
OPERATOR QUASILINEARITY OF SOME FUNCTIONALS
ASSOCIATED TO DAVIS-CHOI-JENSEN�S INEQUALITY FOR

POSITIVE MAPS

S. S. DRAGOMIR1;2

Abstract. In this paper we establish some operator quasilinearity properties
of some functionals associated to Davis-Choi-Jensen�s inequality for positive
maps and operator convex (concave) functions. Applications for power func-
tion and logarithm are also provided.

1. Introduction

Let H be a complex Hilbert space and B (H) ; the Banach algebra of bounded
linear operators acting on H:We denote by Bh (H) the semi-space of all selfadjoint
operators in B (H) :We denote by B+ (H) the convex cone of all positive operators
on H and by B++ (H) the convex cone of all positive de�nite operators on H:
Let H, K be complex Hilbert spaces. Following [1] (see also [18, p. 18]) we can

introduce the following de�nition:

De�nition 1. A map � : B (H)! B (K) is linear if it is additive and homogeneous,
namely

� (�A+ �B) = �� (A) + �� (B)

for any �; � 2 C and A; B 2 B (H) : The linear map � : B (H)! B (K) is positive
if it preserves the operator order, i.e. if A 2 B+ (H) then � (A) 2 B+ (K) : We
write � 2 P [B (H) ;B (K)] : The linear map � : B (H)! B (K) is normalised if it
preserves the identity operator, i.e. � (1H) = 1K :We write � 2 PN [B (H) ;B (K)] :

We observe that a positive linear map � preserves the order relation, namely

A � B implies � (A) � � (B)
and preserves the adjoint operation � (A�) = � (A)

�
: If � 2 PN [B (H) ;B (K)]

and �1H � A � �1H ; then �1K � � (A) � �1K :
If the map 	 : B (H)! B (K) is linear, positive and 	(1H) 2 B++ (K) then by

putting � = 	�1=2 (1H)		�1=2 (1H) we get that � 2 PN [B (H) ;B (K)] ; namely
it is also normalised.
A real valued continuous function f on an interval I is said to be operator convex

(concave) on I if

f ((1� �)A+ �B) � (�) (1� �) f (A) + �f (B)
for all � 2 [0; 1] and for every selfadjoint operators A; B 2 B (H) whose spectra are
contained in I:
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The following Jensen�s type result is well known [1]:

Theorem 1 (Davis-Choi-Jensen�s Inequality). Let f : I ! R be an operator convex
function on the interval I and � 2 PN [B (H) ;B (K)] ; then for any selfadjoint
operator A whose spectrum is contained in I we have

(1.1) f (� (A)) � � (f (A)) :

We observe that if 	 2 P [B (H) ;B (K)] with 	(1H) 2 B++ (K) ; then by taking
� = 	�1=2 (1H)		

�1=2 (1H) in (1.1) we get

f
�
	�1=2 (1H)	 (A)	

�1=2 (1H)
�
� 	�1=2 (1H)	 (f (A))	�1=2 (1H) :

If we multiply both sides of this inequality by 	1=2 (1H) we get the following Davis-
Choi-Jensen�s inequality for general positive linear maps:

(1.2) 	1=2 (1H) f
�
	�1=2 (1H)	 (A)	

�1=2 (1H)
�
	1=2 (1H) � 	(f (A)) :

We de�ne by PI [B (H) ;B (K)] the convex cone of all linear, positive maps 	
with 	(1H) 2 B++ (K) ; namely 	(1H) is positive invertible operator in K and
de�ne the functional F : PI [B (H) ;B (K)]! B (K) by

Ff;A (	) = 	
1=2 (1H) f

�
	�1=2 (1H)	 (A)	

�1=2 (1H)
�
	1=2 (1H) ;

where f : I ! R is an operator convex (concave) function on the interval I and A
is a selfadjoint operator whose spectrum is contained in I.
In this paper we establish some operator quasilinearity properties of some func-

tionals associated to Davis-Choi-Jensen�s inequality (1.2) for positive maps and op-
erator convex (concave) functions. Applications for power function and logarithm
are also provided.

2. The Main Results

The following result holds:

Theorem 2. Let f : I ! R be an operator convex (concave) function on the
interval I and A a selfadjoint operator whose spectrum is contained in I. If 	1;
	2 2 PI [B (H) ;B (K)] ; then

(2.1) Ff;A (	1 +	2) � (�)Ff;A (	1) + Ff;A (	2) ;

namely Ff;A is operator subadditive (superadditive) on PI [B (H) ;B (K)] :

Proof. We give the proof for the case of operator convex functions. If 	1; 	2 2
PI [B (H) ;B (K)] then 	1 +	2 2 PI [B (H) ;B (K)] and we have

Ff;A (	1 +	2) = (	1 +	2)
1=2
(1H)(2.2)

� f
�
(	1 +	2)

�1=2
(1H) (	1 +	2) (A) (	1 +	2)

�1=2
(1H)

�
� (	1 +	2)1=2 (1H)

where by " � " we understand above the usual operator multiplication.
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Observe that

(	1 +	2)
�1=2

(1H) (	1 +	2) (A) (	1 +	2)
�1=2

(1H)(2.3)

= (	1 +	2)
�1=2

(1H) (	1 (A) + 	2 (A)) (	1 +	2)
�1=2

(1H)

= (	1 +	2)
�1=2

(1H)	1 (A) (	1 +	2)
�1=2

(1H)

+ (	1 +	2)
�1=2

(1H)	2 (A) (	1 +	2)
�1=2

(1H)

= (	1 +	2)
�1=2

(1H)	
1=2
1 (1H)

�
	
�1=2
1 (1H)	1 (A)	

�1=2
1 (1H)

�
�	1=21 (1H) (	1 +	2)

�1=2
(1H)

+ (	1 +	2)
�1=2

(1H)	
1=2
2 (1H)

�
	
�1=2
2 (1H)	2 (A)	

�1=2
2 (1H)

�
�	1=22 (1H) (	1 +	2)

�1=2
(1H) :

If we denote by

V := 	
1=2
1 (1H) (	1 +	2)

�1=2
(1H) and U := 	

1=2
2 (1H) (	1 +	2)

�1=2
(1H)

then

V � := (	1 +	2)
�1=2

(1H)	
1=2
1 (1H) and U� := (	1 +	2)

�1=2
(1H)	

1=2
2 (1H) :

Also, we have

V �V + U�U = (	1 +	2)
�1=2

(1H)	1 (1H) (	1 +	2)
�1=2

(1H)

+ (	1 +	2)
�1=2

(1H)	2 (1H) (	1 +	2)
�1=2

(1H)

= (	1 +	2)
�1=2

(1H) (	1 (1H) + 	2 (1H)) (	1 +	2)
�1=2

(1H)

= (	1 +	2)
�1=2

(1H) (	1 +	2) (1H) (	1 +	2)
�1=2

(1H) = 1K

and (2.3) may be written as

(	1 +	2)
�1=2

(1H) (	1 +	2) (A) (	1 +	2)
�1=2

(1H)

= V �
�
	
�1=2
1 (1H)	1 (A)	

�1=2
1 (1H)

�
V

+ U�
�
	
�1=2
2 (1H)	2 (A)	

�1=2
2 (1H)

�
U

and by taking f and using Hansen-Pedersen-Jensen�s inequality for operator convex
functions, we have

f
�
(	1 +	2)

�1=2
(1H) (	1 +	2) (A) (	1 +	2)

�1=2
(1H)

�
(2.4)

� V �f
�
	
�1=2
1 (1H)	1 (A)	

�1=2
1 (1H)

�
V

+ U�f
�
	
�1=2
2 (1H)	2 (A)	

�1=2
2 (1H)

�
U

= (	1 +	2)
�1=2

(1H)	
1=2
1 (1H) f

�
	
�1=2
1 (1H)	1 (A)	

�1=2
1 (1H)

�
�	1=21 (1H) (	1 +	2)

�1=2
(1H)

+ (	1 +	2)
�1=2

(1H)	
1=2
2 (1H) f

�
	
�1=2
2 (1H)	2 (A)	

�1=2
2 (1H)

�
�	1=22 (1H) (	1 +	2)

�1=2
(1H) :
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Finally, by multiplying both sides of (2.4) by (	1 +	2)
1=2
(1H) we get

Ff;A (	1 +	2) � 	1=21 (1H) f
�
	
�1=2
1 (1H)	1 (A)	

�1=2
1 (1H)

�
	
1=2
1 (1H)

+ 	
1=2
2 (1H) f

�
	
�1=2
2 (1H)	2 (A)	

�1=2
2 (1H)

�
	
1=2
2 (1H)

= Ff;A (	1) + Ff;A (	2)

and the proof is concluded. �

Corollary 1. Let f : I ! R be an operator convex (concave) function on the
interval I and A a selfadjoint operator whose spectrum is contained in I. If 	1;
	2 2 PI [B (H) ;B (K)] and � 2 [0; 1] ; then

(2.5) Ff;A ((1� �)	1 + �	2) � (�) (1� �)Ff;A (	1) + �Ff;A (	2) ;

namely Ff;A is operator convex (concave) on PI [B (H) ;B (K)] :

Proof. If 	1; 	2 2 PI [B (H) ;B (K)] and � 2 [0; 1] ; then (1� �)	1 + �	2 2
PI [B (H) ;B (K)] and we have by (2.1) that

Ff;A ((1� �)	1 + �	2) � (�)Ff;A ((1� �)	1) + Ff;A (�	2)
= (1� �)Ff;A (	1) + �Ff;A (	2)

since Ff;A is positive homogeneous on PI [B (H) ;B (K)] ; namely

Ff;A (�	) = �Ff;A (	)

for any � > 0 and 	 2 PI [B (H) ;B (K)] : �

For 	1; 	2 2 PI [B (H) ;B (K)] we denote that 	2 �I 	1 if 	2 � 	1 2
PI [B (H) ;B (K)] : This means that 	2 � 	1 is a linear positive functional and
	2 (1H)�	1 (1H) 2 B++ (K) :

Corollary 2. Let f : I ! [0;1) be an operator concave function on the interval
I and A a selfadjoint operator whose spectrum is contained in I. If 	1; 	2 2
PI [B (H) ;B (K)] with 	2 �I 	1 then

(2.6) Ff;A (	2) � Ff;A (	1) ;

namely Ff;A is operator monotonic nondecreasing in the order " �I " of PI [B (H) ;B (K)] :

Proof. Let 	1; 	2 2 PI [B (H) ;B (K)] with 	2 �I 	1; then by (2.1) we have

Ff;A (	2) = Ff;A (	1 +	2 �	1) � Ff;A (	1) + Ff;A (	2 �	1)

implying that
Ff;A (	2)� Ff;A (	1) � Ff;A (	2 �	1) :

Since f is positive and 	2;1 := 	2 � 	1 2 PI [B (H) ;B (K)] with 	2;1 (1H) =
	2 (1H)�	1 (1H) 2 B++ (K) it follows that

f
�
	
�1=2
2;1 (1H)	2;1 (A)	

�1=2
2;1 (1H)

�
� 0

and by multiplying both sides by 	1=22;1 (1H) we get that Ff;A (	2 �	1) � 0 and
the inequality (2.6) is proved. �

We have
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Corollary 3. Let f : I ! [0;1) be an operator concave function on the in-
terval I and A a selfadjoint operator whose spectrum is contained in I. If 	;
� 2 PI [B (H) ;B (K)], t; T > 0 with T > t and T� �I 	 �I t� then

(2.7) TFf;A (�) � Ff;A (	) � tFf;A (�) :
The proof follows by (2.6) on taking �rst 	2 = T�; 	1 = 	 and then 	2 = 	;

	1 = t� and by the positive homogeneity of Ff;A:
We consider now the functional Jf;A : PI [B (H) ;B (K)]! B (K) de�ned by

Jf;A (	)(2.8)

:= 	 (f (A))� Ff;A (	)

= 	 (f (A))�	1=2 (1H) f
�
	�1=2 (1H)	 (A)	

�1=2 (1H)
�
	1=2 (1H) :

We can state the following result:

Theorem 3. Let f : I ! R be an operator convex (concave) function on the interval
I and A a selfadjoint operator whose spectrum is contained in I. Then the functional
Jf;A is positive (negative) on PI [B (H) ;B (K)] ; it is positive homogeneous and
concave (convex) on PI [B (H) ;B (K)] : Jf;A is also superadditive (subadditive) on
PI [B (H) ;B (K)] :
Proof. We consider only the operator convex case. The positivity of Jf;A on
PI [B (H) ;B (K)] is equivalent to Davis-Choi-Jensen�s inequality for general posi-
tive linear maps (1.2). The positive homogeneity follows by the same property of
Ff;A and the de�nition of Jf;A:
If 	1; 	2 2 PI [B (H) ;B (K)] and � 2 [0; 1] ; then by Corollary 1 we have

Jf;A ((1� �)	1 + �	2)
= ((1� �)	1 + �	2) (f (A))� Ff;A ((1� �)	1 + �	2)
� (1� �)	1 (f (A)) + �	2 (f (A))� (1� �)Ff;A (	1)� �Ff;A (	2)
= (1� �) [	1 (f (A))� Ff;A (	1)] + � [	2 (f (A))� Ff;A (	2)]
= (1� �)Jf;A (	1) + �Jf;A (	2)

that proves the operator concavity of Jf;A:
The operator superadditivity follows in a similar way and we omit the details. �

Corollary 4. Let f : I ! R be an operator convex function on the interval
I and A a selfadjoint operator whose spectrum is contained in I. If 	; � 2
PI [B (H) ;B (K)], t; T > 0 with T > t and T� �I 	 �I t� then

(2.9) TJf;A (�) � Jf;A (	) � tJf;A (�)
or, equivalently,

T (� (f (A))� Ff;A (�)) � 	(f (A))� Ff;A (	)(2.10)

� t (� (f (A))� Ff;A (�)) � 0:

The inequality (2.10) has been obtained in [5] in an equivalent form for operator
concave function f and normalised functionals 	 and �:
Now, assume that A a selfadjoint operator whose spectrum is contained in [m;M ]

for some real constants M > m: If f is convex, then for any t 2 [m;M ] we have

(2.11) f (t) � (M � t)f (m) + (t�m) f (M)
M �m :
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If A a selfadjoint operator whose spectrum is contained in [m;M ] ; then m1H �
A � M1H and by taking the map 	 we get m	(1H) � 	(A) � M	(1H) for
	 2 PI [B (H) ;B (K)] : This is equivalent to

m1K � 	�1=2 (1H)	 (A)	�1=2 (1H) �M1K :

By using the continuous functional calculus, we have by (2.11) that

f
�
	�1=2 (1H)	 (A)	

�1=2 (1H)
�

� 1

M �m

h
f (m) (M1K �	�1=2 (1H)	 (A)	�1=2 (1H))

i
+

1

M �m

h
f (M)

�
	�1=2 (1H)	 (A)	

�1=2 (1H)�m1K
�i
:

By multiplying this inequality both sides with 	1=2 (1H) we get the inequality

(2.12) Ff;A (	) � Tf;A (	) ;

where

Tf;A (	) :=
f (m) (M	(1H)�	(A)) + f (M) (	 (A)�m	(1H))

M �m

is a trapezoidal type functional. We observe that Tf;A is additive and positive
homogeneous on PI [B (H) ;B (K)] :
We de�ne the functional Df;A : PI [B (H) ;B (K)]! B (K)

Df;A (	) := Tf;A (	)� Ff;A (	)(2.13)

=
f (m) (M	(1H)�	(A)) + f (M) (	 (A)�m	(1H))

M �m
�	1=2 (1H) f

�
	�1=2 (1H)	 (A)	

�1=2 (1H)
�
	1=2 (1H) :

We observe that if f is convex (concave) on [m;M ] and m1H � A �M1H ; then

Df;A (	) � (�) 0 for any 	 2 PI [B (H) ;B (K)] :

We have:

Theorem 4. Let f : I ! R be an operator convex (concave) function on the
interval [m;M ] and A a selfadjoint operator whose spectrum is contained in [m;M ].
Then the functional Df;A is positive (negative) on PI [B (H) ;B (K)] ; it is positive
homogeneous and operator concave (convex) on PI [B (H) ;B (K)] : Df;A is also
operator superadditive (subadditive) on PI [B (H) ;B (K)] :

The proof is similar to the one from Theorem 3 and we omit the details.

Corollary 5. Let f : I ! R be an operator convex function on the interval
I and A a selfadjoint operator whose spectrum is contained in I. If 	; � 2
PI [B (H) ;B (K)], t; T > 0 with T > t and T� �I 	 �I t� then

(2.14) TDf;A (�) � Df;A (	) � tDf;A (�)
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or, equivalently,

T

�
f (m) (M�(1H)��(A)) + f (M) (� (A)�m�(1H))

M �m � Ff;A (�)
�

(2.15)

� f (m) (M	(1H)�	(A)) + f (M) (	 (A)�m	(1H))
M �m � Ff;A (	)

� t
�
f (m) (M�(1H)��(A)) + f (M) (� (A)�m�(1H))

M �m � Ff;A (�)
�

� 0:

3. Examples for Power Function and Logarithm

It is well known that the function f� : [0;1) ! [0;1), f� (x) = x� for � 2
(0; 1) is operator concave and positive on [0;1). We consider the functional on
PI [B (H) ;B (K)] de�ned by

F�;A (	) = 	
1=2 (1H)

�
	�1=2 (1H)	 (A)	

�1=2 (1H)
��
	1=2 (1H)

where A is a positive operator on H:
Assume that C; B are positive invertible operators on a complex Hilbert space

(H; h�; �i) : We use the following notations for operators [12]

Cr�B := (1� �)C + �B;

the weighted operator arithmetic mean and

C]�B := C
1=2
�
C�1=2BC�1=2

��
C1=2;

the weighted operator geometric mean, where � 2 [0; 1] : When � = 1
2 we write

CrB and C]B for brevity, respectively.
The de�nition C]�B can be extended accordingly for any real number �:
Using this notation, we observe that

(3.1) F�;A (	) = 	 (1H) ]�	(A) :

In particular, for � = 1
2 we have

F 1
2 ;A

(	) = 	 (1H) ]	(A) :

Using the results from the previous section for the operator concave function f�
we have that F�;A is positive, operator concave, operator superadditive, operator
monotonic nondecreasing in the order " �I " and we have the inequality

(3.2) T�(1H) ]��(A) � 	(1H) ]�	(A) � t�(1H) ]��(A) ;

where 	; � 2 PI [B (H) ;B (K)], t; T > 0 with T > t and T� �I 	 �I t�.
We notice that the operator concavity, superadditivity and monotonicity may

be also derived from the corresponding properties of weighted operator geometric
mean, see [18, p. 146].
If we consider the functional

(3.3) J�;A (	) := 	 (A
�)�	(1H) ]�	(A) ;

then J�;A is negative, operator convex and operator subadditive onPI [B (H) ;B (K)] :
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Also, if 0 < m1H � A �M1H ; then we can consider the functional

D�;A (	) :=
m�(M	(1H)�	(A)) +M� (	 (A)�m	(1H))

M �m(3.4)

�	(1H) ]�	(A)

and from the above section we conclude that D�;A is negative, operator convex and
operator subadditive on PI [B (H) ;B (K)] :
Now, consider the function �p (t) = tp that is operator convex on (0;1) if either

1 � p � 2 or �1 � p � 0: We consider the functional on PI [B (H) ;B (K)] de�ned
by

Fp;A (	) = 	1=2 (1H)
�
	�1=2 (1H)	 (A)	

�1=2 (1H)
�p
	1=2 (1H)

= 	 (1H) ]p	(A) ;

where A is a positive de�nite operator on H:
In particular, we have

F2;A (	) = 	1=2 (1H)
�
	�1=2 (1H)	 (A)	

�1=2 (1H)
�2
	1=2 (1H)

= 	 (A)	�1 (1H)	 (A)

and

F�1;A (	) = 	1=2 (1H)
�
	�1=2 (1H)	 (A)	

�1=2 (1H)
��1

	1=2 (1H)

= 	 (1H)	
�1 (A)	 (1H) :

From the above section we can infer that Fp;A is positive, operator convex and
subadditive on PI [B (H) ;B (K)] :
For 	1; 	2 2 PI [B (H) ;B (K)] we have by the properties of Fp;A that the scalar

valued function

�p;A (	) := kFp;A (	)k = k	(1H) ]p	(A)k

is subadditive and positive homogeneous on PI [B (H) ;B (K)] :
Consider the functional

(3.5) Jp;A (	) := 	 (A
p)�	(1H) ]p	(A) :

If A is positive de�nite and either 1 � p � 2 or �1 � p � 0; then the functional
Jp;A is positive, operator concave, operator superadditive, operator monotonic non-
decreasing in the order " �I " and we have the inequality

T [� (Ap)��(1H) ]p�(A)] � 	(Ap)�	(1H) ]p	(A)(3.6)

� t [� (Ap)��(1H) ]p�(A)] � 0

where 	; � 2 PI [B (H) ;B (K)], t; T > 0 with T > t and T� �I 	 �I t�.
Also, if 0 < m1H � A �M1H ; then by considering the functional

Dp;A (	) :=
mp(M	(1H)�	(A)) +Mp (	 (A)�m	(1H))

M �m(3.7)

�	(1H) ]p	(A)
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we have that Dp;A is positive, operator concave, operator superadditive, operator
monotonic nondecreasing in the order " �I " and we have the inequality

T

�
mp(M�(1H)��(A)) +Mp (� (A)�m�(1H))

M �m ��(1H) ]p�(A)
�

� mp(M	(1H)�	(A)) +Mp (	 (A)�m	(1H))
M �m �	(1H) ]p	(A)

� t
�
mp(M�(1H)��(A)) +Mp (� (A)�m�(1H))

M �m ��(1H) ]p�(A)
�

� 0;

where 	; � 2 PI [B (H) ;B (K)], t; T > 0 with T > t and T� �I 	 �I t�.
It is well known that the function f : (0;1)! R, f (t) = ln t is operator concave

on (0;1) : We consider the functional on PI [B (H) ;B (K)] de�ned by

Fln;A (	) = 	
1=2 (1H) ln

�
	�1=2 (1H)	 (A)	

�1=2 (1H)
�
	1=2 (1H)

where A is a positive de�nite operator on H:
Kamei and Fujii [8], [9] de�ned the relative operator entropy S (AjB) ; for positive

invertible operators A and B; by

(3.8) S (AjB) := A1=2
�
lnA

�1=2
BA

�1=2
�
A1=2;

which is a relative version of the operator entropy considered by Nakamura-Umegaki
[17].
If B � A and A is positive and invertible, then A

�1=2
BA

�1=2 � I and by the

continuous functional calculus we have ln
�
A
�1=2

BA
�1=2

�
� 0; which implies by

multiplying both sides with A1=2 that S (AjB) � 0:
For some recent results on relative operator entropy see [3]-[4], [10]-[11] and

[13]-[14].
Using the relative operator entropy notation, we have

Fln;A (	) = S (	 (1H) j	(A)) ;

where A is a positive de�nite operator on H and 	 2 PI [B (H) ;B (K)] :
By using the properties established in the previous section applied for the oper-

ator concave function f : (0;1) ! R, f (t) = ln t; we have that Fln;A is operator
concave and operator superadditive on PI [B (H) ;B (K)] : These properties may be
also derived from the corresponding properties of the relative operator entropy, see
for instance [18, p. 153].
Moreover, if 	 �I � then

(3.9) Fln;A (	)� Fln;A (�) � Fln;A (	��)

and, in addition, if 	(A) + � (1H) � �(A) + 	 (1H) then

(3.10) Fln;A (	) � Fln;A (�) :

The function f (t) = � ln t; t > 0 is operator convex. If we consider now the
functional

(3.11) J� ln;A (	) := S (	 (1H) j	(A))�	(ln (A)) ;
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then from the above section we can infer that J� ln;A is positive, operator concave,
operator superadditive, operator monotonic nondecreasing in the order " �I " and
we have the inequality

T (S (� (1H) j�(A))��(ln (A))) � S (	 (1H) j	(A))�	(ln (A))(3.12)

� t (S (� (1H) j�(A))��(ln (A))) � 0
provided that 	; � 2 PI [B (H) ;B (K)], t; T > 0 with T > t and T� �I 	 �I t�.
Consider also the functional

D� ln;A (	) := S (	 (1H) j	(A))(3.13)

� lnm(M	(1H)�	(A)) + lnM (	 (A)�m	(1H))
M �m

for 	 2 PI [B (H) ;B (K)] : Therefore, we have that D� ln;A is positive, operator
concave, operator superadditive, operator monotonic nondecreasing in the order
" �I " and we have the inequality

T

�
S (� (1H) j�(A))�

lnm(M�(1H)��(A)) + lnM (� (A)�m�(1H))
M �m

�
�S (	 (1H) j	(A))�

lnm(M	(1H)�	(A)) + lnM (	 (A)�m	(1H))
M �m

� t
�
S (� (1H) j�(A))�

lnm(M�(1H)��(A)) + lnM (� (A)�m�(1H))
M �m

�
� 0

provided that 	; � 2 PI [B (H) ;B (K)], t; T > 0 with T > t and T� �I 	 �I t�.
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