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OPERATOR QUASILINEARITY OF SOME FUNCTIONALS
ASSOCIATED TO DAVIS-CHOI-JENSEN’S INEQUALITY FOR
POSITIVE MAPS

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we establish some operator quasilinearity properties
of some functionals associated to Davis-Choi-Jensen’s inequality for positive
maps and operator convex (concave) functions. Applications for power func-
tion and logarithm are also provided.

1. INTRODUCTION

Let H be a complex Hilbert space and B (H), the Banach algebra of bounded
linear operators acting on H. We denote by By, (H) the semi-space of all selfadjoint
operators in B (H). We denote by BT (H) the convex cone of all positive operators
on H and by BT (H) the convex cone of all positive definite operators on H.

Let H, K be complex Hilbert spaces. Following [1] (see also [18, p. 18]) we can
introduce the following definition:

Definition 1. A map ® : B(H) — B(K) is linear if it is additive and homogeneous,
namely
D (ANA+ uB) =20 (A) + u® (B)

forany A, u € C and A, B € B(H). The linear map ® : B(H) — B(K) is positive
if it preserves the operator order, i.e. if A € BY (H) then ®(A) € BT (K). We
write & € P [B(H),B(K)]|. The linear map ® : B(H) — B(K) is normalised if it
preserves the identity operator, i.e. ® (1y) = 1x. We write ® € Py [B(H),B(K)].

We observe that a positive linear map ® preserves the order relation, namely

A < B implies ® (4) < ®(B)

and preserves the adjoint operation ® (A*) = ® (A)". If ® € Py [B(H),B(K)]
and OélH < A < ﬂlH, then Oth < (I)(A) < BlK

If the map ¥ : B(H) — B(K) is linear, positive and ¥ (1) € BT (K) then by
putting ® = U2 (1) WU ~1/2 (1) we get that & € Py [B(H),B(K)], namely
it is also normalised.

A real valued continuous function f on an interval [ is said to be operator convex
(concave) on I if

FA=NA+AB) < (2)(1=A) f(A)+Af(B)
for all A € [0, 1] and for every selfadjoint operators A, B € B (H) whose spectra are

contained in I.
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The following Jensen’s type result is well known [1]:

Theorem 1 (Davis-Choi-Jensen’s Inequality). Let f : I — R be an operator convex
function on the interval I and ® € Py [B(H),B(K)], then for any selfadjoint
operator A whose spectrum is contained in I we have

(1.1) f(@(A) <@ (f(4).
We observe that if U € B [B(H),B(K)] with ¥ (1) € Bt* (K), then by taking
O =0"12(1y) VT2 (1y) in (1.1) we get
£ (2 (L) 0 (A2 (1)) € 0 (1) 0 (A) B2 (1),

If we multiply both sides of this inequality by ¥'/? (15) we get the following Davis-
Choi-Jensen’s inequality for general positive linear maps:

(12) W2 () £ (W2 (1) W (A) UV (1) ) W2 (1) S W (f(A)).

We define by By [B(H),B(K)] the convex cone of all linear, positive maps ¥
with ¥ (1y) € Bt* (K), namely ¥ (1) is positive invertible operator in K and
define the functional F : P [B(H),B (K)] — B(K) by

Fpa () = 12 (L) £ (072 (1) W (A) 012 (1)) 012 (1),

where f : I — R is an operator convex (concave) function on the interval I and A
is a selfadjoint operator whose spectrum is contained in I.

In this paper we establish some operator quasilinearity properties of some func-
tionals associated to Davis-Choi-Jensen’s inequality (1.2) for positive maps and op-
erator convex (concave) functions. Applications for power function and logarithm
are also provided.

2. THE MAIN RESULTS

The following result holds:

Theorem 2. Let f : I — R be an operator convex (concave) function on the
interval I and A a selfadjoint operator whose spectrum is contained in I. If WUq,
Uy € B [B(H),B(K)], then

(2.1) Fpa(Vi+Ws) <(>)Fra(V1)+Fpa(Ps),
namely Fy 4 is operator subadditive (superadditive) on By [B(H),B(K)].

Proof. We give the proof for the case of operator convex functions. If ¥y, ¥, €
Br[B(H),B(K)] then ¥y + ¥y € P, [B(H),B(K)] and we have

(2.2) Fya (Vg +Uy) = (U +0y) 2 (15)
(01027 (1) (914 02) (A) (81 4 92) 2 (1))
(U + )2 (1)

»

where by ” -7 we understand above the usual operator multiplication.
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Observe that

(2.3) (U, +0,) "2 (1 ( 1) (U1 +0y) (A) (g +Ts) 2 (1)

= (U1 + W) 2 (1) (W1 (A) + U (A)) (W1 + )% (1)

= (U + Uy) "2 (1) Wy (A) (U1 + Ty) Y2 (1g)

(T 4+ To) 2 (1) Ty (A) (T + To) V2 (1)

= (U + W) (1) WY (1) (072 (L) 0 (4) 012 (1))

02 (1) (W + 02) 2 (1)
(0 W2) T () () (9577 (L) W (4) 952 (1))
w3 (1) (@1 + U2) 2 (1)
If we denote by
V=02 (1) (U 4 Ty) ™2 (1) and U := W22 (1) (T1 + U5) "2 (1)
then
V* = (T + U) 2 (1) U2 (1) and U* := (U + Ty) "2 (1) U2 (1)
Also, we have

VAV 4+ UU = (U + U,)~1/2

)2 (1) W (1) (U1 + T2) 2 (1)
+ (U1 + 0o) "2 (1) Wy (1) (U1 + W) ™2 (1)
= (W1 + U2) % (La) (W1 (Ln) + 2 (1)) (U1 + U2) /2 (1)
= (W1 + W) 2 (1) (1 + Bs) (1) (U1 + o) 7% (1) = 1
and (2.3) may be written as
(1 + W) 2 (1) (U1 + ) (A) (T + Ts) ™2 (1)
= v (7 () B () e () ) V
+ U (95 (L) W2 (4) 95 (L) ) U

and by taking f and using Hansen-Pedersen-Jensen’s inequality for operator convex
functions, we have

(24)  f (04 02) 7 (L) (31 + W) (A) (0 + W) 72 (1))
<V (0 () v ()9 (1) V
U (12 () W ()52 (1)) U
= (W + W) () 01 (L) £ (0 (L) W (A) 9 (1)
0 (L) (U1 + W)™ (1)
0+ 02) 2 (L) 0 (L) £ (057 (1) W () 052 (1))
0% (La) (U1 + W) (L)
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Finally, by multiplying both sides of (2.4) by (¥ + \1’2)1/2 (1g) we get
Fra (W1 +02) <017 (1) £ (9777 (1) 91 (A) 907 (1) ) 012 (1)

02 (1) £ (052 (L) Wa () 952 (1)) 98 (1)
=Fpa (W) +Fpa(¥s)
and the proof is concluded. (I

Corollary 1. Let f : I — R be an operator convexr (concave) function on the
interval I and A a selfadjoint operator whose spectrum is contained in I. If Uy,
Uy € Py [B(H),B(K)] and X € [0,1], then

(2.5)  Fra((l=A) U1+ AW2) <(2) (1= A)Fpa (V1) +AF 74 (V2),
namely ¥y 4 is operator convex (concave) on By [B(H),B(K)].

Proof. If Uy, ¥y € Py [B(H),B(K)] and A € [0,1], then (1 —X) Ty + AT, €
B [B(H),B(K)] and we have by (2.1) that

Fra((L=XW+A0s) < (Z)Fpa((l=A) 1)+ Fpa(A0s)
= (1=XN)Fpa(¥1)+AFpa(¥2)
since F 4 is positive homogeneous on P; [B (H), B (K)], namely
F;a(al)=aF;4(0)
for any o > 0 and U € PB; [B(H),B(K)]. O

For ¥y, Uy € P;[B(H),B(K)] we denote that Uy »; Uy if Uy — Uy €
B [B(H),B(K)]. This means that ¥y — ¥y is a linear positive functional and
Uy (1) — ¥y (1) € BT (K).

Corollary 2. Let f : I — [0,00) be an operator concave function on the interval
I and A a selfadjoint operator whose spectrum is contained in I. If Uy, Wy €
‘B] [B (H) ,B(K)] with Yo =1 Uy then

(2.6) Fra(W2)>Fpa(¥s),
namely Fy 4 is operator monotonic nondecreasing in the order” =17 of Br [B(H), B (K)].
Proof. Let U1, Uy € Py [B(H),B(K)] with ¥y >; Uy, then by (2.1) we have
Fra(Va)=Fpa(U1+Vo— V1) >Fpa(V1)+Fpa(Po—"y)
implying that
Fra(W2) —Fpa(V) 2 Fpa(¥y—T1).
Since f is positive and o1 = Uy — Uy € Py [B(H),B(K)] with ¥o;(1gy) =
Uy (1) — ¥y (1) € BT (K) it follows that
7 (W2’ (L) o () 0312 (1)) 2 0

and by multiplying both sides by \11;/12 (1m) we get that Fy 4 (¥ — ¥q1) > 0 and
the inequality (2.6) is proved. O

‘We have
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Corollary 3. Let f : I — [0,00) be an operator concave function on the in-
terval I and A a selfadjoint operator whose spectrum is contained in I. If W,
YeP,;[BH),BK),t, T>0withT >t and TY =1 U > tT then

(2.7) TF;a(Y)>Fpa(¥)>tFra(Y).
The proof follows by (2.6) on taking first U5 = TY, ¥y = ¥ and then Uy = U,

¥, =tT and by the positive homogeneity of Fy 4.
We consider now the functional J¢ 4 : B [B(H), B (K)] — B (K) defined by

(2.8)  Jpa(¥)
=V (f(A) - Fra(¥)
=W (F(A) = 2 (1) (W2 (L) W (A) W (1) ) W (1)
We can state the following result:

Theorem 3. Let f : I — R be an operator convex (concave) function on the interval
I and A a selfadjoint operator whose spectrum is contained in I. Then the functional
Jy 4 is positive (negative) on Py [B(H),B(K)], it is positive homogeneous and
concave (convex) on Pr [B(H),B(K)]. Jf.a is also superadditive (subadditive) on
B1[B(H),B(K)].

Proof. We consider only the operator convex case. The positivity of Jf 4 on
Br [B(H),B(K)] is equivalent to Davis-Choi-Jensen’s inequality for general posi-
tive linear maps (1.2). The positive homogeneity follows by the same property of
F; 4 and the definition of Jy 4.

Wy, Uy e P, [B(H),B(K)] and X € [0,1], then by Corollary 1 we have

Jra((1—=X) ¥ 4+ ATy)

= (1 =) U1 +AT2) (f (4) —Fra((1—A) U1+ ATy)

(L= U1 (f(A) + AU (f(A)) = (L= A)Fpa (V1) — AF 4 (T2)
=1 =X [P (f(A) = Fpa ()] + [T (f(A) —Fypa (V)]
(L=A)Jpa(P1) + Mg a(¥2)

that proves the operator concavity of Js 4.
The operator superadditivity follows in a similar way and we omit the details. [

Y

Corollary 4. Let f : I — R be an operator convex function on the interval
I and A a selfadjoint operator whose spectrum is contained in I. If U, YT €
PBrBH),B(K),t, T>0withT >t and TY >; ¥ =1 tY then

(2.9) TIpa(Y) =2 Jdpa (V) =tIpa(Y)
or, equivalently,
(2.10) T(Y(f(A) =Fra(X) =¥ (f(A) - Fra(¥)

>t (T (f(A) = Ffa(T)) =0

The inequality (2.10) has been obtained in [5] in an equivalent form for operator
concave function f and normalised functionals ¥ and Y.

Now, assume that A a selfadjoint operator whose spectrum is contained in [m, M]
for some real constants M > m. If f is convex, then for any ¢ € [m, M] we have

(M —t)f (m) + (t —m) f (M)
(2.11) f(b) < T .
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If A a selfadjoint operator whose spectrum is contained in [m, M|, then mly <
A < M1y and by taking the map ¥ we get mVU (1) < ¥ (A) < MY (1y) for
U e P [B(H),B(K)]. This is equivalent to

mlg <O Y2 (1)U (A) T2 (1) < Mlk.
By using the continuous functional calculus, we have by (2.11) that

F (02 (1) w () w2 (1))

[ (m) (M 1ic =02 (1) W (4) 02 (1)

<
~—M-m

1
M—-m

b [0 (572 () w () 9 (1) - ).

By multiplying this inequality both sides with ¥'/? (1) we get the inequality
(2.12) Fra(W) <Tjpa(¥),

where

f(m) (MY (1) — W (A)) + (M) (V(A) —m¥ (1x))
M—-m

TfyA (\If) =

is a trapezoidal type functional. We observe that Ty 4 is additive and positive
homogeneous on Py [B(H), B (K)].
We define the functional Dy 4 : By [B(H), B (K)] — B(K)
(213) Df7A (\If) = Tf7A (\I’) 7Ff7A (\If)
_ S m) (MY (1) — W (A) + f (M) (¥ (A) —m¥ (1))
M —m
2 (1) f (\11*1/2 (1)  (A) U1/ (1H)) T2 (1),

We observe that if f is convex (concave) on [m, M] and mly < A < M1y, then
Dj 4 (V) > (<)0 for any ¥ € B; [B(H),B(K)].
‘We have:

Theorem 4. Let f : I — R be an operator convex (concave) function on the
interval [m, M| and A a selfadjoint operator whose spectrum is contained in [m, M].
Then the functional Dy 4 is positive (negative) on By [B(H),B (K)], it is positive
homogeneous and operator concave (convex) on P [B(H),B(K)|. Df.a is also
operator superadditive (subadditive) on Py [B(H),B(K)].

The proof is similar to the one from Theorem 3 and we omit the details.

Corollary 5. Let f : I — R be an operator convex function on the interval
I and A a selfadjoint operator whose spectrum is contained in I. If ¥, T €
PBrBH),B(K),t, T>0withT >t and TY »=; ¥ =1 tY then

(2.14) TDfaA(Y)>Dysa(¥) >tDya(Y)
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or, equivalently,

o5 T [f(m) (MY (1) — T(A])V)[—ti;(M) (T (A) —mY (1g)) Fia (T)}
L m) (MW (1) @ (A])\}—t];n(M) (@A) =m¥ (1) g g
- {f(m) (MY (1) — T(AZQ—E m(M) (T(A) —mTY (1g)) F/a (T)}
> 0.

3. EXAMPLES FOR POWER FUNCTION AND LOGARITHM

It is well known that the function f, : [0,00) — [0,00), f, (x) = & for v €
(0,1) is operator concave and positive on [0,00). We consider the functional on
1 [B(H),B(K)| defined by

Fyoa (0) = W2 (1) (0712 (1) W (4) 0712 (1)) 012 (1)

where A is a positive operator on H.
Assume that C, B are positive invertible operators on a complex Hilbert space
(H,(-,-)). We use the following notations for operators [12]

CV,B:=(1-v)C+vB,
the weighted operator arithmetic mean and

Ct,B = CV2 (C712Bo2) 2,

the weighted operator geometric mean, where v € [0,1]. When v = % we write

CV B and CH#B for brevity, respectively.
The definition C', B can be extended accordingly for any real number v.
Using this notation, we observe that

(3.1) Foa(0)=V(1x)5 P (4).
In particular, for v = % we have
Fy 4 (0) = 0 (1) 40 (4).

Using the results from the previous section for the operator concave function f,
we have that F, 4 is positive, operator concave, operator superadditive, operator
monotonic nondecreasing in the order ” >; ” and we have the inequality

(3.2) TY (L) £, (A) 2 0 (1) £, % (A) > #T (1) £, (4),

where O, T € B, [B(H),B(K)],t, T >0 with T >tand TY »=; ¥ = tYT.

We notice that the operator concavity, superadditivity and monotonicity may
be also derived from the corresponding properties of weighted operator geometric
mean, see [18, p. 146].

If we consider the functional

(3.3) Joa(0):=T(A") - T (1g)t, P (A),

then J, 4 is negative, operator convex and operator subadditive on By [B(H) , B (K)].
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Also, if 0 < mly < A< M1y, then we can consider the functional

MY (1g) =V (A) + MY (T (A) —m¥ (1))
M—-—m

(34) D, (T):= m{
-V (1lg) 8 ¥ (A4)

and from the above section we conclude that D, 4 is negative, operator convex and
operator subadditive on Py [B(H), B (K)].

Now, consider the function ®, (¢) = t? that is operator convex on (0, co) if either
1<p<2or—1<p<0. We consider the functional on By [B (H), B (K)] defined
by

Fpa(¥) = W2 (1) (W72 (1) W (A) 012 (1)) 012 (1)
U (1) 5,0 (4),

where A is a positive definite operator on H.
In particular, we have

Foa () = W2 (1) (072 (1) 0 (A) 0 (1)) 02 (1)
— WA T (1) T (A)
and
Foa(W) = W21 (9712 (1) w (4) w2 (1H))71 W2 (1)
= V(lg) ¥ (A) T (1g).

From the above section we can infer that F, 4 is positive, operator conver and
subadditive on Py [B(H),B(K)].
For Wy, ¥y € P; [B(H), B (K)] we have by the properties of F, 4 that the scalar
valued function
Ppa () = [[Fpa (V)| = [V (1a) 8P (A
is subadditive and positive homogeneous on Py [B(H), B (K)].
Consider the functional

(3.5) Jpa (V) := W (A7) =V (1g) ¥ (A).

If A is positive definite and either 1 < p < 2 or —1 < p < 0, then the functional
Jp.a is positive, operator concave, operator superadditive, operator monotonic non-
decreasing in the order ” ;7 and we have the inequality

(3.6) TY(AP) =T (1) 8T (A)] > V(A7) =¥ (1x) 8, ¥ (A)
>t[T(A") =Y (1u) Y (A)] >0
where O, T € B, [B(H),B(K)], t, T >0 with T >tand TY »=; ¥ >~ tYT.
Also, if 0 < mly < A < M1y, then by considering the functional

mP(MY (1) — ¥ (A)) + MP (U (A) —mP (1g))

(37) Dl),A (\I’) = M —m

-V (1g) ¥ (A)




OPERATOR QUASILINEARITY OF SOME FUNCTIONALS 9

we have that D, 4 is positive, operator concave, operator superadditive, operator
monotonic nondecreasing in the order 7 >; ” and we have the inequality

p | ) =T S O =m0 -y aat ()
L MM (1) =W <A])\>4+ MP (W (A) —m¥ (1n)) (1) #pV (A)
- {mP(MT (1g) =7 (A;\)Itﬂnip (T(4) -mTAn)) (1g) 8, (A)}
>0,

where ¥, T € B, [B(H),B(K)], t, T >0 with T >tand TYT >=; ¥ > t7T.
It is well known that the function f : (0,00) — R, f (¢t) = Int is operator concave
on (0,00) . We consider the functional on PB; [B(H), B (K)] defined by

Fioa (8) = 02 (1) In (€712 (1) W () 02 (1)) 012 (1)

where A is a positive definite operator on H.
Kamei and Fujii [8], [9] defined the relative operator entropy S (A|B), for positive
invertible operators A and B, by

(3.8) S(A|B) = A2 (ma paT ) 412,

which is a relative version of the operator entropy considered by Nakamura-Umegaki
[17].

If B > A and A is positive and invertible, then AP BaAT? > I and by the
continuous functional calculus we have In (Ail/zBA 1/2> > 0, which implies by
multiplying both sides with A'/2 that S (A|B) > 0.

For some recent results on relative operator entropy see [3]-[4], [10]-[11] and
[13]-[14].

Using the relative operator entropy notation, we have

Fin,a (V) =S¥ (1) |¥(A)),

where A is a positive definite operator on H and ¥ € By [B(H),B(K)].

By using the properties established in the previous section applied for the oper-
ator concave function f : (0,00) — R, f(¢) = Int, we have that Fi, 4 is operator
concave and operator superadditive on Py [B (H) , B (K)]. These properties may be
also derived from the corresponding properties of the relative operator entropy, see
for instance [18, p. 153].

Moreover, if ¥ »; T then

(3.9) Fina (V) —Fipa(T) >Fipa (T -T)
and, in addition, if ¥ (A)+ Y (1g) > T (A) + ¥ (1x) then
(3.10) Fina (\I’) > Fina (T) .

The function f(¢t) = —Int, ¢ > 0 is operator convex. If we consider now the
functional

(3.11) I (0) = S (U (1) [ (4)) — W (In (4)),
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then from the above section we can infer that J_, 4 is positive, operator concave,
operator superadditive, operator monotonic nondecreasing in the order ” =; 7 and
we have the inequality
(3.12) T(S(Y(1m) [T (A)) =T (In(A4))) = S (¥ (1g) ¥ (A)) — ¥ (In(A4))
>t (S(Y (1) [T (A)) —T(In(A)) =0
provided that ¥, T € B, [B(H),B(K)], t, T >0 with T >t and TYT >; U > ¢tT.
Consider also the functional
(3.13) D_ina (¥):=S5(¥(1g)|¥(A4))
B Inm(MUY (1) — ¥ (A) +In M (¥ (A) —m¥ (1))
M—-m
for ¥ € P [B(H),B(K)]. Therefore, we have that D_, 4 is positive, operator

concave, operator superadditive, operator monotonic mnondecreasing in the order
” 17" and we have the inequality

_ Inm(MY (1) = Y (A) + In M (Y (A) = mY (h;))}

T [S (T (L) T (A))

M—-—m
>S5 (U (1) [ (4)) — Inm(MV (1) - ¥ (A])\Z[—EI;;M (U (A) —m¥ (15))
2 4[5 1) - PO () D MO )~ ()

>0
provided that ¥, T € By [B(H),B(K)],t, T >0withT >t and TYT >; ¥ > ¢Y.
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