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PERTURBED COMPANION OF OSTROWSKI TYPE
INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

IMEHMET ZEKI SARIKAYA, 'HUSEYIN BUDAK, !TUBA TUNC, 2SAMET ERDEN,
AND 'HATICE YALDIZ

ABSTRACT. In this paper, some perturbed companion of Ostrowski type inte-
gral inequalities for functions whose second derivatives are either bounded or
of bounded variation are established.

1. INTRODUCTION
In 1938, Ostrowski [29] established a following useful inequality:

Theorem 1. Let f : [a,b] — R be a differentiable mapping on (a,b) whose deriva-

tive f' : (a,b) — R is bounded on (a,b), i.e. ||f'||, := sup |f'(t)] < oo. Then, we
te(a,b)

have the inequality

b
1
i [ fod] <

atb)2
) - i+()] (=) .o

rT—
(b—a)

for all z € [a, b].
The constant % is the best possible.

Definition 1. Let P:a=1z¢ < 21 < ... < &, = b be any partition of [a,b] and let
Af(z;) = f(xig1) — f(x;), then f is said to be of bounded variation if the sum

> _1Af ()]
i=1
is bounded for all such partitions.

Definition 2. Let f be of bounded variation on [a,b], and > Af (P) denotes the
n

sum Y |Af(x;)| corresponding to the partition P of [a,b]. The number
i=1

b
V() i=sup {3 AF(P): P e P(la,b]) },

is called the total variation of f on [a,b]. Here P([a,b]) denotes the family of par-
titions of [a,b].
In [16], Dragomir proved the following Ostrowski type inequalitiesfor functions

of bounded variation:
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Theorem 2. Let f : [a,b] — R be a mapping of bounded variation on [a,b]. Then

b
a2 | [1wi- -0 s[lwa>+

2

x“;bH?u>

holds for all x € [a,b]. The constant % is the best possible.

In [13], Authors obtained the following Ostroski type inequalities for functions
whose secand derivatives are bounded:

Theorem 3. Letf : [a,b] — R be continuous on [a,b] and twice differentiable on
(a,b), whose second deriwative f" : (a,b) — R is bounded on (a;b). Then we have
the inequality

f(x)_bia/bf(t)dt_f(bl)lii(a) (Cc_a;_b)

2

1 _ atb)? 1
1" 2
s T b-a

for all x € [a,b].

Ostrowski inequality has potential applications in Mathematical Sciences. In
the past, many authors have worked on Ostrowski type inequalities for functions
(bounded, of bounded variation, etc.) see for example ([1]-[10], [13]-[19], [27],[28],[30]-
[37]). Furthermore, several works were devoted to study of perturbed Ostrowski
type inequalities for bounded functions and functions of bounded variation, please
refer to ([11],[12], [20]-[26]). In this study, we establish some perturbed compan-
ion of Ostrowski type inequalities for twice differentiable functions whose second
derivatives are either bounded or of bounded variation.

2. SOME IDENTITIES

Before we start our main results, we state and prove the following lemma:

Lemma 1. Let f : [a,b] — C be a twice differantiable function on (a,b). Then for
any \i(x), i = 1,2,3 complex number and all x € [a, %‘H’] the following identity
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holds

(2.1<x_3a2—b) f/(x)_f/;a—l—b—x)_f(x)+f(2a+b—x)+bia/f(t)dt
1
" 6(b—a)

3
[@ -0 (o) + ) +2 (45 - o) A2<x>]

T at+b—x 9
L 2 pnr a+b ey .
= 0w [/(t—a) [f(t) — A (z)] dt + / (t— 5 ) [ (t) — Ao(x)] dt

a xT

b
N N CURTLCENE) dt]

a+b—x

where the integrals in the right hand side are taken in the Lebesgue sense.

Proof. Using the integration by parts, we have

x

(2.2) / (t— ) [f"(t) — M(x)] dt

= /(t a)2f”(t)dt—)\1(x)/(t—a)2 dt
» f g M@ ’
= @-af O -2 [ ¢ -0 roa- 22 -0




IMEHMET ZEKI SARIKAYA, *HUSEYIN BUDAK, !TUBA TUNC, 2SAMET ERDEN, AND 'HATICE YALDIZ

a+b—zx 2
(2.3) / <t e ; b) [F(t) — Ao(x)] dt
a—tb—az a+b—z
= / <ta;b>2f"(t)th2(x) / <ta;rb>2dt
) (t i a—2|—b>2 o atb—z » <t . _; b) o :-i—b—a;

at+b—zx

_2<“;b —cc) flat+b—a)+ f(@)] +2 / F(t)dt

%AQ(Q:) <“;b - x)g

and
b
(2.4 [ =021 - rata) e
at+b—2x
b b
- / (£ — )2 F/(8)dt — Aa(x) / (t—b)2dt
a+b—x a+b—zx
2 pr b b
= 0RO, 2Ok,
b b
+2 / F(t)dt — As() (t—b)*
atbz 3 a+b—x
= —(z—a)’fllatb—2a)—2(x—a)fla+b—x)
b
+2 / f(t)dt — A?’T(x) (z—a)®.
at+b—x
If we add the equality (2.2)-(2.4) and divide by 2(b — a), we obtain required
identity. O

Corollary 1. Under assumption of Lemma 1 with \;(x) = X\;,1=1,2,3
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i) if we choose x = a, we have

8 2 b— 24
1 b\*
a+
= Q(b— CL) /< - 9 ) [f//(t) - >‘2} dta
it) if we choose © = “7“’, we have

eo o= [roa-r(50) - S oae)

3a+b

iii) if we choose x = 4=, we have

(2.7) b_la/bf(t)dt—l {f (Sazb) +f<“+3b>} - (b?;sz)z (M + 2% + As)

b
/ (t —b)> Ag]d].

Corollary 2. If we take \y = —\3 in (2.6), then we get

bia/bf(wdtf(“;b)

— {j (t—a)? [f"(t) — M) dt +

(t=b)2[f"(t) + M]dt |

t\@

a

2
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and choosing Ay = A3 = —Ag in (2.7), we have the inequaity

o[ (0) 0 (2)

3a+b a+3b
4

- Z(bl_a) [ G-l - ade+ / (ta;b)z[f“@)m]dt

a 3a+b

4
b
/ t— )2 [f(t) — A1) dt

u,+3b

3. INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVES ARE BOUNDED

Recall the sets of complex-valued functions:

ﬁ[a,b] (PY’ F)

= {f : [a,b] — C|Re [(1" — f(t) (m) —ﬂ > 0 for almast every t € [mb]}
and

Z[a,b] (7. T) = {f : [a,b] — C| ‘f(t) — ﬂ < 1

5 <§|F—'y| fora.e.te[a,b]}.

Proposition 1. For any~,I" € C, v # I, we have that U[a’b] (v,T) and Z[a’b] (v, T)
are nonempty and closed sets and

U[a,b] (77 F) = Z[a,b] (77 F) .
Theorem 4. Let f : [a,b] — C be a twice differantiable function on (a,b) and
x € (a,b). Suppose that v;(z),Ti(z) € C, v;(z) # Ti(x), i = 1,2,3 and " €
U[a,x] (717 Fl) n U[x,a+b—:c] (727 P2) N U[a+b—x,b] (737 F3) , then we have the inequalty

I - +

‘(x_3a+b>f’(x)—f’(a+b—m) f@)+ fla+b—z) 1 /f(t)dt
2 2 b—a

~35 g [0 @' (@) + T1(@) +75(@) + Ta(a)]

2 (“‘2”’ —x)3 (@) +Fz<w>JH

= ﬁ (& = a)* [IF1(2) = 71 (2)] + [T3(x) — 73(2)]]

42 ( : b_ x) IDy(z) - w»]

for all x € [a, “TH’] .
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Proof. Taking the modulus identity (2.1) for A1 (z) iw, Ao () W

and Az (x) = M’ since f// € U[a,x] (717 Fl)mU[x,a-l-b—:c] (72, FQ)QU[a-i-b—x,b] (737 F3)a
we have

1 —

‘(x_i’)a—i-b) f'(@) = f'la+b— 1) f($)+f(a+b_x)+ ! /f(t>dt
D) 2 b—a

R0-a [(z — a)® [yy(x) + D1 (2) + 73(2) + Ta()]

2 (“” - x) (@) +1“2(9c)]] ‘

a

" ’Yl(z) +F1(I)
7 - L)

IN

dt

a+b—zx

o ()

x

b
+ / (t —b)? f”(t)—iv?’(xwrr?’(x) dt}

Y2 (2) + Ta(2)

dt
2

F() -

2

a+b—x

T [|r1<:c>m(zﬂ/z(ta)?dmm(x)w” / ( a;b)iﬁ

IN

b
+ITs() — 75(a) / <t—b>2dt]

a+b—x

3
= ﬁ [(m —a)® Ty (x) — vy ()| +2 (a—2|—b — x> T2 () — 4 ()]

+(z = a)’ [Ts(x) — v3(2)|]

which completes the proof. (I

Corollary 3. Under assumption of Theorem 4,
i) if we choose © = a, then we have

b
bt o - - 29 L [ ga- O ) + 1)
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it) if we choose © = ‘%rb, then we have
b
32 | [10a -1 (5) - P @ 4 @) +(0) + Tt
< Lo (@) -y (@) 4 I () (1]

i11) if we choose x = %, then we have

[ ) ()

(b—a)?
768

(71(2) + T1(2) + 272(2) + 2Fa(2) + 73(2) + Fs(ﬂﬁ))’

= (bms V[0 () = 71 (@)] + 2102(0) = 7a(a) + [La(a) = 15021

Corollary 4. If we choose T'y(x) = —T'3(z) and v,(z) = —v5(z) in (8.2), then

and choosing T'1(x) = I's(x) = —Ta(z) and v1(x) = v5(z) = —y5(z) in (5.8),we
have

4. INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVES ARE OF
BOUNDED VARIATION

Assume that f : [a,b] — C be a twice differantiable function on I° (the inte-
rior of I) and [a,b] C I°. Then, from (2.1), we have for A\i(z) = f"(a), Xo(z) =



PERTURBED COMPANION OF OSTROWSKI TYPE INEQUALITY 9

L@ (04070) and Mz(x) = f7(b)

b
(4.1)<x_3a:—b) f(x)—f;a—l-b—a:)_f(x)—&-f(;—!—b—x)_i_bia/f(t)dt

1 a+b7

3
“6h—a) l(xa)g(f”(a)+f”(b))+< 5 x) [f"(:z:)Jrf”(awLbz)]]

1 [ 211 "
- %hﬂn{/u—a>v<w—f<wuu-
at+b—x

‘/ G_}Hw)zp%w_f%@+fwa+b—@}ﬁ

2 2

x

b
+ /(rwfwwaNMﬁ]

a+b—x

for any = € [a, “;b] .
Theorem 5. Let : f : [a,b] — C be a twice differantiable function on I° (the

interior of I) and [a,b] C I°. If the second derivative " is of bounded variation on
[a,b], then

3a+b\ f'(z) = f'latb—=2) [fla)+flatb—x)
(4.2) ‘(m 1 > 5 - 5
b

g [ 10— e (@ = (@) + £/0)

]‘ “ 11 a’+b patbre 1" ’ 1"
< S=a (x—a)d\a/(f )+< . —x) y (f )+(x—a)3a¥m(f )]
b
max {(x —a)®, (“'QH’ - $)3} \/(f”),
1 a
S 6(b — CL) 5 T at+b—zx b
2(x—a)’ + (24t - ) ]max{\/q“), V o,V (f”)}
a x at+b—x

for any x € [a,b].
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Proof. Taking modulus (4.1), we get

3040\ f@)~flatb—z) f@)+fatb-2)
(4.3) ‘(m 1 ) 5 — 5
b
s [ 0= s [l = o (@) + 1)

a

e e

1 [ 2 1 "
< %b_wl/@—a)ﬁ(w—f(wwt
T athy? J() + (0t b~ 2)
a " T a+b—=x
+/<t— 2) ) - 3 it
b
+ / (t=0)*[f"(t) = 1"(b)] dt} =T
at+b—x
Since f” is of bounded variation on [a, b], we get
t
(4.4) lF7 (¢ \/ ) for t € [a, 2],

a

f"(@) + f"la+b—1x)

(15) 7(t) - ;

IN

(F7@) = f" @)+ [f"(a+b—x) = f(1)]]

N |

IN

+b—
\/ "Yfort € [x,a+b— 1]

m\»—t

and

b

(4.6) If(t \/ )fortefa+b—x,b].

t
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If we put (4.4)-(4.6) in (4.3), we have

T < ﬁ V (t —a)’ <\t/(f”)> dt + H/b_w(t —~ a;b>2 (;a+\l)/_$(f”)> dt

a x
a x

b b
+ / (t —b)* <\/(f”)>dt]

t

at+b—x
1 T z ) 1a+b—w atb—z a—l—b 2
< g VO [emwras g Vo f (t-257) e

b b
+ \ () / (t—b)“’dt]

atb—z at+b—zx

T 3a+b—x b
= ﬁ [(m—a)?’\Ll/(f”)Jr(a;b—x) V M+@-a® \/ (f”)]

T a+b—x

which completes the proof of the first inequality in (4.2).
The proof of second inequality in (4.2) is obvious from properties of maximum.

|
Corollary 5. Under assumptions of Theorem 5,
i) if we take x = a, we have the inequality
b
b—a ’ ! f(a)+f(b) 1 (b*a)Q " "
o) - @) - BT 2 [ - S (@) + £ )

b—a)*\’
< L)
it) if we take v = “E. we have

b
1 b\  (b—a)? b—a)?\’
o [ g (250 - S+ | < BV

3a+b
4

s e [ () e ()]
2

" " y{3a+0b , (a+3b
s @ o (250 o (0]

i11) if we take x = , we get
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