 1 b ) -
- A [P (t)dt lb_a/aq’(t)dt <1>< : )

Now we consider another functional depending on the weights

K (w;®, f) ::J(w;(I)’f) fQ (o f)dp q)(fﬂwfd,u>20

Jowdp fQ wdp Jo wdp
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and the composite functional

qu@fw=(l;mm)mU(wu@f>+uzo,

where ® : I — R is a continuous convex function on the interval of real numbers I
and f: Q — R is gy-measurable and such that f, ®o f € L,, (Q, ).

Theorem 2. With the assumptions of Theorem 1, the functional L(;®, f) is a
superadditive and monotonic nondecreasing functional of weights.

The following result provides another refinement and reverse of the Jensen in-
equality:

Corollary 2. Let w; : @ — R with w; (x) > 0 for p-a.e. z € Q, fQ widp > 0,
i € {1,2} and there exists the nonnegative constants vy, I' such that

w
0§7§—2§F<oo,u—a.e. on €.
wq

If ® : I — R is a continuous convex function on the interval of real numbers I,
f:Q — R is u-measurable and such that f, ® o f € Ly, (2, 1) N Ly, (1), then

Jo widy
Pof)d d VT wadn
1 - [fﬂ wjl’ (w di) oo (%lﬁfduu) + 1} -1
o=t oW
<ﬂﬂﬂ¢@ﬂ@_@<kwﬁw)
a Jo wadp Jo wadp
rigwide
< {wil (®of)du > (fgwlfdu) N 1} Towadi N
fQ widp fQ wid

Remark 2. Assume that ©(Q) < oo and let w : @ — R, with w(z) > 0
-a.e. T € fQ wdp > 0 and w is essentially bounded, i.e. essinf,cqw (z
essup,cqw (x) are finite.

If ®: I — R is a continuous convex function on the interval of real numbers I,
f:Q — R is p-measurable and such that f, ® o f € Ly, (Q,u) N L(Q,u), then

for p
) and

essinfycq w(z)

Jo(@of)du (o fdp T Uaea)
o) os |[RUERE e () o !
M _ Jowfdu
= Jo wdn ® < Jowdp )
esssupy, e w(x)
fo@o ) o (ot ] T
S[ (©) é(mm)+q !

In particular, if w : [a,b] — [0,00) is Lebesgue integrable, then we have the fol-
lowing result related to the Hermite-Hadamard inequality for the convex function
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la,b] = R
) essifllfzil[’a,b(]t;‘;(:>
1 Ly
(1L10) o< |; <I>(t)dt—<1><a+b>+1 ’ 1
/.
B fw@we@wd [ fow(t)tdt
T Pw)dt (2w (t) dt
, Cssulpmjg)a)b(] ';u(a:)
1 a _|_ b p=a Ja w(t)dt
< O (t)dt — @ 1 ~1.
ETRRICSE

For other related results, see [3]-[8] and [11].

Motivated by the above results, we establish in this paper the superadditivity
and monotonicity of some weight functionals in the general setting of Lebesgue
integral associated to convex functions defined on real intervals. Applications for
discrete inequalities and for arithmetic and geometric means are also given.

2. MAIN RESULTS

Let ® : I — R be a continuous convex function on the interval of real numbers
I and f: Q — I be p-measurable on €2. We consider the cone of positive weights

Wy (Q) = {w : Q — [0, 00), /deu >0and f € L, (Q,,u)}

and the functional C (-; @, f) : Wy ¢ () — R given by

(2.1) C(w;®,f) = <m> /deu.

Theorem 3. Let @ : I — R be a continuous convex function on the interval of real
numbers I and f : Q — I be p-measurable on Q. Then the functional C (+;®, f) is
convex on Wy ¢ ().

Proof. Let wi, wa € Wy 5 (2) and A € [0,1]. We have

(2.2) C (M + (1= N wa; @, f)

A Jo P 4 (1= N ws] fdp . o
(I)(fg )\w1+(1_)\)w2]dﬂ)\/[>\ 1+ (L= A)wa]dp
(A fqwifdp+ (1= X) [ wafdp . o
_(I)( A fqwidp+ (1= X) [ wadp >/Q[)‘ 1+ (1= A) wp]dp

)‘fgwldﬁ‘fff%fdf + (1= X) Jowadp fflfgfdiﬂ

A fqwidp+ (1= X) [ wadp

X /Q [Awy + (1 — ) wa] dp.
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By the convexity of ® we have

A wilduffﬁfdi“ + (1= A) [y wadp ffﬁfdf
(2.3) o
A fqwidp+ (1= X) [ wadp
Jowifdu Jq w2 fdu
_ Mo widue (4 wlldu) =) [y wadp (el
- )\fﬂwldu - ) wigdu '

Then by (2.2) and (2.3) we have
C(Awy + (1 =N w; @, f)
_AMawdpe (Lealli) 4 (1= 2 fp wadped (et
B /\fg widp + (1= A) fsz wadj
X/Q[Aw1+(1—)\)w2]du

Y (fﬂ“’fd“) [ wdnr - x)0 <fﬂ“’fd“> [ wad

Jowidp Jo w2dp
=AC (w13 @, f) + (1 = ) C (wa; @, f),

for any w1, wa € Wy 5 () and A € [0,1], which proves that C (-; ®, f) is convex
on Wy ¢ (Q). O

Let ® : I — R be a continuous convex function on the interval of real numbers
I and f: Q — I be p-measurable on 2. We consider the cone

W+;f,<1> (Q) = {’LU € WJr,f (Q) , Pof e Ly (Q?M)}

As in the introduction, we can define the following weight functionals J (-; @, f),
K (@, f)and L(-;®, f) defined on Wy ;4 () and given by

(24) J(wd,f) = /Qw(@of) dyi— C (w; B, f)

B Jowfdu
_/Qw(éof)du—q>(m)/gwduzo,

. _J(w®,f)  Jow(®o f)dp Jo wfdp
(29 Klws® J) = wid/‘ - fgwd,u (I)(j}gwd/l>>0

and the composite functional

(2.6) L(w;®, f):= (/Q wdu) In [K (w; @, f)+1] > 0.
We have:

Theorem 4. Let & : I — R be a continuous convex function on the interval of real
numbers I and f : Q — I be u-measurable on ). Then the functionals J (; @, f)
and L (@, f) are concave and positive homogeneous on W4 5o ().
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Proof. Let wy, wa € Wy 5o (2) and A € [0,1]. By the convexity of the functional
C (9, f) we have

J Oy + (1= A was @, f)
= [ (a+ (1= X)) (@ £ die = € 4+ (1= Wi @, )
=3 [ @0 pap+ =) [wa(@o pan

€ + (1- Nz @, f)

>0 [ wn @ fdut (1=3) [ wn (@0 )

—AC (w13 @, f) = (1 =) C (w2 @, f)

| [wr@odu-c e

Y [sz(¢0f)du—0(wz;®,f)]
:)‘J(wla@uf)+(1_)‘)J(w27q)7f)7

which shows that J (-; ®, f) is concave on Wy 1o (£2).
Now, observe that by the concavity of J (;®, f), we have for any wy, we €
Wi 1o () and X € [0, 1] that

(2.7) L(Awi; + (1= XN wsy; @, f)

_/(Aww(l—mwg)dmn{J(Awﬁ(l”)wmn
Q

Jo Qi + (1 = X)ws) dp

0

> /Q (Awy + (1 = A) wsy) du

><1n |:>\J(’LU1,‘I) f) ( /\)J(’LUQ,@ f)
A fqwidp + (1= X) [ wadp

Q

—)\wi dMJ(wl;q’;f) +(1=N\ wi du J(w2; P, f) 1]

8

Jowidp Jo wadp

X In
A fqwidp+ (1= X) [, wadp

Q

o (58 + )0 o (320 1)

x In

A fqwidp+ (1= X) [ wadp
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By the weighted arithmetic mean-geometric mean inequality we have

J(wy;®, (wg;®,
A [qwidp (7} w1d£)+1) wigdu( T wzdl{)—l-l)
A Jqwidp+ (1= X) [ wadp

AJo widp

. <J(w1;<I>,f) +1> N g wndn+ (=) Jg wadn
Jo widp

(2.8)

A Jo wadp
N widnt(I—X) Jo wadn

J (w23 @, f) )
X( f9w2d“ +1

for any w1, we € W4 f4 () and X € [0, 1].
Taking the logarithm in (2.8) we have

A Jo wrdp (Jf(zﬂqlfdﬁ) + 1) (1=XJo w2d/‘( f(wif)d/{) * 1)

2.9 In
(2:9) A Jowidp + (1= X) [o wadp
> )‘fggwldu 1n<‘](w1;q>7f) _|_1>
Jo Qi + (1 = X)ws) dp Jo widp

—A) Jo wadp ) J (wa; @, f)
Jo Qwi + (1= X)ws) dﬂl < Jo wadn " 1)

for any w1, we € Wy 10 (2) and A € [0, 1].
Now, if we multiply (2.9) by [, (Awy + (1 — X) wa) dp > 0 we get

A A/ wydpln <J<w1<1>f> +1)
Q fQ widp

+(1-)) /Q wadpIn (J}sj;jl’uf) + 1)

= AL (w1; P, f)+ (1 = A) L (we; @, f)

for any wr, we € Wy 5o () and X € [0,1], which, by (2.7) shows that L (-;®, f) is
concave on Wy o ().
We observe that

J (aw; @, f) = aJ (w; P, f) and L (aw; D, f) = aL (w; P, f)

for any w € Wy 74 () and a > 0 that proves that J (-;®, f) and L (;®, f) are
positive homogeneous on Wy 7 (). O

Remark 3. We observe that by the concavity and positive homogeneity of J (+; ®, f)
and L (-;®, f) we have for any w1, we € Wy 1.0 () that

J(wl—i-wg;(I),f):QJ(wl;wQ > f> [J(w1;<1>,f)—;J(w2;<I>,f)

=J(w; 9, f) + J (wa; P, f)

and a similar relation for L (-;®, f), that proves the superadditivity of the function-
als J (@, f) and L (+;®, f) as pointed out in Theorem 1 and Theorem 2.
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Let ® : [m,M] — R be a continuous convex function on the interval of real
numbers [m, M] and f : Q — [m, M] be p-measurable on . Then by convexity of
® we have

(t—m) ® (M) + (M — ) ® (m) Zq){(tm)MﬂM“m} — o)

2.1
(2.10) M—m M—-—m

for any t € [m, M].

We then have, by taking ¢t = ff U:dei” € [m, M] in (2.10) that

(it )00 (1= BEE) 00 (v
M — - fﬂwdu

that is equivalent to

(2.11) Ml—m K/{;ufdu—m/ﬂwdu) D (M)
+ (M/deu—/ﬂwfd,u> @(m)]
byt
>0 < i / wfdp.
We define the trapezoidal functional T : Wy ; (©2) — [0, 00) by

@n)NMQnrMimKLMWmAw@¢W>

—|—<M/deu—/ﬂwfd,u>(1>(m)].

We can consider the functionals P, @ : Wy ¢ (©2) — [0, 00) defined by

(2.13) P(w; @, f) =T (w; ®, f) — C (w; @, f)

and

(2.14) Q(w; @, f) := (/Q wdu) In <W + 1) .
Q

Theorem 5. Let ® : [m,M] — R be a continuous convex function on the in-
terval of real numbers [m, M] and f : Q — [m, M] be p-measurable on Q. Then
the functionals P (+; @, ) and Q (-; P, f) are concave and positive homogeneous on

Wi (€).

Proof. We observe that the functional 7' (-;®, f) is additive and positive homo-
geneous on Wy ¢ (). Therefore, by the convexity and positive homogeneity of
C (:;®, f) we can conclude that P (-; @, f) is concave and positive homogeneous on

Wy s (Q).
The proof of concavity of @ (-; P, f) follows in a similar way to the one in the
proof of Theorem 4 and we omit the details. O

Corollary 3. With the assumptions of Theorem 4 we have that the functionals
P(;®,f) and Q (+; P, f) are superadditive and monotonic nondecreasing functionals
of weights.

We also have the following upper and lower bounds:
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Corollary 4. Let ® : [m, M] — R be a continuous convex function on the interval
of real numbers [m, M| and [ : Q — [m, M] be p-measurable on Q. If wy, we €
Wy ¢ (Q) and there exists the nonnegative constants v, I' such that

(2.15) 0<y< L2 <T < oo p-a.e. on,
wq

then we have

o wdn (il —m) @ () + (M = Bl o (m)
m

2.16
(2.16) fQ wadp M —
(e
Jo widp
q w2 fd fsz wa fd,
< (ffn i ) () + ( Jo wd:) 2 (m)
- M—-—m
fQ wadp
qwifd qwifd
i (Ll —m) @ (M) + (M = Bl o (m)
fQ wadp M—-—m
v
Jowidp
and
Jowifdu Jo w1 fdp
(2.17) (e —m) @ @0+ (v - ) @ (m)
' M—m
Jowidn
Vg wadn
o (fnwfdu> N 1} .
Jo widp
szfd szfd
G o0n s (0= i) oo
- M —
Jo wadpe
Jowifdp Jowifdu
< ( Jo widp ) (M fsz widp ) ® (m)

1dp

Jo
TiQwik
5 <fQ wlfdu) n 1:| Jo wadn .

Jowidp

Proof. From (2.15) we have yw; < we < T'w; < oo p-a.e. on  and by the
monotonicity property of the functional P (-; ®, f) we get
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Since the the functional is positive homogeneous, namely P (aw; @, f) = aP (w; ®, f),
then we get from (2.18) that

VT (w13 @, f) = C(wi; @, )] < T (we; @, f) = C(we; @, f)
r

<
S [T(wla(paf)ic(wlvq))f)]a

which is equivalent to (2.16).

The inequality (2.17) follows in a similar way from the monotonicity of the
functional @ (+; @, f). O

Assume that p () < oo and let w : Q@ — R, with w (z) > 0 for p-a.e. = € Q,
Jowdp > 0 and w is essentially bounded, i.e. essinfcqw () and essup,cqw ()
are finite. If ® : [m, M] — R is a continuous convex function on the interval of real
numbers [m, M] and f :  — R is y-measurable, then by (2.16) we have

S £ Jo 14
essinfcq w () ( oIa m) ® (M) + (M- 3@)“) ®(m)

ﬁfﬂwdu M—-m

o (B8

(Lot ) @ (ar) + (M — L0 g (1)

(2.19)

< Jo wdp Jo wdn
- M—-m
oy
Jo wdp
essupy ey 0 (2) ({s;(gd)ﬂ - m) o (M) + (M- fg(gd)“) ® (m)
= ﬁ fQ wdp M—-m

o ()]
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while from (2.17) we have

(i —m) @00+ (M~ ) @ o
M—-—m

(2.20)

essinf g e w(a)

(o) [

1 (€2)
< (Iﬁﬁfdiu _ m) ® (M) + (M B ffiﬁufdﬁ) ® (m)
< AN
—d <fQ wfd#)
Jowdp
(- o (- 48
< RARY

essupg e w(w)

d I o wdn
_(p(fgf N>+1] ORI

1 (€2)

This result can be used to provide the following result related to the Jensen’s
difference for convex functions

for any convex function ® : [a,b] — R.
Indeed, if w : [a,b] — [0, 00) is Lebesgue integrable, then we have by (2.19) and
(2.20) that

(2.21) eszf}?;b](;;}fl:?) {‘I)(a) —2|— ®(b) q)( ! b)}

(M ~a)e@)+ (b~ “’“ ““)

< S w(t)dt w(t)dt
b—a

e [P w (¢) tdt
[P (t) dt
eSSUP ¢ [q,5] W () T® (a) + @ (b) 3 a+b

= A [P () dt [ q)( )}
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and

essinfze[ayb] w(x)

(a+b)+1} s L w(nde .
2
® (b

S w(t)tdt
6)+ (b= L) @ (a)
b—a

022) P @ +20)

[P w(t)dt

o [P (t) tdt
[P (t) dt
essuPy (g, b] w(x)

T L b w(tydt
< [(I)(a);—q)(b) _(I)<a—2|—b>+1] 3La JLw(d

-
<fb w(t)tdt a)

3. DISCRETE INEQUALITIES

Consider the convex function ® : I C R — R defined on the interval I, x =
(1,...,zn) € I™ an n-tuple of real numbers and p = (p1,...,pn) a probability
distribution, i.e. p; > 0,4 € {1,...,n} with Y  p; = 1.

Let p = (p1,...,pn) and q¢ = (q1, ..., ¢n) be probability distributions such that
there exists 0 < r <1 < R < oo with the property that

(3.1) r<%<Rforanyz€{1 n}.

By writing the inequalities (1.5) and (1.8) for the discrete measure we have

(3.2) 0<r [Z 4® (z;) <Z q2x1>]

<R zn:qz (:) (Z qmﬂ
i=1
and
i=1 i=1
< sz@ (z:) — @ (Zm%)
z:];L 'L::l n
< lz qi® (z;) — @ (Z Qixi> +1] - L
i=1 i=1

For the corresponding inequality to (3.2) for functions defined on convex sets in
linear spaces, see [6]. We notice also that the inequality (3.3) can be extended for
general convex functions defined on linear spaces by utilizing a similar argument to
the one pointed out above for integrals.

For z, y real numbers and A € [0, 1] define the (generalized) weighted arithmetic
mean by Ay (z,y) := (1 — XNz + \y.
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If p,q € [0, 1] then by (3.2) and (3.3) we get for n = 2 that

B osmn{Z 120, @@, 00) - @ (4, o))

< Ap (P (2),®(y) — @ (Ap (,9))

pl-p
<max {2 15T [, (0 @), 8 )~ @ (4 (0.0)

1—

(3.5) 0 < [Ag (@ (2),® (y)) — B (Ay (w,9)) + 15 =0 1
< Ay (D (2), D (y)) — D (A, (2,y))
<[4y (@ (2),D () — @ (A () + 1= )

forany z,y € I and ® : I C R — R is convex on [.
If A (z,y) denotes the arithmetic mean *E2 and p € [0, 1] then by (3.4) and (3.5)
we get

(3.6) 0 <2min{p,1 —p}[A(®(z),®(y))
<A (@ (2),®(y) — (4 (2,9))

— @ (A(z,9))]
< 2max {p,1 —p} [A(® (), P (y)) — @ (A (2,9))]

and

(3.7) 0<[A(®(z),®(y)) —®(A(z,y)) + 1]2 min{p,1-p} _ |
< Ay (@ (), (3) & (4 (2,1)
<[A(®(z),®(y) — @ (A(z,y)) + 17 PIrh g

for any z,y €  and & : I C R — R is convex on [.

Consider the convex function @ : [m, M] — R defined on the interval [m, M|, z =
(1, ..., Ty) € [m, M]" an n-tuple of real numbers and p = (p1, ..., p,) a probability
distribution, i.e. p; > 0,4 € {1,...,n} with Y  p; = 1.

Let p = (p1,...,pn) and ¢ = (q1, ..., qn) be probability distributions such that
there exists 0 < r < 1 < R < oo with the property that (3.1) is valid. By writing
the inequalities (2.16) and (2.17) for the discrete measure we then have for any
(T1y ey @) € [my, M]" that

58) r l@?_l dizs =) O () + (0 = By q) Do) _ (Z ‘”)]

L i —m) ® (JvAf; * S}f — i pir) @ (m) @ p:v)

<
SR M—-—m

(21;1 gz —m)d (M) + (M — Z?:l qiz;) ®(m) _ P (zn: q1x2>‘|
=1
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and

(3.9) FZLﬂﬁiﬂﬂﬂﬁ;quLﬂmwum

- (i qixl) +1
i=1

1
< iz pizi —m) @ (]\ﬁt 57];4 — Y pie) 2 (m) (ipm)

< [(Z?zl qiwi —m) ® (M) + (M — 37" giz;) ® (m)
- M—-—m
R

— 1.

- (i Qiéﬂi) +1
i—1

If p, ¢ € (0,1) then by (3.8) and (3.9) we get for n = 2 that

[P 1—19}
3.10 min {4 =, ——
(319) {q l—q

) [<Aq(x,y)_m)@(@+(nzlw—flq @2 gy (M))]
< L) =2 2 =% RO g (4, (0.0)

5 [(Aq(x,y)_m)cb(M)Jr(M—Aq (z,y)) ® (m) — B (A, (wvy))]

and

(3.11) [ﬁmwmwﬂi%M@mwm
—3 (A, (z,y)) + 1mmle T g
(4p (z,y) —m) @ (M) + (M — A, (z,y)) ® (m)

< e ~ @ (4, (2,9))
< {(Aq(w,y)—m)‘I’(M)ﬂL(M—Aq(%y))‘I’(m)
- M—-—m

0 (4, (@) + 1" 1

for any z, y € [m, M| and the convex function ® : [m, M] — R.
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By (3.10) and (3.11) we have

(3.12) 2min {p,1 —p}

. [(A(a:,y) —m)é(@tg—fl(w))@(m) —@(A(x,y»}
- Gy () —m)@(ﬂﬁt;ﬂf—flp @D _ 4 (4 ()
max{p,l —p}
[ @(Aﬁt(rf—fl(w,y))q’(m)_@(A(x’y))}
and
_ [(A (@) = m) O () + (M = A (,y) @ (m)
@ (A(ay) + 1P
< (e ) RUD 2O L RO g (4, (n.9))
B {(A(Ly) 7m)<I>(J\2+§7J§4fA(I,y))¢(m)

—@ (A(a,y)) + 1

for any z, y € [m, M] and the convex function ® : [m, M] — R.

4. APPLICATIONS FOR ARITHMETIC AND GEOMETRIC MEANS

Consider the weighted arithmetic and geometric means

n n
= Zpi$iv Gn (p, ) == HJ’JZDL
i=1 =1

of positive numbers x = (z1,...,2,) with the positive weights p = (p1,...,pn), a
probability distribution, i.e. p; >0, i € {1,...,n} with > ; p; = 1.

If p = (p1,...,pn) and ¢ = (q1, -, qn) 5at15fy the condition (3.1) then by the
inequalities (3.2) and (3.3) for the convex function ® (t) = —Int, t > 0 we have for
positive numbers z = (x4, ..., z,,) that [6]

oo (@en) =aes=@en)
and
(4.2) 0<exp{-1n <gm) +1_T—1}

< An (v, ) 7 )

= Gu(px)

<en{[n(&e5) )"
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If (z1,....,2,) € [m, M]" for M > m > 0 then by the inequalities (3.8) and (3.9)
we have

(4.3) ( An (g, 7) > - An (p,z)

An(g,x)=—m  M—An(q,x) - An(px)—m  M—An(p,z)
M—m m M—m /\4 M—m m M—m

An (g,) )
MAn(QvT)*m M—An(q,2)

M—m m M—m

IN

A (g, '
(4.4) exXp { l:ln ( A"(q,:l;)f'ng AI)—An(q,w) ) + 1:| - 1}
M

M—m m M—m

Ay (p, )

An(p,z)—m M—Ap(p,z)
M—m m M—m

An (g2 f
< exp { |:1n < An(q,w)ﬂf ]\/I)fAn(q,u:) > + 1] - 1} ,
M~ M=m  m~ M-m

where p = (p1, ..., pn) and ¢ = (¢1, ..., g, ) satisfy the condition (3.1).
If p, ¢ € (0,1), then by the above inequalities we get

<

(45) (gzg’”)““{z’”} < Aol (Aalea) U

7y) P(may) Gq (Iay)
and
4@y, |
(4.6) 0 <exp {ln <Gq($y)> + 1} -1
Ap (z,9)
= Gy (z,y)

for any z,y > 0.
If z, y € [m, M] C (0,00) then by (4.4) and (4.5) we have

Ag(z,y)—m M—Aq(z,y) Ap(z,y)—m M—Ap(z,y)
M—m m M—m M—m m M—m

max{ﬁ,l%p}
< Aq (IZ‘,y) o
>~ Ag(z)—m  M—Ag(z,y)
M

min{§,1=7}

M—m m M—m
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and
min{%,1=2}
Aq (z,y)
(4‘8) exXp [ln ( Aq(a:,y)frn M—Ag(z,y) +1 -1
M M-m m M-m
AP (1’, y)
S T LGy om M-ApEw
M—m m M—m
max{ﬁ,}f—p
A (z,y) o
< CeXp [ln ( Aq(z,y)gm M—Ag(z,y) +1 -1 ’
M M-m m~ M-m
for any p, ¢ € (0,1).
If we take ¢ = % in (4.6) and (4.7) then we get
(49) (Atmw>2m““1”<:&K%y)<(Ame>mM”“1”
' G (z,y) T Gy(zy) T \G(z,y)
and
A (LE, y) 2min{p,1—p}

4.10 0< 1 1 -1
(10 <o [ (520 +

< AP (%y)

o GP (.Z‘,y)

confm () ] )

for any =, y > 0 and p € (0,1).

The first inequality in (4.9) was obtained by Zou et al. in [20] while the second
by Liao et al. [17]. We also have shown in [10] that it can also be obtained from a
more general result for convex functions from [6].

For other recent related results, see [1], [12]-[14] and [19] where further references
are provided.

If we take ¢ = £ in (4.7) and (4.8), then we get

2 min{p,1—
L A(z,y) i A, (@,9)
( N ) MA(z,y)—m M—A(z,y) — Ap(z,y)—m M—-Ap(z,y)

M—m o, M-m M—m m M—m

<< A(z,y) >“““”
= M A(]gcl,g)7;7n m Al;{f‘:(;:;y)
and
Alz,y) 2min{p,1-p}
(4.12) CeXp |:1n ( Ay -m  M-_A(z.y) ) + 1:| -1
M M-m m~ M-m
Ap ((ﬂ, y)
> Ap(z.y)—m  M—Ap(z,y)

M—m m M—m

A (:I:’ y) 2max{p,1—p}
S exp { |:1n ( A(z,y)—m M—A(z,y) + 1 -1 ’
M M-m m M-m

for any x,y € [m, M].
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Let p = (p1,...,pn) and ¢ = (q1, ..., qn) be probability distributions such that
there exists 0 < r < 1 < R < oo with the property (3.1). By writing the inequalities

(3.2) and (3.3) for the convex function f (t) = expt we have for a = (aq, ..., a,) € R”
that

(4.13) 0<r [Z q; €Xp a; — exp (Z qiai>]
i=1 i=1
< Zpi exp a; — exp (Z piai>
i=1 i=1

n n
<R|> giexpa; —exp (Z Qiai>‘|
1=1 i=1
and
n n T
(4.14) OS[E:%@mar—wp<§:%m>+l -1
1=1 i=1
n n
< Zpi exp a; — exp <Zpiai>
i=1 i=1
R
-1

< [Zn: q; €Xp a; — exp (f: %%) +1
i=1 i=1

If we take a; = Inz; for positive numbers © = (z1, ..., z,) , then we get

(4.15) 0 <7 (A (4,2) = G (¢.2)] < Ay (p,) — G (p, )
<R [An (Q7 1‘) -Gy (Qv $)]

and

(416) 0 < [An (%m) - Gn (%Jj) + 1]7- -1 < An (pa 'T) - Gn (p7 '7;)

IN

[An (¢,2) — G (g, 2) + 1] = 1.

If p,q € (0,1) then by the above inequalities we get

(4.17) 0 <min {23224, (0.9) = Gy o)

< Ap (a:,y) - GP ('7;7y)

plp}
<max<{=—,——  [A, (z,y) — G, (x,
< {q 2 A, (@) = Gy ()
and

P

(4.18) 0 <[4y (2,9) — G (z,y) + 150} 1
< AP (may) - Gp (1‘7:[/)
< [Ag (2,9) = Gy () + 100 -1,

for any z,y > 0.
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Moreover, if we take ¢ = % in (4.17) and (4.18) we get

(4.19) 0 < 2min{p,1 - p} (va - v3)* < 4, (2,9) — Gy (2,9)
< 2max{p,1-p} (vVz — y)"

and

} 2 min{p,1-p}

(4.20) 0< (Vo -yvp)'+1
< (V- vm)’+1

_1§Ap(may)_GP(x7y)

:| 2max{p,1—p}

)

for any , y > 0 and p € [0,1].

The inequality (4.19) has been obtained by Kittaneh and Manasrah [15], [16].
We have shown in [9] that it can also be obtained from a more general result for
convex functions from [6].

If (ay,...,a,) € [k, M]" and p = (p1,...,pn) and q = (q1,...,qn) are probability
distributions such that there exist 0 < r < 1 < R < oo with the property (3.1),
then by the inequalities (3.8) and (3.9) for the convex function ® (¢) = expt, we
have that

" g — K+ (K-=S"_ga n
(4.21) r l(z’_l 4i9; = k) exp Kt(k: iz Gi) XDk exp <Z qiaiﬂ
i=1

(i piai —k)exp K + (K — 31 piai) expk =
< K _k — €exp ;piai

(Z’,L_l qia; — k) exp K + (K — Z’f_l gia;) expk -
< i= 1= _ -
<R K —k €xXp ;(haz
and
(4 22) (Z?:l q;a; — k) eXpK + (K B Z?:l qlal) €xXp k
' K-k

r

-1

n
—exp <Z Qiai> +1
i=1

(O piai —k)exp K + (K = Y1 pia;) expk .
< M= i= _ o
—_ K _ k' eXp ;plal
< >l qa; —k)exp K + (K — Y., qia;) expk
- K-k
R
-1

i=1

—exp <§”: QiCLi) +1
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If (x1,...,2,) € [m, M]" for M > m > 0, then by taking in (4.21) and (4.22)
a; = Inz; for positive numbers © = (z1,...,2,) and k =lnm, K =1ln M, we get

(InG, (g,x) —lnm)M + (In M —InG,, (¢,x)) m
(4.23) [ VA G (g, 2)
(InG, (p,z) —lnm)M + (In M —In G, (p,x)) m
< —
- InM —1Inm Cn ;)
(InG, (g,z) —lnm)M + (In M —InG, (¢,x)) m
< — G,
_R{ T o Gy (¢, )
and
(InG, (g,x) —lnm)M + (In M —InG, (¢,x)) m "
(4.24) [ W —Tom Gn (g, z)+1
-1
(InG, (p,x) —lnm)M + (In M —InG, (p,z)) m
< —
- InM —1Inm G (p,2)
(InG, (g,z) —lnm)M + (In M —In G, (¢,x)) m "
< —
- { InM —Inm Gn(g,2) +1
— 1.

If p, ¢ € (0, 1) then by the above inequalities we get for z, y € [m, M] C (0, c0) that

(4.25) min {p l_p}

¢ 1-q
(InGy (z,y) —lnm)M + (In M — InG, (z,y)) m
% { : InM —1Inm : ~Galmy)
(InG,(z,y) —Inm)M + (In M — InG,, (z,y)) m
= ’ InM —1Inm ’ ~Gpl@y)

(InGy(z,y) —Inm)M + (InM —InG, (x,y)) m
% { ; InM —1Inm ; ~Ga(@,y)

and
(4.26)

(InGy(z,y) —lnm)M + (InM —InG, (z,y)) m min{ 5, =4}

— 1
{ InM —Inm G (@,y) +
-1
(InGy (z,y) —Inm)M + (In M —InG, (z,y)) m
< _
- InM —1Inm G (@,y)
InG,(z,y) —lnm)M + (InM —InG, (z,y)) m max{ §.175 }
g (A BRI A AT R

-1
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In particular, for ¢ = % we get

(4.27) 2min {p,1 — p}
(InG(z,y) —lnm)M 4+ (InM —InG (z,y)) m
. [ InM —1Inm G (@)
(nGy (z,y) —Inm)M + (In M —InG,, (z,y)) m
< =Gy (z,y)
InM —Inm
< 2max{p,1 —p}
(InG(z,y) —lnm)M+ (InM —InG (z,y)) m
{ InM —Inm G (@y)
and
(4.28)
(InG (z,y) —lnm)M+ (InM —InG (z,y)) m CGay)+1 2min{p.1-p}
InM —Inm Y
-1
(InGy (z,y) —Inm)M + (In M —InG,, (z,y)) m
< —
- InM —Inm Gy (@,9)
(InG (z,y) —lnm) M+ (In M —1InG (z,y)) m 2max{p.1=p}
< _
{ InM —1Inm Gy +1
— 1.

for any p € [0,1] and =z, y € [m, M].
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