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GRUSS’ TYPE INEQUALITIES FOR POSITIVE LINEAR MAPS
OF SELFADJOINT OPERATORS IN HILBERT SPACES

S. S. DRAGOMIR!:2

ABSTRACT. Some inequalities of Griiss’ type for positive linear maps of con-
tinuous functions of selfadjoint linear operators in Hilbert spaces, are given.
Applications for power function and logarithm are provided as well.

1. INTRODUCTION

In 1935, G. Griiss [24] proved the following integral inequality which gives an
approximation of the integral of the product in terms of the product of the integrals
as follows:

bia/abf(x)g(x)dx—b_la/abf(x)dxbia/abg(x)dx

(@ —9)(I'=1),

(1.1)

<

| =

where f, g : [a,b] — R are integrable on [a, b] and satisfy the condition
(1.2) p<f(z)<®y<g(x)<T

for each = € [a,b], where ¢, @, 7, I' are given real constants.

Moreover, the constant % is sharp in the sense that it cannot be replaced by a
smaller one.

In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardjewski [27, Chapter X] estab-
lished the following discrete version of Griiss’ inequality:

Let a = (a1,...,ay), b = (b1,...,b,) be two n-tuples of real numbers such that
r<a; <Rands<b; <Sfori=1,...,n. Then one has

(13) ;Zb—izizb <1 (1—71 {’;}) (R—7)(S—s).

where [z] denotes the integer part of z, © € R.

For a simple proof of (1.1) as well as for some other integral inequalities of Griiss
type, see Chapter X of the book [27]. For other related results see the papers [1]-[3],
[4]-[6], [7]-]9], [11]-[21], [23], [31], [33] and the references therein.

In the recent paper [15] we obtained the following result for continuous functions
of selfadjoint operators in complex Hilbert spaces:
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Theorem 1. Let A be a selfadjoint operator on the Hilbert space (H;{.,.)) and
assume that the spectrum Sp (A) C [m, M] for some scalars m < M. If f and g are
continuous on [m, M] and 0 := mingc(m, ar) f (t) and © := maxyepm ar f (t) then

(14)  [(f(A)g(A)y,y) = (f(Ay,y) (9(A)z,z)

2O () y.0) — tg (A) 9]

< 5©-0)[lg (A g + (g (4) 2,21 ~ 249 (A)2.) {g (A) ,)

for any z, y € H with ||z| = |ly|]| = 1.
In particular, we have
(1.5) [(f(A)g(A)z,z) - (f(A)z,z)-(9(A)z,z)]
<3 ©=0)[lg (el (g (27" < T©—0) (@)

for each x € H with ||z|| = 1, where ¢ := minge(m,ar g (t) and ¥ := max;e(p, 1 9 (1) -

1/2

For other related results see the recent monograph [18].

Let H be a complex Hilbert space and B (H), the Banach algebra of bounded
linear operators acting on H. We denote by BT (H) the convex cone of all positive
operators on H and by B*¥+ (H) the convex cone of all positive definite operators
on H.

Let H, K be complex Hilbert spaces. Following [10] (see also [25, p. 18]) we can
introduce the following definition:

Definition 1. A map ® : B(H) — B(K) is linear if it is additive and homogeneous,
namely

O (\A + uB) = A0 (A) + p® (B)

forany A, u € C and A, B € B(H). The linear map ® : B(H) — B(K) is positive
if it preserves the operator order, i.e. if A € BY (H) then ®(A) € BT (K). We
write & € P [B(H),B(K)]|. The linear map ® : B(H) — B(K) is normalised if it
preserves the identity operator, i.e. ® (1y) = 1x. We write ® € Py [B(H),B(K)].

We observe that a positive linear map ® preserves the order relation, namely
A < B implies ® (A) < ¢ (B)

and preserves the adjoint operation ® (A*) = ® (A)*. If ® € Py [B(H),B(K)]
and OélH < A < ﬂlH, then OélK < CI)(A) < 61}{
Let P; € B(H), j=1,...,k be contractions with

k
(1.6) > PP =1p.
j=1
The map @ : B(H) — B (H) defined by [25]
k
O (A):=> PfAP
j=1

is a normalized positive linear map on B (H).
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If the map ¥ : B(H) — B(K) is linear, positive and ¥ (1) € Bt (K) then by
putting ® = U=/2 (1) WU ~1/2 (1) we get that & € Py [B(H),B(K)], namely
it is also normalised.

Motivated by the above results, we establish in this paper some inequalities of
Griiss’ type for positive linear maps of continuous functions of selfadjoint linear
operators in Hilbert spaces. Applications for power function and logarithm are
provided as well.

2. THE MAIN RESULTS

Now, for v, I' € C and I an interval of real numbers, define the sets of complex-
valued functions (see for instance [22])

Ur (v,T)
= {g : 1 — C|Re {(F —g(t) (m—ﬁ)} > 0 for almost every ¢ € I}

and

AN%D:{mIﬁQ

y+T
9(t) — —5

1
§§|I‘—7| fora.e.te[}.

The following representation result may be stated [22].

Proposition 1. For any v, T' € C, v # T, we have that Uy (v,T') and Ay (7,T) are
nonempty, convex and closed sets and

(2.1) Ur (7, T) = A7 (v,1).
Proof. We observe that for any z € C we have the equivalence
vy+T 1
R gl | A
2= =5 =l

if and only if
Re[(I' = 2) (£ — )] = 0.
This follows by the equality

1 2 v+ r 2 _
{0l = o = T35 = Refir =)z - )
that holds for any z € C.
The equality (2.1) is thus a simple consequence of this fact. O

On making use of the complex numbers field properties we can also state that:
Corollary 1. For any~, ' € C, v # T', we have that
(22) Ur(v,T)={g: 1 —C| (ReT' = Reg(t)) (Reg (t) — Rev)
+(ImT' —Img (¢)) (Img (t) —Im~v) >0 for a.e. t € I}.

Now, if we assume that Re (I') > Re () and Im (T') > Im () , then we can define
the following set of functions as well:

(2.3) Sr(7,1):=={g: I —C| Re(T) 2 Reg(t) > Re(v)
and Im (') > Img (¢t) > Im (y) for a.e. t € I}.
One can easily observe that Sy (v,T) is closed, convex and

(2.4) 0 # S1 (6, @) CUr(¢,9).
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‘We have:

Theorem 2. Let A be a selfadjoint operator on the Hilbert space (H;(.,.)) with
Sp (A4) C [m, M] for some scalars m < M and ® € Px(B (H),B(K)). If f and g
are continuous on [m, M| and f € A;(v,T) for some v, T' € C, v # T, then for

every x, y € H with ||z|| = ||y|| = 1 we have
(2.5) (@ (f(A)g(A)y,y) — (B (g(A)z,z) (®(f(A))y:y)
F L (@ (0 (4)) 2. 2) — (@ (9/(4)) )]

< 31T~ 21 (@ (lg (4) — (@ (g (4)) 2, ) Lul) )

< 30— [(® (67 (4)) yw) — 2(® (9 (A)w,2) (@ (g (4)) ) + (@ (9 (A) 7, 2)?
In particular, we have

(2.6) (@ ( (A) g (A) z,2) — (P (g9 (A)) z,z) (® (f (A)) z, )|
|F (@ (lg(A) = (@ (g9(A) z,2) 1u|) z, z)

< S I0 =1 [(® (¢ (A) 2,2) — (@ (g (4)) 7, 2)?
for every x € H with ||z|| = 1.

Proof. First, observe that, for each A € C, ® € Py(B(H),B(K)) and z, y € H
with ||z|| = ||y|| = 1 we have

[(f (A) = Alg) (9 (A) — (@

1/2

(A) @, z) 1]

(9
=O[f(A)g(A) + A (®(g(A)z,2) 1y — (D (9(A)) z,z) f (A) — Ag (A)]
=0 (f(A)g(A)+A(@(g(4))z,z) 1k
—(®(g(A))z,2) 2 (f (A) — A2 (g9(A4))
and
(2.7) (@[(f (A) = Alm) (9 (A) — (2 (9 (A) z,2) 1u)]y, )
=(@(f(A)g(A)y,y) —(®(g(A) z,z) (2 (f(A))y,y)
+A[®(g(A))z,2) — (2 (9(A) y,y)]-

If we take in (2.7) A = ﬂ then we get

e (of(r- ) 6w - @@ 1))

=(@(f(A)g(A)y,y) — (2 (g(A)z,z) (®(f(A)) y,y)
v+T

+ g (@ (g (A)) z,2) — (@ (g (4) y,9)],

for any x, y € H with ||z|| = |ly|]| = 1.
Since A is selfadjoint, then by the continuous functional calculus for A we have
that the operator

(r =155 1) (04 - (@ (9 (A) ) 1)

[N
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is also selfadjoint for any « € H with ||z| = 1.
We know that for any selfadjoint operator B we have by the Jensen’s inequality
for positive maps [19]:
(@ (B)y,y)| <(®(IB])y,y)

for any y € H with |ly|| = 1.
Using this property and (2.8) we then have

(2.9) (@ (f(A)g(A)y,y) —(P(g(A)z,z)(P(f(A))y,y)

for any z, y € H with [|z| = [jy|| = 1.
Since A is selfadjoint and f € Aj(v,I"), then by the continuous functional
calculus for operator A we have

£ - 5 | < Il
which implies that
(2.10) (700- 25510 (0) - (@ g (A 5.0 1)
:Kf(A _WlH)]| (9(4)@,2) L

/\

< IF Y19 (A) = (@ (g (A)) z,z) 14|

for any « € H with ||z]| = 1.
By taking the map @ in the inequality (2.10), we get

e ol (ra =T ) ) - @ () )|

< 310 =21 (g (4) - (® (g () 2,2) 1]

for any x € H with ||z| = 1.
By Kadison’s inequality we have

(212) @2 (g () — (@ (g(A))z,2) 1n])
(19 (4) = (@ (g (4)) 2,2) 1u]*)
=@ ((g(4) = (@ (g (A) &, 2) 1)°)
( @ (g (4)) ) g (4) + ( (g (4)) 2,2)" 1)

= (g7 (4)) = 2(@(9(A) z,2) B (g (A)) + (P (9 (A)) w,2)" 1
for any x € H with ||z| = 1.
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By taking the square root in (2.12) we get
®(lg(A) — (2 (g (A))z,z) 1n)

< [2 (0 (W) —2(@ (g (W) 2.2) @ (9 (4) + (@ (9 (4) 2,2)" 1|

for any x € H with ||z| = 1.
By taking the inner product in this inequality, we get

(2.13) (@ (|g(A) = (@ (g (A)z z)1ul)y,y)

< ([ () 2@ 0 () 2.0) 2 o (A) + (@5 (W) 20)" 1] 3.)

1/2

< ([ (62 (4)) ~ 248 (g () 2,2) @ (9.(4)) + (@ (g (A) 20 1] o))

for any x, y € H with ||z|| = ||y|| = 1, where for the last inequality we used the
well known Holder-McCarthy inequality.
By (2.11) and (2.13) we then have

(o[|(r0- 5510 ) ) - @@ (a2 1) | )

< % T =~[{® (g (A) = (@ (g(A) z,2) Lul)y, y)
< 0= ([ (67 () — 2@ (9 (4)) 2. 2) @ (9 () + (@ (9 (A)) 20" 1] )
for any =, y € H with ||z]] = ||y]| = 1, which together with (2.9) produces the
desired result (2.5). O

Corollary 2. 1Let A be a selfadjoint operator on the Hilbert space (H;(.,.)) with
Sp(A4) C [m, M] for some scalars m < M and ® € Py(B(H),B(K)). If f is
continuous on [m, M) and f € A (y,T) for some v, T € C, v #T, then for every
x € H with ||z|| = 1 we have

(2.14) 0<(®(f*(A) z,2) — (D (f(A) 2,2)°

1
< g T =al(@(f (4) — (@ (f(4) 2, 2) 1r]) 2, z)
1 ) ,11/2
< T =1 [(@ (£2 () w,2) = (@ (f (4)) 2.2)’]
1 2
< -I'- .
< 7=l
Proof. From the inequality (2.6) we have for ¢ = f the second and third inequality

in (2.14).
Since we showed that

0< (2 (f*(A4) z,2) — (@ (f (4))2,2)"
< S I0 = [(@ (72 () w2 — (@ (f (A) 2]

for every x € H with ||z|| = 1, then we get

(@ (2 () w2) — @ (f (4D aa)?] <
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for every x € H with ||z|| = 1, which proves the last part of (2.14). O

Corollary 3. Let A be a selfadjoint operator on the Hilbert space (H;{.,.)) with
Sp(A) C [m, M] for some scalars m < M and ® € Py(B(H),B(K)). If f and
g are continuous on [m, M) and f € Ar(v,T), g € A7 (8,A) for some v, T, 4,
AeC,v#T,§#A, then for every x € H with ||z|| = 1 we have

215) (@ (A)g(A) ) — (b (g () 2,3) (@ ( (4)) .2)
T =21 (8 (g (4) = (@ (9 (4)) 2.2) 1) 2.2)
D=1 [(® (¢ () 2.2) — (@ (g () .27

1T —lA=4l.

<

HM\)—‘[\NH

for every x € H wzth |lz]| = 1.

Remark 1. If the map ¥ : B(H) — B(K) is linear, positive and ¥ (1) €
Bt (K) then by putting ® = U=1/2 (1) WU~1/2 (1) in (2.15) we get

(02 (1) W (£ (A) g (A) 02 (1) 2,0 )

<30 —1a -3
for every x € H with ||z| = 1.
If in this inequality we take
_ 1 1/2 v
T A e Y
where v € K with v # 0, then we get
pa  [LUDOAY (G S
(W (1g)v,v) (W (1g)v, v> (W (1g)v,v)
<Iir—y <\Ij (‘g(A) ety L D v
T2 (W (1g)v,v)
Lo (@@ @) e @)y
<30 | Samn - (et
< 3T —lla—d,

for any v € K with v # 0.
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Let P; € B(H), j = 1,...,k be contractions with the property (1.6). With the
assumptions in Corollary 3 we have by (2.15), for the normalised positive linear
map ® (A) := Y5, Py AP, that

k k k
(2.17) Z A) Pjz,x) Z A) Pjz, ) Z (P f(A) Pz, x)

Jj=1 j=1 j=1

1 k k
< 3 T —~| <JZI Py g(A)— <e_zl Pfg(A) Pg$,$> 1y ij7x>

07 1/2
< }|F77| i Prg > (A) Pjz,z) — f:(P?‘g(A) Pjz,z)
— 2 . I . J I
Jj=1 j=1

<Xir—ya—s
=7 Y

for every x € H with ||z|| = 1.

Corollary 4. With the assumptions of Corollary 3 we have the norm inequality

(2.18) 1@ (f (A) g (I <112 (F (AN (g (AN + 5 IF YA =4
Proof. By the inequality (3.1) and the triangle inequality we have

(@ (f (A) g (A)z,2)| = [(® (g (A)z,2)[ (@ (f (A)) 2, 2)]
<[ (f(A)g(A)z,z) - (P (g(A)z,2) (P (f(A)) )]

< -1a -3
for every « € H with ||z|| = 1, which implies that
(2.19) (@ (f(A) g (A))z,z)|
<@ (g(A)z, )| (@ (f (A)z,2)[ + 7 |F YA =4

for every x € H with ||z|| = 1.
By taking the supremum in (2.19) we get

1@ (f (A) g (A)]
= sup [(®(f(A)g(4))z, )

llzll=1

b {I(® (g (4 ))m>||<<1><f(A>>x,:c>|}+§|r—v||A—6|

Hrl\ 1

§Hst”llz)ll(q)(g(/l))m,x>|”81”1p1|<<1’(f(A))I 17>|+ T —~1A =4

=2 (f (AN (g (AN + 5 N

and the inequality (2.18) is proved. O
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Let P; € B(H), j = 1,...,k be contractions with the property (1.6). With the
assumptions in Corollary 3 we have, by (2.18) for the normalised positive linear
map ® (A) = Y, Py AP, that

k
(2.20) Y Pif(A)g(A)P
j=1

k k
* " 1
< ISP B[S Pro () By + £ IT—l1A 4.
J=1 Jj=1

3. SOME EXAMPLES

Let ® € Py(B(H),B(K)). For real valued functions f and g that are contin-
uous on [m, M], by putting 6 := minyepm,an f (1), © = maxeepm,an f (1), ¥ =
minsepm, 1) 9 (t) and W := max;e(m ) g () then we have by (2.15) that

(3.1) (@ (f(A) g (A)z,z) — (@ (g (A))z,z) (@ (f (A)) 2, )|

< 50— 0)(® (g (4) ~ (® (g (4))7,2) L), )

1 ) ,11/2
<5 (©-0) [(®(¢* (4) 7,2) — (@ (g (A)) 2,2)?]
<1 ©O-0)(¥-)

for every © € H with ||z|| = 1, where A is a selfadjoint operator on the Hilbert
space (H; (.,.)) with Sp (A4) C [m, M].

We say that the functions f, g : [a,b] — R are synchronous (asynchronous) on
the interval [a, b] if they satisfy the following condition (f (¢) — f (s)) (g (t) — g (s)) >
(<)0 for each ¢, s € [a,}].

It is obvious that, if f, g are monotonic and have the same monotonicity on
the interval [a, ], then they are synchronous on [a,b] while if they have opposite
monotonicity, they are asynchronous.

Let ® € Py(B(H),B(K)) and A is a selfadjoint operator on the Hilbert space
(H;(.,.)) with Sp(A) C [m, M].If f, g : [m, M] — R are synchronous (asynchro-
nous) on the interval [m, M], then we have the Cebysev type inequality [30]

(3.2) (@ (f(A)g(A)z,2) = (<) ((f(A)) z,2) (P (g (A)) z, )

for every z € H with ||z|| = 1.
Let A be a selfadjoint operator with Sp (4) C [m, M] for some scalars m < M.
If A is positive (m > 0) and p, ¢ > 0, then

(3.3) (0 <) (® (AP9) 2, 2) — (@ (A7) 2, 2) (B (A7) 2, )
< 3 (MP —miP) (@ (|7 — (@ (4%) 2, 2) L) 2, 2
< 2O ) [(@ (4%) 2a) — (@ (4 2,29?]
< (M —m?) (A7 — )

for each = € H with ||z| = 1.
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If A is positive definite (m > 0) and p, ¢ < 0, then

(3.4) (0 <) (@ (APT9) z,2) — (D (A7) @, z) (D (A9) 7, z)
1M™P —m™P
<=
— 2 M-Pm~P
1 M=P —m™P
— 2 M—Pm~P
_1 M —m=P M9—m4
4 M—Pm~P M-Im~4

(@ (JA7 — (@ (AT) 2, 2) 1|) 2, )

(00~ w 457"

for each x € H with ||z|| = 1.
If A is positive definite (m > 0) and p < 0, ¢ > 0 then

(3:5) (0 <) (@ (A7) z,z) (@ (A7) 2, 2) — (@ (APT) 2, )
< IMT T g a1 — (8 (A7) 0,2) L )
P-mr ,11/2
< 5 e (@ (4 .9) ~ @ (4n227]
LA

— q __ q
ST e MY

for each x € H with |z|| = 1.
If A is positive definite (m > 0) and p > 0, ¢ < 0 then

(3.6) (0 <) (@ (AP) z, ) (P (A7) w,z) — (P (APT9) 2, x)
< 3 (MP —mP) (@ (|A7 — (@ (A%) 2, 2) L) 2, 2
1 511/2
< 5 (M7 = m?) [(@ (4%) 2,2) - (@ (A7) 2,2)?]
1 » M =m™1
< g =) e

for each x € H with |z|| = 1.

We notice that the positivity of the quantities in the left hand side of the above
inequalities (3.3)-(3.6) follows from the inequality (3.2).

The following particular cases when one function is the power while the second
is the logarithm are of interest as well:
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Let A be a positive definite operator with Sp (4) C [m, M] for some scalars

0<m < M. If p>0, then for each x € H with ||z| =1

(3.7 0<)(P(APInA)z,z) — (P (AP) z,2) (D (In A) z, x)
1 (MP —mP) (@ (InA— (P (InA)z,z)1y|) z,z)
<
I\ /Y (@ (|47 — (@ (A7) 2, 2) L) 2, 2)
L (MP —mp) {<<I> (In® (A)) z,2) — (@ (In A) z, :c)ﬂ i
<
In \/% [<<I> (A%P) 2, x) — (P (AP) z, x>2] i
| » M
< 5 (M —m )ln \/;
If p < 0, then for each z € H with ||z|| =1
(3.8) (0<)(® (A7) z,x) (P (InA) z,z) — (P (AP In A) z, x)
S (@ (A — (@ (n A) 2, 2) 1) 2, 2)
<
/A (@ (|47 — (B (A7) 2, 2) 1) 2, 2)
1M P—m? {<(I> (In® (A)) z,2) — (@ (InA) z z)ﬂ i
2 M—Pm~P ’ )
<

(1]

1/2

i /32 [(@ (42) 2) - (@ (47) .1

lMﬂ”fm*p1 M

————In
-2 M—Pm~P m
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