
SOME WEIGHT FUNCTIONALS ASSOCIATED TO CONVEX
FUNCTIONS WITH APPLICATIONS

S. S. DRAGOMIR1;2

Abstract. The superadditivity and monotonicity of some weight function-
als in the general setting of Lebesgue integral associated to convex functions
are established. Applications for discrete inequalities and for arithmetic and
geometric means are also given.

1. Introduction

Let (
;A; �) be a measurable space consisting of a set 
; a �-algebra A of subsets
of 
 and a countably additive and positive measure � on A with values in R[f1g :
For a �-measurable function w : 
 ! R, with w (x) � 0 for �-a.e. (almost every)
x 2 
; consider the Lebesgue space

Lw (
; �) := ff : 
! R; f is �-measurable and
Z



w (x) jf (x)j d� (x) <1g:

For simplicity of notation we write everywhere in the sequel
R


wd� instead ofR



w (x) d� (x) :
For a �-measurable function w : 
 ! R, with w (x) � 0 for � -a.e. x 2 
 andR



wd� > 0; we consider the functional

(1.1) J (w; �; f) :=

Z



w (� � f) d�� �
�R



wfd�R


wd�

�Z



wd� � 0;

where � : I ! R is a continuous convex function on the interval of real numbers I;
f : 
! R is �-measurable and such that f; � � f 2 Lw (
; �) :
In [7] we proved the following result:

Theorem 1. Let wi : 
 ! R, with wi (x) � 0 for �-a.e. (almost every) x 2 

and

R


wid� > 0; i 2 f1; 2g : If � : I ! R is a continuous convex function on the

interval of real numbers I; f : 
 ! R is �-measurable and such that f; � � f 2
Lw1 (
; �) \ Lw2 (
; �) ; then
(1.2) J (w1 + w2; �; f) � J (w1; �; f) + J (w2; �; f) � 0;
i.e. J is a superadditive functional of weights.
Moreover, if w2 � w1 � 0 �-a.e. on 
; then

(1.3) J (w2; �; f) � J (w1; �; f) � 0;
i.e. J is a monotonic nondecreasing functional of weights.
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2 S. S. DRAGOMIR

The above theorem has a simple however interesting consequence that provides
both a re�nement and a reverse for the Jensen�s integral inequality:

Corollary 1. Let wi : 
 ! R, with wi (x) � 0 for �-a.e. x 2 
,
R


wid� > 0;

i 2 f1; 2g and there exists the nonnegative constants ; � such that

(1.4) 0 �  � w2
w1

� � <1 �-a.e. on 
:

If � : I ! R is a continuous convex function on the interval of real numbers I;
f : 
! R is �-measurable and such that f; � � f 2 Lw1 (
; �) \ Lw2 (
; �) ; then

0 � 
R


w1d�R



w2d�

�R


w1 (� � f) d�R


w1d�

� �
�R



w1fd�R


w1d�

��
(1.5)

�
R


w2 (� � f) d�R


w2d�

� �
�R



w2fd�R


w2d�

�
� �

R


w1d�R



w2d�

�R


w1 (� � f) d�R


w1d�

� �
�R



w1fd�R


w1d�

��
:

Remark 1. Assume that � (
) < 1 and let w : 
 ! R, with w (x) � 0 for
�-a.e. x 2 
,

R


wd� > 0 and w is essentially bounded, i.e. essinfx2
 w (x) and

essupx2
 w (x) are �nite.
If � : I ! R is a continuous convex function on the interval of real numbers I;

f : 
! R is �-measurable and such that f; � � f 2 Lw (
; �) \ L (
; �) ; then

0 � essinfx2
 w (x)
1

�(
)

R


wd�

�R


(� � f) d�
� (
)

� �
�R



fd�

� (
)

��
(1.6)

�
R


w (� � f) d�R


wd�

� �
�R



wfd�R


wd�

�
� essupx2
 w (x)

1
�(
)

R


wd�

�R


(� � f) d�
� (
)

� �
�R



fd�

� (
)

��
:

This result can be used to provide the following result related to the Hermite-
Hadamard inequality for convex functions that states that

1

b� a

Z b

a

� (t) dt � �
�
a+ b

2

�
for any convex function � : [a; b]! R.
Indeed , if w : [a; b]! [0;1) is Lebesgue integrable, then we have by (1.6) that

0 �
essinfx2[a;b] w (x)

1
b�a

R b
a
w (t) dt

"
1

b� a

Z b

a

� (t) dt� �
�
a+ b

2

�#
(1.7)

�
R b
a
w (t) � (t) dtR b
a
w (t) dt

� �
 R



w (t) tdtR b

a
w (t) dt

!

�
essupx2[a;b] w (x)

1
b�a

R b
a
w (t) dt

"
1

b� a

Z b

a

� (t) dt� �
�
a+ b

2

�#
:

Now we consider another functional depending on the weights

K (w; �; f) :=
J (w; �; f)R



wd�

=

R


w (� � f) d�R


wd�

� �
�R



wfd�R


wd�

�
� 0
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and the composite functional

L (w; �; f) :=

�Z



wd�

�
ln [K (w; �; f) + 1] � 0;

where � : I ! R is a continuous convex function on the interval of real numbers I
and f : 
! R is �-measurable and such that f; � � f 2 Lw (
; �) :

Theorem 2. With the assumptions of Theorem 1, the functional L (�; �; f) is a
superadditive and monotonic nondecreasing functional of weights.

The following result provides another re�nement and reverse of the Jensen in-
equality:

Corollary 2. Let wi : 
 ! R with wi (x) � 0 for �-a.e. x 2 
,
R


wid� > 0;

i 2 f1; 2g and there exists the nonnegative constants ; � such that

0 �  � w2
w1

� � <1 �-a.e. on 
:

If � : I ! R is a continuous convex function on the interval of real numbers I;
f : 
! R is �-measurable and such that f; � � f 2 Lw1 (
; �) \ Lw2 (
; �) ; then

0 �
�R



w1 (� � f) d�R


w1d�

� �
�R



w1fd�R


w1d�

�
+ 1

� R
 w1d�R

 w2d�

� 1(1.8)

�
R


w2 (� � f) d�R


w2d�

� �
�R



w2fd�R


w2d�

�

�
�R



w1 (� � f) d�R


w1d�

� �
�R



w1fd�R


w1d�

�
+ 1

�� R

 w1d�R

 w2d�

� 1:

Remark 2. Assume that � (
) < 1 and let w : 
 ! R, with w (x) � 0 for �
-a.e. x 2 
,

R


wd� > 0 and w is essentially bounded, i.e. essinfx2
 w (x) and

essupx2
 w (x) are �nite.
If � : I ! R is a continuous convex function on the interval of real numbers I;

f : 
! R is �-measurable and such that f; � � f 2 Lw (
; �) \ L (
; �) ; then

0 �
�R



(� � f) d�
� (
)

� �
�R



fd�

� (
)

�
+ 1

� ess infx2
 w(x)

1
�(
) (

R

 wd�)

� 1(1.9)

�
R


w (� � f) d�R


wd�

� �
�R



wfd�R


wd�

�

�
�R



(� � f) d�
� (
)

� �
�R



fd�

� (
)

�
+ 1

� ess supx2
 w(x)

1
�(
) (

R

 wd�)

� 1:

In particular, if w : [a; b] ! [0;1) is Lebesgue integrable, then we have the fol-
lowing result related to the Hermite-Hadamard inequality for the convex function
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� : [a; b]! R

0 �
"

1

b� a

Z b

a

� (t) dt� �
�
a+ b

2

�
+ 1

# essinfx2[a;b] w(x)
1

b�a
R b
a w(t)dt

� 1(1.10)

�
R b
a
w (t) � (t) dtR b
a
w (t) dt

� �
 R



w (t) tdtR b

a
w (t) dt

!

�
"

1

b� a

Z b

a

� (t) dt� �
�
a+ b

2

�
+ 1

# essupx2[a;b] w(x)
1

b�a
R b
a w(t)dt

� 1:

For other related results, see [3]-[8] and [11].
Motivated by the above results, we establish in this paper the superadditivity

and monotonicity of some weight functionals in the general setting of Lebesgue
integral associated to convex functions de�ned on real intervals. Applications for
discrete inequalities and for arithmetic and geometric means are also given.

2. Main Results

Let � : I ! R be a continuous convex function on the interval of real numbers
I and f : 
! I be �-measurable on 
: We consider the cone of positive weights

W+;f (
) :=

�
w : 
! [0;1);

Z



wd� > 0 and f 2 Lw (
; �)
�

and the functional C (�; �; f) :W+;f (
)! R given by

(2.1) C (w; �; f) := �

�R


wfd�R


wd�

�Z



wd�:

Theorem 3. Let � : I ! R be a continuous convex function on the interval of real
numbers I and f : 
 ! I be �-measurable on 
: Then the functional C (�; �; f) is
convex on W+;f (
) :

Proof. Let w1; w2 2 W+;f (
) and � 2 [0; 1]. We have

C (�w1 + (1� �)w2; �; f)(2.2)

= �

�R


[�w1 + (1� �)w2] fd�R


[�w1 + (1� �)w2] d�

�Z



[�w1 + (1� �)w2] d�

= �

�
�
R


w1fd�+ (1� �)

R


w2fd�

�
R


w1d�+ (1� �)

R


w2d�

�Z



[�w1 + (1� �)w2] d�

= �

0@� R
 w1d�
R


w1fd�R



w1d�

+ (1� �)
R


w2d�

R


w2fd�R



w2d�

�
R


w1d�+ (1� �)

R


w2d�

1A
�
Z



[�w1 + (1� �)w2] d�:
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By the convexity of � we have

�

0@� R
 w1d�
R


w1fd�R



w1d�

+ (1� �)
R


w2d�

R


w2fd�R



w2d�

�
R


w1d�+ (1� �)

R


w2d�

1A(2.3)

�
�
R


w1d��

� R


w1fd�R



w1d�

�
+ (1� �)

R


w2d��

� R


w2fd�R



w2d�

�
�
R


w1d�+ (1� �)

R


w2d�

:

Then by (2.2) and (2.3) we have

C (�w1 + (1� �)w2; �; f)

�
�
R


w1d��

� R


w1fd�R



w1d�

�
+ (1� �)

R


w2d��

� R


w2fd�R



w2d�

�
�
R


w1d�+ (1� �)

R


w2d�

�
Z



[�w1 + (1� �)w2] d�

= ��

�R


w1fd�R


w1d�

�Z



w1d�+ (1� �) �
�R



w2fd�R


w2d�

�Z



w2d�

= �C (w1; �; f) + (1� �)C (w2; �; f) ;

for any w1; w2 2 W+;f (
) and � 2 [0; 1] ; which proves that C (�; �; f) is convex
on W+;f (
) : �

Let � : I ! R be a continuous convex function on the interval of real numbers
I and f : 
! I be �-measurable on 
: We consider the cone

W+;f;� (
) := fw 2 W+;f (
) ; � � f 2 Lw (
; �)g :

As in the introduction, we can de�ne the following weight functionals J (�; �; f) ;
K (�; �; f) and L (�; �; f) de�ned on W+;f;� (
) and given by

J (w; �; f) :=

Z



w (� � f) d�� C (w; �; f)(2.4)

=

Z



w (� � f) d�� �
�R



wfd�R


wd�

�Z



wd� � 0;

(2.5) K (w; �; f) :=
J (w; �; f)R



wd�

=

R


w (� � f) d�R


wd�

� �
�R



wfd�R


wd�

�
� 0

and the composite functional

(2.6) L (w; �; f) :=

�Z



wd�

�
ln [K (w; �; f) + 1] � 0:

We have:

Theorem 4. Let � : I ! R be a continuous convex function on the interval of real
numbers I and f : 
 ! I be �-measurable on 
: Then the functionals J (�; �; f)
and L (�; �; f) are concave and positive homogeneous on W+;f;� (
) :
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Proof. Let w1; w2 2 W+;f;� (
) and � 2 [0; 1]. By the convexity of the functional
C (�; �; f) we have

J (�w1 + (1� �)w2; �; f)

=

Z



(�w1 + (1� �)w2) (� � f) d�� C (�w1 + (1� �)w2; �; f)

= �

Z



w1 (� � f) d�+ (1� �)
Z



w2 (� � f) d�

� C (�w1 + (1� �)w2; �; f)

� �
Z



w1 (� � f) d�+ (1� �)
Z



w2 (� � f) d�

� �C (w1; �; f)� (1� �)C (w2; �; f)

= �

�Z



w1 (� � f) d�� C (w1; �; f)
�

+ (1� �)
�Z




w2 (� � f) d�� C (w2; �; f)
�

= �J (w1; �; f) + (1� �) J (w2; �; f) ;

which shows that J (�; �; f) is concave on W+;f;� (
) :
Now, observe that by the concavity of J (�; �; f) ; we have for any w1; w2 2

W+;f;� (
) and � 2 [0; 1] that

L (�w1 + (1� �)w2; �; f)(2.7)

=

Z



(�w1 + (1� �)w2) d� ln
�
J (�w1 + (1� �)w2; �; f)R


(�w1 + (1� �)w2) d�

+ 1

�
�
Z



(�w1 + (1� �)w2) d�

� ln
�
�J (w1; �; f) + (1� �) J (w2; �; f)
�
R


w1d�+ (1� �)

R


w2d�

+ 1

�
=

Z



(�w1 + (1� �)w2) d�

� ln

24� R
 w1d�J(w1;�;f)R


w1d�

+ (1� �)
R


w2d�

J(w2;�;f)R


w2d�

�
R


w1d�+ (1� �)

R


w2d�

+ 1

35
=

Z



(�w1 + (1� �)w2) d�

� ln

24� R
 w1d�
�
J(w1;�;f)R


w1d�

+ 1
�
+ (1� �)

R


w2d�

�
J(w2;�;f)R


w2d�

+ 1
�

�
R


w1d�+ (1� �)

R


w2d�

35
=: A:
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By the weighted arithmetic mean-geometric mean inequality we have

�
R


w1d�

�
J(w1;�;f)R


w1d�

+ 1
�
+ (1� �)

R


w2d�

�
J(w2;�;f)R


w2d�

+ 1
�

�
R


w1d�+ (1� �)

R


w2d�

(2.8)

�
�
J (w1; �; f)R



w1d�

+ 1

� �
R

 w1d�

�
R

 w1d�+(1��)

R

 w2d�

�
�
J (w2; �; f)R



w2d�

+ 1

� �
R

 w2d�

�
R

 w1d�+(1��)

R

 w2d�

for any w1; w2 2 W+;f;� (
) and � 2 [0; 1].
Taking the logarithm in (2.8) we have

ln

24� R
 w1d�
�
J(w1;�;f)R


w1d�

+ 1
�
+ (1� �)

R


w2d�

�
J(w2;�;f)R


w2d�

+ 1
�

�
R


w1d�+ (1� �)

R


w2d�

35(2.9)

�
�
R


w1d�R



(�w1 + (1� �)w2) d�

ln

�
J (w1; �; f)R



w1d�

+ 1

�
+

(1� �)
R


w2d�R



(�w1 + (1� �)w2) d�

ln

�
J (w2; �; f)R



w2d�

+ 1

�
for any w1; w2 2 W+;f;� (
) and � 2 [0; 1].
Now, if we multiply (2.9) by

R


(�w1 + (1� �)w2) d� > 0 we get

A � �
Z



w1d� ln

�
J (w1; �; f)R



w1d�

+ 1

�
+ (1� �)

Z



w2d� ln

�
J (w2; �; f)R



w2d�

+ 1

�
= �L (w1; �; f) + (1� �)L (w2; �; f)

for any w1; w2 2 W+;f;� (
) and � 2 [0; 1], which, by (2.7) shows that L (�; �; f) is
concave on W+;f;� (
) :
We observe that

J (�w; �; f) = �J (w; �; f) and L (�w; �; f) = �L (w; �; f)

for any w 2 W+;f;� (
) and � > 0 that proves that J (�; �; f) and L (�; �; f) are
positive homogeneous on W+;f;� (
) : �

Remark 3. We observe that by the concavity and positive homogeneity of J (�; �; f)
and L (�; �; f) we have for any w1; w2 2 W+;f;� (
) that

J (w1 + w2; �; f) = 2J

�
w1 + w2

2
;�; f

�
� 2

�
J (w1; �; f) + J (w2; �; f)

2

�
= J (w1; �; f) + J (w2; �; f)

and a similar relation for L (�; �; f), that proves the superadditivity of the function-
als J (�; �; f) and L (�; �; f) as pointed out in Theorem 1 and Theorem 2.
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Let � : [m;M ] ! R be a continuous convex function on the interval of real
numbers [m;M ] and f : 
 ! [m;M ] be �-measurable on 
: Then by convexity of
� we have

(2.10)
(t�m) � (M) + (M � t) � (m)

M �m � �
�
(t�m)M + (M � t)m

M �m

�
= �(t)

for any t 2 [m;M ].
We then have, by taking t =

R


wfd�R



wd�

2 [m;M ] in (2.10) that� R


wfd�R



wd�

�m
�
� (M) +

�
M �

R


wfd�R



wd�

�
� (m)

M �m � �
�R



wfd�R


wd�

�
that is equivalent to

(2.11)
1

M �m

��Z



wfd��m
Z



wd�

�
� (M)

+

�
M

Z



wd��
Z



wfd�

�
� (m)

�
� �

�R


wfd�R


wd�

�Z



wfd�:

We de�ne the trapezoidal functional T :W+;f (
)! [0;1) by

(2.12) T (w; �; f) :=
1

M �m

��Z



wfd��m
Z



wd�

�
� (M)

+

�
M

Z



wd��
Z



wfd�

�
� (m)

�
:

We can consider the functionals P; Q :W+;f (
)! [0;1) de�ned by
(2.13) P (w; �; f) := T (w; �; f)� C (w; �; f)
and

(2.14) Q (w; �; f) :=

�Z



wd�

�
ln

�
P (w; �; f)R



wd�

+ 1

�
:

Theorem 5. Let � : [m;M ] ! R be a continuous convex function on the in-
terval of real numbers [m;M ] and f : 
 ! [m;M ] be �-measurable on 
: Then
the functionals P (�; �; f) and Q (�; �; f) are concave and positive homogeneous on
W+;f (
) :

Proof. We observe that the functional T (�; �; f) is additive and positive homo-
geneous on W+;f (
) : Therefore, by the convexity and positive homogeneity of
C (�; �; f) we can conclude that P (�; �; f) is concave and positive homogeneous on
W+;f (
) :
The proof of concavity of Q (�; �; f) follows in a similar way to the one in the

proof of Theorem 4 and we omit the details. �

Corollary 3. With the assumptions of Theorem 4 we have that the functionals
P (�; �; f) and Q (�; �; f) are superadditive and monotonic nondecreasing functionals
of weights.

We also have the following upper and lower bounds:



SOME WEIGHT FUNCTIONALS ASSOCIATED TO CONVEX FUNCTIONS 9

Corollary 4. Let � : [m;M ]! R be a continuous convex function on the interval
of real numbers [m;M ] and f : 
 ! [m;M ] be �-measurable on 
: If w1; w2 2
W+;f (
) and there exists the nonnegative constants ; � such that

(2.15) 0 �  � w2
w1

� � <1 �-a.e. on 
;

then we have



R


w1d�R



w2d�

24
� R



w1fd�R



w1d�

�m
�
� (M) +

�
M �

R


w1fd�R



w1d�

�
� (m)

M �m(2.16)

��
�R



w1fd�R


w1d�

��

�

� R


w2fd�R



w2d�

�m
�
� (M) +

�
M �

R


w2fd�R



w2d�

�
� (m)

M �m

� �
�R



w2fd�R


w2d�

�

� �
R


w1d�R



w2d�

24
� R



w1fd�R



w1d�

�m
�
� (M) +

�
M �

R


w1fd�R



w1d�

�
� (m)

M �m

��
�R



w1fd�R


w1d�

��
and 24

� R


w1fd�R



w1d�

�m
�
� (M) +

�
M �

R


w1fd�R



w1d�

�
� (m)

M �m(2.17)

��
�R



w1fd�R


w1d�

�
+ 1

� R
 w1d�R

 w2d�

� 1

�

� R


w2fd�R



w2d�

�m
�
� (M) +

�
M �

R


w2fd�R



w2d�

�
� (m)

M �m

� �
�R



w2fd�R


w2d�

�

�

24
� R



w1fd�R



w1d�

�m
�
� (M) +

�
M �

R


w1fd�R



w1d�

�
� (m)

M �m

��
�R



w1fd�R


w1d�

�
+ 1

�� R

 w1d�R

 w2d�

� 1:

Proof. From (2.15) we have w1 � w2 � �w1 < 1 �-a.e. on 
 and by the
monotonicity property of the functional P (�; �; f) we get

(2.18) P (w1; �; f) � P (w2; �; f) � P (�w1; �; f) :
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Since the the functional is positive homogeneous, namely P (�w; �; f) = �P (w; �; f),
then we get from (2.18) that

 [T (w1; �; f)� C (w1; �; f)] � T (w2; �; f)� C (w2; �; f)
� � [T (w1; �; f)� C (w1; �; f)] ;

which is equivalent to (2.16).
The inequality (2.17) follows in a similar way from the monotonicity of the

functional Q (�; �; f) : �

Assume that � (
) < 1 and let w : 
 ! R, with w (x) � 0 for �-a.e. x 2 
,R


wd� > 0 and w is essentially bounded, i.e. essinfx2
 w (x) and essupx2
 w (x)

are �nite. If � : [m;M ]! R is a continuous convex function on the interval of real
numbers [m;M ] and f : 
! R is �-measurable, then by (2.16) we have

essinfx2
 w (x)
1

�(
)

R


wd�

24
� R



fd�

�(
) �m
�
� (M) +

�
M �

R


fd�

�(
)

�
� (m)

M �m(2.19)

��
�R



fd�

� (
)

��

�

� R


wfd�R



wd�

�m
�
� (M) +

�
M �

R


wfd�R



wd�

�
� (m)

M �m

� �
�R



wfd�R


wd�

�

� essupx2
 w (x)
1

�(
)

R


wd�

24
� R



fd�

�(
) �m
�
� (M) +

�
M �

R


fd�

�(
)

�
� (m)

M �m

��
�R



fd�

� (
)

��
;
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while from (2.17) we have

24
� R



fd�

�(
) �m
�
� (M) +

�
M �

R


fd�

�(
)

�
� (m)

M �m(2.20)

��
�R



fd�

� (
)

�
+ 1

� essinfx2
 w(x)

1
�(
)

R

 wd�

� 1

�

� R


wfd�R



wd�

�m
�
� (M) +

�
M �

R


wfd�R



wd�

�
� (m)

M �m

� �
�R



wfd�R


wd�

�

�

24
� R



fd�

�(
) �m
�
� (M) +

�
M �

R


fd�

�(
)

�
� (m)

M �m

��
�R



fd�

� (
)

�
+ 1

� essupx2
 w(x)

1
�(
)

R

 wd�

� 1:

This result can be used to provide the following result related to the Jensen�s
di¤erence for convex functions

� (a) + � (b)

2
� �

�
a+ b

2

�

for any convex function � : [a; b]! R.
Indeed, if w : [a; b]! [0;1) is Lebesgue integrable, then we have by (2.19) and

(2.20) that

essinfx2[a;b] w (x)

1
b�a

R b
a
w (t) dt

�
� (a) + � (b)

2
� �

�
a+ b

2

��
(2.21)

�

� R b
a
w(t)tdtR b

a
w(t)dt

� a
�
� (b) +

�
b�

R b
a
w(t)tdtR b

a
w(t)dt

�
� (a)

b� a

� �
 R b

a
w (t) tdtR b

a
w (t) dt

!

�
essupx2[a;b] w (x)

1
b�a

R b
a
w (t) dt

�
� (a) + � (b)

2
� �

�
a+ b

2

��
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and �
� (a) + � (b)

2
� �

�
a+ b

2

�
+ 1

� essinfx2[a;b] w(x)
1

b�a
R b
a w(t)dt

� 1(2.22)

�

� R b
a
w(t)tdtR b

a
w(t)dt

� a
�
� (b) +

�
b�

R b
a
w(t)tdtR b

a
w(t)dt

�
� (a)

b� a

� �
 R b

a
w (t) tdtR b

a
w (t) dt

!

�
�
� (a) + � (b)

2
� �

�
a+ b

2

�
+ 1

� essupx2[a;b] w(x)
1

b�a
R b
a w(t)dt

� 1:

3. Discrete Inequalities

Consider the convex function � : I � R ! R de�ned on the interval I, x =
(x1; :::; xn) 2 In an n-tuple of real numbers and p = (p1; :::; pn) a probability
distribution, i.e. pi � 0; i 2 f1; :::; ng with

Pn
i=1 pi = 1:

Let p = (p1; :::; pn) and q = (q1; :::; qn) be probability distributions such that
there exists 0 < r � 1 � R <1 with the property that

(3.1) r � pi
qi
� R for any i 2 f1; :::; ng :

By writing the inequalities (1.5) and (1.8) for the discrete measure we have

0 � r
"

nX
i=1

qi� (xi)� �
 

nX
i=1

qixi

!#
(3.2)

�
nX
i=1

pi� (xi)� �
 

nX
i=1

pixi

!

� R
"

nX
i=1

qi� (xi)� �
 

nX
i=1

qixi

!#
and

0 �
"

nX
i=1

qi� (xi)� �
 

nX
i=1

qixi

!
+ 1

#r
� 1(3.3)

�
nX
i=1

pi� (xi)� �
 

nX
i=1

pixi

!

�
"

nX
i=1

qi� (xi)� �
 

nX
i=1

qixi

!
+ 1

#R
� 1:

For the corresponding inequality to (3.2) for functions de�ned on convex sets in
linear spaces, see [6]. We notice also that the inequality (3.3) can be extended for
general convex functions de�ned on linear spaces by utilizing a similar argument to
the one pointed out above for integrals.
For x; y real numbers and � 2 [0; 1] de�ne the (generalized) weighted arithmetic

mean by A� (x; y) := (1� �)x+ �y:
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If p; q 2 [0; 1] then by (3.2) and (3.3) we get for n = 2 that

0 � min
�
p

q
;
1� p
1� q

�
[Aq (� (x) ;� (y))� � (Aq (x; y))](3.4)

� Ap (� (x) ;� (y))� � (Ap (x; y))

� max
�
p

q
;
1� p
1� q

�
[Aq (� (x) ;� (y))� � (Aq (x; y))]

and

0 � [Aq (� (x) ;� (y))� � (Aq (x; y)) + 1]minf
p
q ;

1�p
1�qg � 1(3.5)

� Ap (� (x) ;� (y))� � (Ap (x; y))

� [Aq (� (x) ;� (y))� � (Aq (x; y)) + 1]maxf
p
q ;

1�p
1�qg � 1;

for any x; y 2 I and � : I � R! R is convex on I:
If A (x; y) denotes the arithmetic mean x+y

2 and p 2 [0; 1] then by (3.4) and (3.5)
we get

0 � 2min fp; 1� pg [A (� (x) ;� (y))� � (A (x; y))](3.6)

� Ap (� (x) ;� (y))� � (Ap (x; y))
� 2max fp; 1� pg [A (� (x) ;� (y))� � (A (x; y))]

and

0 � [A (� (x) ;� (y))� � (A (x; y)) + 1]2minfp;1�pg � 1(3.7)

� Ap (� (x) ;� (y))� � (Ap (x; y))

� [A (� (x) ;� (y))� � (A (x; y)) + 1]2maxfp;1�pg � 1;

for any x; y 2 I and � : I � R! R is convex on I:
Consider the convex function � : [m;M ]! R de�ned on the interval [m;M ], x =

(x1; :::; xn) 2 [m;M ]n an n-tuple of real numbers and p = (p1; :::; pn) a probability
distribution, i.e. pi � 0; i 2 f1; :::; ng with

Pn
i=1 pi = 1:

Let p = (p1; :::; pn) and q = (q1; :::; qn) be probability distributions such that
there exists 0 < r � 1 � R < 1 with the property that (3.1) is valid. By writing
the inequalities (2.16) and (2.17) for the discrete measure we then have for any
(x1; :::; xn) 2 [m;M ]n that

r

"
(
Pn

i=1 qixi �m) � (M) + (M �
Pn

i=1 qixi) � (m)

M �m � �
 

nX
i=1

qixi

!#
(3.8)

� (
Pn

i=1 pixi �m) � (M) + (M �
Pn

i=1 pixi) � (m)

M �m � �
 

nX
i=1

pixi

!

� R
"
(
Pn

i=1 qixi �m) � (M) + (M �
Pn

i=1 qixi)� (m)

M �m � �
 

nX
i=1

qixi

!#
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and

�
(
Pn

i=1 qixi �m) � (M) + (M �
Pn

i=1 qixi) � (m)

M �m(3.9)

��
 

nX
i=1

qixi

!
+ 1

#r
� 1

� (
Pn

i=1 pixi �m) � (M) + (M �
Pn

i=1 pixi) � (m)

M �m � �
 

nX
i=1

pixi

!

�
�
(
Pn

i=1 qixi �m) � (M) + (M �
Pn

i=1 qixi) � (m)

M �m

��
 

nX
i=1

qixi

!
+ 1

#R
� 1:

If p; q 2 (0; 1) then by (3.8) and (3.9) we get for n = 2 that

min

�
p

q
;
1� p
1� q

�
(3.10)

�
�
(Aq (x; y)�m) � (M) + (M �Aq (x; y))� (m)

M �m � � (Aq (x; y))
�

� (Ap (x; y)�m) � (M) + (M �Ap (x; y))� (m)
M �m � � (Ap (x; y))

� max
�
p

q
;
1� p
1� q

�
�
�
(Aq (x; y)�m) � (M) + (M �Aq (x; y))� (m)

M �m � � (Aq (x; y))
�

and

�
(Aq (x; y)�m) � (M) + (M �Aq (x; y))� (m)

M �m(3.11)

�� (Aq (x; y)) + 1]minf
p
q ;

1�p
1�qg � 1

� (Ap (x; y)�m)� (M) + (M �Ap (x; y))� (m)
M �m � � (Ap (x; y))

�
�
(Aq (x; y)�m) � (M) + (M �Aq (x; y))� (m)

M �m

�� (Aq (x; y)) + 1]maxf
p
q ;

1�p
1�qg � 1

for any x; y 2 [m;M ] and the convex function � : [m;M ]! R.
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By (3.10) and (3.11) we have

2min fp; 1� pg(3.12)

�
�
(A (x; y)�m)� (M) + (M �A (x; y))� (m)

M �m � � (A (x; y))
�

� (Ap (x; y)�m)� (M) + (M �Ap (x; y))� (m)
M �m � � (Ap (x; y))

� max fp; 1� pg

�
�
(A (x; y)�m)� (M) + (M �A (x; y))� (m)

M �m � � (A (x; y))
�

and �
(A (x; y)�m)� (M) + (M �A (x; y))� (m)

M �m(3.13)

�� (A (x; y)) + 1]2minfp;1�pg � 1

� (Ap (x; y)�m)� (M) + (M �Ap (x; y))� (m)
M �m � � (Ap (x; y))

�
�
(A (x; y)�m)� (M) + (M �A (x; y))� (m)

M �m
�� (A (x; y)) + 1]maxfp;1�pg � 1;

for any x; y 2 [m;M ] and the convex function � : [m;M ]! R.

4. Applications for Arithmetic and Geometric Means

Consider the weighted arithmetic and geometric means

An (p; x) :=
nX
i=1

pixi; Gn (p; x) :=
nY
i=1

xpii

of positive numbers x = (x1; :::; xn) with the positive weights p = (p1; :::; pn) ; a
probability distribution, i.e. pi � 0; i 2 f1; :::; ng with

Pn
i=1 pi = 1:

If p = (p1; :::; pn) and q = (q1; :::; qn) satisfy the condition (3.1) then by the
inequalities (3.2) and (3.3) for the convex function � (t) = � ln t; t > 0 we have for
positive numbers x = (x1; :::; xn) that [6]

(4.1)
�
An (q; x)

Gn (q; x)

�r
� An (p; x)

Gn (p; x)
�
�
An (q; x)

Gn (q; x)

�R
and

0 � exp
��
ln

�
An (q; x)

Gn (q; x)

�
+ 1

�r
� 1
�

(4.2)

� An (p; x)

Gn (p; x)

� exp
(�
ln

�
An (q; x)

Gn (q; x)

�
+ 1

�R
� 1
)
:



16 S. S. DRAGOMIR

If (x1; :::; xn) 2 [m;M ]n for M > m > 0 then by the inequalities (3.8) and (3.9)
we have

�
An (q; x)

M
An(q;x)�m

M�m m
M�An(q;x)

M�m

�r
� An (p; x)

M
An(p;x)�m

M�m m
M�An(p;x)

M�m
(4.3)

�
�

An (q; x)

M
An(q;x)�m

M�m m
M�An(q;x)

M�m

�R

and

exp

��
ln

�
An (q; x)

M
An(q;x)�m

M�m m
M�An(q;x)

M�m

�
+ 1

�r
� 1
�

(4.4)

� An (p; x)

M
An(p;x)�m

M�m m
M�An(p;x)

M�m

� exp
(�
ln

�
An (q; x)

M
An(q;x)�m

M�m m
M�An(q;x)

M�m

�
+ 1

�R
� 1
)
;

where p = (p1; :::; pn) and q = (q1; :::; qn) satisfy the condition (3.1).
If p; q 2 (0; 1) ; then by the above inequalities we get

(4.5)
�
Aq (x; y)

Gq (x; y)

�minf pq ; 1�p1�qg
� Ap (x; y)

Gp (x; y)
�
�
Aq (x; y)

Gq (x; y)

�maxf pq ; 1�p1�qg

and

0 � exp
(�
ln

�
Aq (x; y)

Gq (x; y)

�
+ 1

�minf pq ; 1�p1�qg
� 1
)

(4.6)

� Ap (x; y)

Gp (x; y)

� exp
(�
ln

�
Aq (x; y)

Gq (x; y)

�
+ 1

�maxf pq ; 1�p1�qg
� 1
)
;

for any x; y > 0:
If x; y 2 [m;M ] � (0;1) then by (4.4) and (4.5) we have

(4.7)

 
Aq (x; y)

M
Aq(x;y)�m

M�m m
M�Aq(x;y)

M�m

!minf pq ; 1�p1�qg
� Ap (x; y)

M
Ap(x;y)�m

M�m m
M�Ap(x;y)

M�m

�
 

Aq (x; y)

M
Aq(x;y)�m

M�m m
M�Aq(x;y)

M�m

!maxf pq ; 1�p1�qg
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and

exp

8<:
"
ln

 
Aq (x; y)

M
Aq(x;y)�m

M�m m
M�Aq(x;y)

M�m

!
+ 1

#minf pq ; 1�p1�qg
� 1

9=;(4.8)

� Ap (x; y)

M
Ap(x;y)�m

M�m m
M�Ap(x;y)

M�m

� exp

8<:
"
ln

 
Aq (x; y)

M
Aq(x;y)�m

M�m m
M�Aq(x;y)

M�m

!
+ 1

#maxf pq ; 1�p1�qg
� 1

9=; ;
for any p; q 2 (0; 1) :
If we take q = 1

2 in (4.6) and (4.7) then we get

(4.9)
�
A (x; y)

G (x; y)

�2minfp;1�pg
� Ap (x; y)

Gp (x; y)
�
�
A (x; y)

G (x; y)

�2maxfp;1�pg
and

0 � exp
(�
ln

�
A (x; y)

G (x; y)

�
+ 1

�2minfp;1�pg
� 1
)

(4.10)

� Ap (x; y)

Gp (x; y)

� exp
(�
ln

�
A (x; y)

G (x; y)

�
+ 1

�2maxfp;1�pg
� 1
)
;

for any x; y > 0 and p 2 (0; 1) :
The �rst inequality in (4.9) was obtained by Zou et al. in [20] while the second

by Liao et al. [17]. We also have shown in [10] that it can also be obtained from a
more general result for convex functions from [6].
For other recent related results, see [1], [12]-[14] and [19] where further references

are provided.
If we take q = 1

2 in (4.7) and (4.8), then we get

(4.11)
�

A (x; y)

M
A(x;y)�m
M�m m

M�A(x;y)
M�m

�2minfp;1�pg
� Ap (x; y)

M
Ap(x;y)�m

M�m m
M�Ap(x;y)

M�m

�
�

A (x; y)

M
A(x;y)�m
M�m m

M�A(x;y)
M�m

�2maxfp;1�pg
and

exp

(�
ln

�
A (x; y)

M
A(x;y)�m
M�m m

M�A(x;y)
M�m

�
+ 1

�2minfp;1�pg
� 1
)

(4.12)

� Ap (x; y)

M
Ap(x;y)�m

M�m m
M�Ap(x;y)

M�m

� exp
(�
ln

�
A (x; y)

M
A(x;y)�m
M�m m

M�A(x;y)
M�m

�
+ 1

�2maxfp;1�pg
� 1
)
;

for any x; y 2 [m;M ] :
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Let p = (p1; :::; pn) and q = (q1; :::; qn) be probability distributions such that
there exists 0 < r � 1 � R <1 with the property (3.1). By writing the inequalities
(3.2) and (3.3) for the convex function f (t) = exp t we have for a = (a1; :::; an) 2 Rn
that

0 � r
"

nX
i=1

qi exp ai � exp
 

nX
i=1

qiai

!#
(4.13)

�
nX
i=1

pi exp ai � exp
 

nX
i=1

piai

!

� R
"

nX
i=1

qi exp ai � exp
 

nX
i=1

qiai

!#
and

0 �
"

nX
i=1

qi exp ai � exp
 

nX
i=1

qiai

!
+ 1

#r
� 1(4.14)

�
nX
i=1

pi exp ai � exp
 

nX
i=1

piai

!

�
"

nX
i=1

qi exp ai � exp
 

nX
i=1

qiai

!
+ 1

#R
� 1:

If we take ai = lnxi for positive numbers x = (x1; :::; xn) ; then we get

0 � r [An (q; x)�Gn (q; x)] � An (p; x)�Gn (p; x)(4.15)

� R [An (q; x)�Gn (q; x)]

and

0 � [An (q; x)�Gn (q; x) + 1]r � 1 � An (p; x)�Gn (p; x)(4.16)

� [An (q; x)�Gn (q; x) + 1]R � 1:

If p; q 2 (0; 1) then by the above inequalities we get

0 � min
�
p

q
;
1� p
1� q

�
[Aq (x; y)�Gq (x; y)](4.17)

� Ap (x; y)�Gp (x; y)

� max
�
p

q
;
1� p
1� q

�
[Aq (x; y)�Gq (x; y)]

and

0 � [Aq (x; y)�Gq (x; y) + 1]minf
p
q ;

1�p
1�qg � 1(4.18)

� Ap (x; y)�Gp (x; y)

� [Aq (x; y)�Gq (x; y) + 1]maxf
p
q ;

1�p
1�qg � 1;

for any x; y > 0:
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Moreover, if we take q = 1
2 in (4.17) and (4.18) we get

0 � 2min fp; 1� pg
�p
x�py

�2 � Ap (x; y)�Gp (x; y)(4.19)

� 2max fp; 1� pg
�p
x�py

�2
and

0 �
h�p

x�py
�2
+ 1
i2minfp;1�pg

� 1 � Ap (x; y)�Gp (x; y)(4.20)

�
h�p

x�py
�2
+ 1
i2maxfp;1�pg

� 1;

for any x; y > 0 and p 2 [0; 1] :
The inequality (4.19) has been obtained by Kittaneh and Manasrah [15], [16].

We have shown in [9] that it can also be obtained from a more general result for
convex functions from [6].
If (a1; :::; an) 2 [k;M ]n and p = (p1; :::; pn) and q = (q1; :::; qn) are probability

distributions such that there exist 0 < r � 1 � R < 1 with the property (3.1),
then by the inequalities (3.8) and (3.9) for the convex function � (t) = exp t; we
have that

r

"
(
Pn

i=1 qiai � k) expK + (K �
Pn

i=1 qiai) exp k

K � k � exp
 

nX
i=1

qiai

!#
(4.21)

� (
Pn

i=1 piai � k) expK + (K �
Pn

i=1 piai) exp k

K � k � exp
 

nX
i=1

piai

!

� R
"
(
Pn

i=1 qiai � k) expK + (K �
Pn

i=1 qiai) exp k

K � k � exp
 

nX
i=1

qiai

!#

and

�
(
Pn

i=1 qiai � k) expK + (K �
Pn

i=1 qiai) exp k

K � k(4.22)

� exp
 

nX
i=1

qiai

!
+ 1

#r
� 1

� (
Pn

i=1 piai � k) expK + (K �
Pn

i=1 piai) exp k

K � k � exp
 

nX
i=1

piai

!

�
�
(
Pn

i=1 qiai � k) expK + (K �
Pn

i=1 qiai) exp k

K � k

� exp
 

nX
i=1

qiai

!
+ 1

#R
� 1
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If (x1; :::; xn) 2 [m;M ]n for M > m > 0; then by taking in (4.21) and (4.22)
ai = lnxi for positive numbers x = (x1; :::; xn) and k = lnm; K = lnM , we get

r

�
(lnGn (q; x)� lnm)M + (lnM � lnGn (q; x))m

lnM � lnm �Gn (q; x)
�

(4.23)

� (lnGn (p; x)� lnm)M + (lnM � lnGn (p; x))m
lnM � lnm �Gn (p; x)

� R
�
(lnGn (q; x)� lnm)M + (lnM � lnGn (q; x))m

lnM � lnm �Gn (q; x)
�

and �
(lnGn (q; x)� lnm)M + (lnM � lnGn (q; x))m

lnM � lnm �Gn (q; x) + 1
�r

(4.24)

� 1

� (lnGn (p; x)� lnm)M + (lnM � lnGn (p; x))m
lnM � lnm �Gn (p; x)

�
�
(lnGn (q; x)� lnm)M + (lnM � lnGn (q; x))m

lnM � lnm �Gn (q; x) + 1
�R

� 1:

If p; q 2 (0; 1) then by the above inequalities we get for x; y 2 [m;M ] � (0;1) that

min

�
p

q
;
1� p
1� q

�
(4.25)

�
�
(lnGq (x; y)� lnm)M + (lnM � lnGq (x; y))m

lnM � lnm �Gq (x; y)
�

� (lnGp (x; y)� lnm)M + (lnM � lnGp (x; y))m
lnM � lnm �Gp (x; y)

� max
�
p

q
;
1� p
1� q

�
�
�
(lnGq (x; y)� lnm)M + (lnM � lnGq (x; y))m

lnM � lnm �Gq (x; y)
�

and

�
(lnGq (x; y)� lnm)M + (lnM � lnGq (x; y))m

lnM � lnm �Gq (x; y) + 1
�minf pq ; 1�p1�qg

(4.26)

� 1

� (lnGp (x; y)� lnm)M + (lnM � lnGp (x; y))m
lnM � lnm �Gp (x; y)

�
�
(lnGq (x; y)� lnm)M + (lnM � lnGq (x; y))m

lnM � lnm �Gq (x; y) + 1
�maxf pq ; 1�p1�qg

� 1:
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In particular, for q = 1
2 we get

2min fp; 1� pg(4.27)

�
�
(lnG (x; y)� lnm)M + (lnM � lnG (x; y))m

lnM � lnm �G (x; y)
�

� (lnGp (x; y)� lnm)M + (lnM � lnGp (x; y))m
lnM � lnm �Gp (x; y)

� 2max fp; 1� pg

�
�
(lnG (x; y)� lnm)M + (lnM � lnG (x; y))m

lnM � lnm �G (x; y)
�

and

�
(lnG (x; y)� lnm)M + (lnM � lnG (x; y))m

lnM � lnm �G (x; y) + 1
�2minfp;1�pg(4.28)

� 1

� (lnGp (x; y)� lnm)M + (lnM � lnGp (x; y))m
lnM � lnm �Gp (x; y)

�
�
(lnG (x; y)� lnm)M + (lnM � lnG (x; y))m

lnM � lnm �G (x; y) + 1
�2maxfp;1�pg

� 1:
for any p 2 [0; 1] and x; y 2 [m;M ] :
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