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Abstract. The main aim of this paper is to establish some new perturbed
Ostrowski type integral inequalities for functions whose �rst derivatives are
of bounded variation. Some perturbed Ostrowski type inequalities for Lip-
schitzian and monotonic mappings are also obtained.

1. Introduction

In 1938, Ostrowski [21] established a following useful inequality:

Theorem 1. Let f : [a; b]! R be a di¤erentiable mapping on (a; b) whose deriva-
tive f 0 : (a; b)! R is bounded on (a; b) ; i.e. kf 0k1 := sup

t2(a;b)
jf 0(t)j <1: Then, we

have the inequality

(1.1)

������f(x)� 1

b� a

bZ
a

f(t)dt

������ �
"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a) kf 0k1 ;

for all x 2 [a; b].

The constant 14 is the best possible.
The following de�nitions will be frequently used to prove our results.

De�nition 1. Let P : a = x0 < x1 < ::: < xn = b be any partition of [a; b] and let
�f(xi) = f(xi+1)� f(xi); then f is said to be of bounded variation if the sum

mX
i=1

j�f(xi)j

is bounded for all such partitions.

De�nition 2. Let f be of bounded variation on [a; b], and
P
�f (P ) denotes the

sum
nP
i=1

j�f(xi)j corresponding to the partition P of [a; b]. The number

b_
a

(f) := sup
nX

�f (P ) : P 2 P([a; b])
o
;

is called the total variation of f on [a; b] : Here P([a; b]) denotes the family of par-
titions of [a; b] :
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In [15], Dragomir proved the following Ostrowski type inequalities related func-
tions of bounded variation:

Theorem 2. Let f : [a; b]! R be a mapping of bounded variation on [a; b] : Then

(1.2)

������
bZ
a

f(t)dt� (b� a) f(x)

������ �
�
1

2
(b� a) +

����x� a+ b2
����� b_

a

(f)

holds for all x 2 [a; b] : The constant 12 is the best possible.

In the past, many authors have worked on Ostrowski type inequalities for func-
tion of bounded variation, see for example ([1]-[4],[6],[9],[12]-[17],[20]).
For a function of bounded variation v : [a; b] ! C: we de�ne the Cumulative

Variation Function (CVF) V : [a; b]! [0;1) by

V (t) :=
t_
a

(v);

the total variation of v on the interval [a; t] with t 2 [a; b].
It is know that the CVF is monotonic nondecreasing on [a; b] and is continuous

in a point c 2 [a; b] if and only if the generating function v is continuing in that
point. If v is Lipschitzian with the constant L > 0, i.e.

jv(t)� v(s)j � L jt� sj ; for any t; s 2 [a; b] ;

then V is also Lipschitzian with the same constant.
A simple proof of the following Lemma was given in [16].

Lemma 1. Let f; u : [a; b] ! C: If f is continuous on [a; b] and u is of bounded

variation on [a; b] ; then the Riemann-Stieltjes integral
bR
a

f(t)du(t) exist and

(1.3)

������
bZ
a

f(t)du(t)

������ �
bZ
a

jf(t)j d
 

t_
a

(u)

!
� max

t2[a;b]
jf(t)j

b_
a

(u):

In [8], authors gave the following Ostrowski type inequality for mapping whoose
�rst derivatives are of bounded variation:

Theorem 3. Let f : [a; b]! R be such that f 0 is a continuous function of bounded
variation on [a; b] : Then we have the inequality������ 1

b� a

bZ
a

f(t)dt� 1
2
[f(x) + f(a+ b� x)]

+
1

2

�
x� 3a+ b

4

�
[f 0(x)� f 0(a+ b� x)]

����
� 1

16

"
5 (x� a)2 � 2 (x� a) (b� x) + (b� x)2

b� a + 4

����x� 3a+ b4

����
#

b_
a

(f 0)

for any x 2
�
a; a+b2

�
.
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For recent related results, see [5],[7] and [9]. Moreover, Dragomir proved some
perturbed Ostrowski type inequalities for functions of bounded variation in [18, 19].
The aim of this paper is to obtain new perturbed Ostrowski type inequalities for
mappings whose �rst derivatives are of bounded variation.

2. Some Identities

Before we start our main results, we state and prove following lemma:

Lemma 2. Let f : [a; b]! C be a twice di¤erantiable function on (a; b) : Then for
any �1(x) and �2(x) complex number the following identity holds

�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt(2.1)

� 1

2(b� a)

�
�1(x)(x� a)3 + �2(x)(b� x)3

3

�

=
1

2

24 1

b� a

xZ
a

(t� a)2 d [f 0(t)� �1(x)t] +
1

b� a

bZ
x

(t� b)2 d [f 0(t)� �2(x)t]

35 ;
where the integrals in the right hand side are taken in the Riemann-Stieltjes sense.

Proof. Using the integration by parts for Riemann-Stieltjes, we have

xZ
a

(t� a)2 d [f 0(t)� �1(x)t](2.2)

=

xZ
a

(t� a)2 df 0(t)� �1(x)
xZ
a

(t� a)2 dt

= (t� a)2 f 0(t)
���x
a
� 2

xZ
a

(t� a) f 0(t)dt� �1(x)

3
(t� a)3

����x
a

= (x� a)2 f 0(x)� 2

24 (t� a) f(t)jxa � xZ
a

f(t)dt

35� �1(x)
3

(x� a)3

= (x� a)2 f 0(x)� 2 (x� a) f(x) + 2
xZ
a

f(t)dt� �1(x)
3

(x� a)3
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and

bZ
x

(t� b)2 d [f 0(t)� �2(x)t](2.3)

=

bZ
x

(t� b)2 df 0(t)� �2(x)
bZ
x

(t� b)2 dt

= (t� b)2 f 0(t)
���b
x
� 2

bZ
x

(t� b) f 0(t)dt� �1(x)

3
(t� b)3

����b
x

= � (b� x)2 f 0(x)� 2

24 (t� b) f(t)jbx � bZ
x

f(t)dt

35� �2(x)
3

(b� x)3

= (b� x)2 f 0(x)� 2 (b� x) f(x) + 2
bZ
x

f(t)dt� �1(x)
3

(x� a)3 :

If we add the equality (2.2) and (2.3) and devide by 2(b�a); we obtain required
identity. �

Corollary 1. Under assumption of Lemma 2 with �1(x) = �2(x) = �(x); we have

�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt� �(x)

6(b� a)
�
(x� a)3 + (b� x)3

�
(2.4)

=
1

2

24 1

b� a

xZ
a

(t� a)2 d [f 0(t)� �(x)t] + 1

b� a

bZ
x

(t� b)2 d [f 0(t)� �(x)t]

35
for all x 2 [a; b] :

Remark 1. If we choose �(x) = 0 in (2.4), then we have the following identity

�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt(2.5)

=
1

2

24 1

b� a

xZ
a

(t� a)2 df 0(t) + 1

b� a

bZ
x

(t� b)2 df 0(t)

35
for all x 2 [a; b] :
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Corollary 2. Under assumption of Lemma 2 with �1(x) = �1 2 C and �2(x) =
�2 2 C; we get

�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt(2.6)

� 1

6(b� a)
�
�1(x� a)3 + �2(b� x)3

�

=
1

2

24 1

b� a

xZ
a

(t� a)2 d [f 0(t)� �1t] +
1

b� a

bZ
x

(t� b)2 d [f 0(t)� �2t]

35 :
In particular, taking �1 = �2 = � we have

�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt� �

6(b� a)
�
(x� a)3 + (b� x)3

�
(2.7)

=
1

2

24 1

b� a

xZ
a

(t� a)2 d [f 0(t)� �t] + 1

b� a

bZ
x

(t� b)2 d [f 0(t)� �t]

35 :

3. Inequalities for Functions Whose First Derivatives are of
Bounded Variation

We denote by ` : [a; b] ! [a; b] the identity function, namely `(t) = t for any
t 2 [a; b] :

Theorem 4. Let : f : [a; b]! C be a twice di¤erantiable function on I� and [a; b] �
I�: If the �rst derivative f 0 is of bounded variation on [a; b] ; then

������
�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt(3.1)

� 1

2(b� a)

�
�1(x)(x� a)3 + �2(x)(b� x)3

3

�����
� 1

(b� a)

24 xZ
a

(t� a)
 

x_
t

(f 0 � �1(x)`)
!
dt+

bZ
x

(b� t)
 

t_
x

(f 0 � �2(x)`)
!
dt

35
� 1

2(b� a)

"
(x� a)2

x_
a

(f 0 � �1(x)`) + (b� x)2
b_
x

(f 0 � �2(x)`)
#
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� 1

2(b� a)

�

8>>>><>>>>:

�
1
4 +

(x� a+b
2 )

2

(b�a)2

�
max

�
xW
a
(f 0 � �1(x)`);

bW
x
(f 0 � �2(x)`)

�
(b� a)2;

max
�
(x� a)2; (b� x)2

	 � xW
a
(f 0 � �1(x)`) +

bW
x
(f 0 � �2(x)`)

�

for any x 2 [a; b] :

Proof. Taking modulus (2.1) and applying Lemma 1, we get

������
�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt(3.2)

� 1

2(b� a)

�
�1(x)(x� a)3 + �2(x)(b� x)3

3

�����
� 1

2

24 1

b� a

������
xZ
a

(t� a)2 d [f 0(t)� �1(x)t]

������+ 1

b� a

������
bZ
x

(t� b)2 d [f 0(t)� �2(x)t]

������
35

� 1

2(b� a)

24 xZ
a

(t� a)2 d
 

t_
a

(f 0 � �1(x)`)
!
+

bZ
x

(t� b)2 d
 

t_
a

(f 0 � �2(x)`)
!35 :

Integrating by parts in the Riemann-Stieltjes integral, we get

xZ
a

(t� a)2 d
 

t_
a

(f 0 � �1(x)`)
!

(3.3)

= (t� a)2
t_
a

(f 0 � �1(x)`)
�����
x

a

� 2
xZ
a

(t� a)
 

t_
a

(f 0 � �1(x)`)
!
dt

= (x� a)2
x_
a

(f 0 � �1(x)`)� 2
xZ
a

(t� a)
 

t_
a

(f 0 � �1(x)`)
!
dt

= 2

xZ
a

(t� a)
 

x_
a

(f 0 � �1(x)`)
!
dt� 2

xZ
a

(t� a)
 

t_
a

(f 0 � �1(x)`)
!
dt

= 2

xZ
a

(t� a)
 

x_
t

(f 0 � �1(x)`)
!
dt
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and

bZ
x

(t� b)2 d
 

t_
a

(f 0 � �2(x)`)
!

(3.4)

= (t� b)2
t_
a

(f 0 � �2(x)`)
�����
b

x

� 2
bZ
x

(t� b)
 

t_
a

(f 0 � �2(x)`)
!
dt

= � (x� b)2
x_
a

(f 0 � �2(x)`)� 2
bZ
x

(t� b)
 

t_
a

(f 0 � �2(x)`)
!
dt

= �2
bZ
x

(b� t)
 

x_
a

(f 0 � �2(x)`)
!
dt+ 2

bZ
x

(b� t)
 

t_
a

(f 0 � �2(x)`)
!
dt

= 2

bZ
x

(b� t)
 

t_
x

(f 0 � �2(x)`)
!
dt:

If we put the identities (3.3) and (3.4) in (3.2), then we obtain the �rst inequality
in (3.1). Moreover, we have,

(3.5)

xZ
a

(t� a)
 

x_
t

(f 0 � �1(x)`)
!
dt � 1

2
(x� a)2

x_
a

(f 0 � �1(x)`)

and

(3.6)

bZ
x

(b� t)
 

t_
x

(f 0 � �2(x)`)
!
dt � 1

2
(b� x)2

b_
x

(f 0 � �2(x)`):

With the inequalities (3.5) and (3.6), the proof of Theorem is completed. �
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Corollary 3. If we chosose �1(x) = �2(x) = 0; then we have the following inequal-
ity

������
�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt

������
� 1

(b� a)

24 xZ
a

(t� a)
 

x_
t

(f 0)

!
dt+

bZ
x

(b� t)
 

t_
x

(f 0`)

!
dt

35
� 1

2(b� a)

"
(x� a)2

x_
a

(f 0) + (b� x)2
b_
x

(f 0)

#

� 1

2(b� a)

8>>>><>>>>:

�
1
4 +

(x� a+b
2 )

2

(b�a)2

� �
1
2

bW
a
(f 0) + 1

2

���� xW
a
(f 0)�

bW
x
(f 0)

����� (b� a)2;
max

�
(x� a)2; (b� x)2

	 bW
a
(f 0)

for all x 2 [a; b] :

Corollary 4. Under assumption of Theorem 4 with �1(x) = �2(x) = �(x); we have

(3.7) ������
�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt� �(x)

6(b� a)
�
(x� a)3 + (b� x)3

�������
� 1

(b� a)

24 xZ
a

(t� a)
 

x_
t

(f 0 � �(x)`)
!
dt+

bZ
x

(b� t)
 

t_
x

(f 0 � �(x)`)
!
dt

35
� 1

2(b� a)

"
(x� a)2

x_
a

(f 0 � �(x)`) + (b� x)2
b_
x

(f 0 � �(x)`)
#

� 1

2(b� a)

8>>>>>>>><>>>>>>>>:

(b� a)2
�
1
4 +

(x� a+b
2 )

2

(b�a)2

�
�
�
1
2

bW
a
(f 0 � �(x)`) + 1

2

���� xW
a
(f 0 � �(x)`)�

bW
x
(f 0 � �(x)`)

����� ;
max

�
(x� a)2; (b� x)2

	 bW
a
(f 0 � �(x)`)

for all x 2 [a; b] :
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Corollary 5. If we choose �(x) = � and x = a+b
2 in (3.7), then we have the

following identity������ 1

b� a

bZ
a

f(t)dt� f(x)� �(b� a)
2

24

������
� 1

(b� a)

264
a+b
2Z
a

(t� a)

0@ a+b
2_
t

(f 0 � �`)

1A dt+ bZ
a+b
2

(b� t)

0@ t_
a+b
2

(f 0 � �`)

1A dt
375

� (b� a)
8

b_
a

(f 0 � �(x)`):

4. Inequalities for Functions Whose First Derivatives are
Lipschitzian

Theorem 5. Let f : [a; b]! C be a twice di¤erantiable function on I� and [a; b] �
I�: If there exist the positive numbers K1(x) and K2(x) such that f 0 � �1(x)`
is Lipschitzian with the constant K1(x) on the interval [a; x] and f 0 � �2(x)` is
Lipschitzian with the constant K2(x) on the interval [x; b] ; then we have for any
x 2 [a; b] ������

�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt(4.1)

� 1

2(b� a)

�
�1(x)(x� a)3 + �2(x)(b� x)3

3

�����
� (b� a)2

6

"
K1(x)

�
x� a
b� a

�3
+K2(x)

�
b� x
b� a

�3#

� (b� a)2
6

8>>>>>>>>>>>><>>>>>>>>>>>>:

��
x�a
b�a

�3
+
�
b�x
b�a

�3�
max fK1(x);K2(x)g ;

��
x�a
b�a

�3p
+
�
b�x
b�a

�3p� 1p
[(K1(x))

q
+ (K1(x))

q
]
1
q

p > 1; 1
p +

1
q = 1;h

1
2 +

���x� a+b
2

b�a

���i3 [K1(x) +K2(x)] :

Proof. It is known that, if g : [c; d] ! C is Riemann integrable and u : [c; d] !
C is Lipschitzian with the constant K > 0; then the Riemann-Stieltje integral
dR
c

g(t)du(t) exist and ������
dZ
c

g(t)du(t)

������ � K
dZ
c

jg(t)j dt:
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Taking the madulus (2.1), we get������
�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt

� 1

2(b� a)

�
�1(x)(x� a)3 + �2(x)(b� x)3

3

�����
� 1

2(b� a)

24������
xZ
a

(t� a)2 d [f 0(t)� �1(x)t]

������+
������
bZ
x

(t� b)2 d [f 0(t)� �2(x)t]

������
35

� 1

2(b� a)

24K1(x)

xZ
a

���(t� a)2��� dt+K2(x)

bZ
x

���(t� b)2��� dt
35

=
(b� a)2
6

h
K1(x) (x� a)3 +K2(x) (b� x)3

i

=
(b� a)2
6

"
K1(x)

�
x� a
b� a

�3
+K2(x)

�
b� x
b� a

�3#
:

This completes the proof of �rst inequality in (4.1).
Using the Hölder�s inequality, we have

K1(x)

�
x� a
b� a

�3
+K2(x)

�
b� x
b� a

�3

�

8>>>>>>>>>>>><>>>>>>>>>>>>:

��
x�a
b�a

�3
+
�
b�x
b�a

�3�
max fK1(x);K2(x)g ;

��
x�a
b�a

�3p
+
�
b�x
b�a

�3p� 1p
[(K1(x))

q
+ (K1(x))

q
]
1
q

p > 1; 1
p +

1
q = 1;h

1
2 +

���x� a+b
2

b�a

���i3 [L1(x) + L2(x)]
which completes the proof. �

Corollary 6. Under assumption of Theorem 5 with K1(x) = K2(x) = K and
�1(x) = �2(x) = �(x); we have������

�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt� �(x)

6(b� a)
�
(x� a)3 + (b� x)3

�������(4.2)

� 1

6

"
1

2
+

�����x� a+b
2

b� a

�����
#3
K(b� a)2:
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Corollary 7. If we choose x = a+b
2 and �(x) = � 2 C in (4.2), we get the inequality

������ 1

b� a

bZ
a

f(t)dt� f
�
a+ b

2

�
� �(b� a)

2

48

������ � 1

48
K(b� a)2:

5. Inequalities for Mappings Whose First Derivatives are Monotonic
Function

Theorem 6. Let f : [a; b]! C be a twice di¤erantiable function on I� and [a; b] �
I�: If �1(x) and �2(x) are real numbers such that f 0 � �1(x)` is monotonic nonde-
creasing on the interval [a; x] and f 0 � �2(x)` is monotonic nondecreasing on the
interval [x; b] ; then for any x 2 [a; b] the following inequalities hold:

������
�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt(5.1)

� 1

2(b� a)

�
�1(x)(x� a)3 + �2(x)(b� x)3

3

�����
� 1

2(b� a)

h
(x� a)2 [f 0(x)� f 0(a)� �1(x) (x� a)]

+ (b� x)2 [f 0(b)� f 0(x)� �2(x) (b� x)]
i

� 1

2(b� a)

8>>>>>>>>>><>>>>>>>>>>:

�
1
2 [f

0(b)� f 0(a)� �1(x) (x� a)� �2(x) (b� x)]
+
���f 0(x)� f 0(a)+f 0(b)

2 � 1
2�1(x) (x� a) +

1
2�2(x) (b� x)

���i
�
�
1
4 +

(x� a+b
2 )

2

(b�a)2

�
(b� a)2;

max
n
(x� a)2 ; (b� x)2

o
� [f 0(b)� f 0(a)� �1(x) (x� a)� �2(x) (b� x)] :

Proof. Taking the madulus (2.1), we have

������
�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt(5.2)

� 1

2(b� a)

�
�1(x)(x� a)3 + �2(x)(b� x)3

3

�����
� 1

2(b� a)

24������
xZ
a

(t� a)2 d [f 0(t)� �1(x)t]

������+
������
bZ
x

(t� b)2 d [f 0(t)� �2(x)t]

������
35
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Since f 0 � �1(x)` is monotonic nondecreasing on the interval [a; x] ; we have
xZ
a

(t� a)2 d [f 0(t)� �1(x)t](5.3)

� (x� a)2 [f 0(x)� �1(x)x� f 0(a) + �1(x)a]

= (x� a)2 [f 0(x)� f 0(a)� �1(x) (x� a)]

and similarly, since f 0 � �2(x)` is monotonic nondecreasing on the interval [x; b] ;
we have

bZ
x

(t� b)2 d [f 0(t)� �2(x)t](5.4)

� (b� x)2 [f 0(b)� �2(x)b� f 0(x) + �2(x)x]

= (b� x)2 [f 0(b)� f 0(x)� �2(x) (b� x)] :

If we put (5.3) and (5.4) in (5.2), we obtain the �rst inequality in (5.1).
The proofs of last inequalities are obvious, they are omitted. �

Corollary 8. Under assumption of Theorem 6 with �1(x) = �2(x) = �(x); we have������
�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt� �(x)

6(b� a)
�
(x� a)3 + (b� x)3

�������(5.5)

� 1

2(b� a)

h
(x� a)2 [f 0(x)� f 0(a)� �(x) (x� a)]

+ (b� x)2 [f 0(b)� f 0(x)� �(x) (b� x)]
i

� 1

2(b� a)

�

8>>>>>><>>>>>>:

h
f 0(b)�f 0(a)

2 � 1
2�(x) (b� a)

���f 0(x)� f 0(a)+f 0(b)
2 � �(x)

�
x� a+b

2

����
�
�
1
4 +

(x� a+b
2 )

2

(b�a)2

�
(b� a)2;

max
n
(x� a)2 ; (b� x)2

o
[f 0(b)� f 0(a)� �(x) (b� a)] :

Corollary 9. If we choose x = a+b
2 and �(x) = � in (5.5), we get the inequality������ 1

b� a

bZ
a

f(t)dt� f
�
a+ b

2

�
� �(b� a)

2

48

������ � (b� a)
8

[f 0(b)� f 0(a)� � (b� a)] :
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