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SEVERAL REFINEMENTS OF POWER SERIES INEQUALITIES
AND APPLICATIONS

LOREDANA CIURDARIU

ABSTRACT. The aim of this paper is to present some applications of several
new Young-type inequalities given by Alzer, H., Fonseca, C. M. and Kovacec,
A. for power series using a method given in a paper of Ibrahim, A., Dragomir
S. S., and Darus M. Also some applications to special functions are given.

1. Introduction

The famous Young’s inequality, as a classical result, state that:
a’b*" < va+ (1 —v)b,

when a and b are positive numbers, a # b and v € (0,1).

There are many interesting generalizations of this well-known inequality and its
reverse, see for example [6, 7, 1] and references therein.

As in [1], we consider A, (a,b) = va + (1 —v)b, and G, (a,b) = a”b*7".

More recently, in [1] are given new results which extend many generalizations of
Young’s inequality given before. This result is a refinement of the left-hand side of
a refinement of the inequality of Young proved in 2010 and 2011 by Kittaneh and
Manasrah, [6], [7].

We recall the results in order to use them in the next section.

The following inequality will be a very important tool in the demonstration of
our next theorems where are given some improvements of inequalities given in [5],
using the method given in [5].

Theorem 1. Let A\, v and 7 be real numbers with A > 1 and 0 < v <7 < 1. Then
(z)A _ A(@h) =Gy, (1-v\
T A-(a,b)* — G-(a,b)? 1-7) "7

for all positive and distinct real numbers a and b. Moreover, both bounds are sharp.

We consider as in [5], an analytic function defined by the power series
oo
f(z) = Z anz"
n=0
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with real coefficients and convergent on the unit disk D(0, R), R > 0. Let fa(z) is
a new power series defined by Y0 |a|,2™ where a, = |a,|sgn(a,) where sgn(z)
is the real signum function as in [5]. The power series f4(z) has the same radius of

convergence as the original power series f(z).

2. The Young-type inequalities for power series

If we take in Theorem 1, A =n € N*, v = 1 7 = p%’ a? instead of a and b

instead of b then we obtain the following inequality:

pl)n n ( n ) 1 plg(n—1) [ .
— ——aPb —art ba <
B 150
. n 1 l n—I nin
<Z< ) )plqn_lapbq( ) —ad"" <
=0

(B[S (1) s -]
q e P14y
Where%—l—%:landp%—&—q%:l.

Next inequalities, Theorem 2, Theorem 3, Theorem 4, Theorem 5, Theorem 6
and Theorem 7 from below are new variants of Theorem 1, Theorem 2, and Theorem
3 from [5] when n € N. Then some applications to special functions are given in
Corollary 3 and Corollary 4.

Theorem 2. Let f(z) = >0 pn2z™ and g(z) = Y07 1 qnz" be two power series
with real coefficients and convergent on the open disk D(0,R), R > 0. Ifa, b€ C,
a, b # 0 so that |a|P™, |a|?, |b|P™, |b|7" € D(0,R) and if p, q, p1, q1 are like in
previous inequality and in addition 1 < p1 < p then we have:

p n n n 1 . o
() [Z( l )plqn_lfA(ambw( D)g.(|a| "~ pl?)~
141

P75
P 9 a P
—fa(lal?r"[b]7")ga(lal =" B 71")] <

" n 1 n— n— n|n|n n|n|n
<3 (1) g alaP D haa(alt™ 1o  falal o aa(al" ") <
=0

n

a\" n 1 e n
(L) (1) sl gl e -

q 1=0 141
2oL TIPS
—fa(lalP 7o) ga(lal =" [b[717)].
Proof. We start the proof taking into account that the hypothesis |a|P™, |a|?", |b[P™, |b|?" €
D(0, R) implies the following inclusions |a[P![b|9*=D . |a|2=D [b|PL, |a|71 " [b|7", |a|”|b|" €
D(0, R), I = 0,n by calculus.
We use the same method as in [5]. Thus we choose a = |a|? |b|*, b = |a|*[b)7, 7, k €

{0,1,2,...,n} in previous inequality and we have:

n n
p1 n 1 - |a|jpl|b‘kpl|a|kq(n_l)|b|jq<n_l) - ‘a|jﬁn|b|kﬁn|a|k%n|bv%n <
p 2 (1 iy

=0 10




n
<Z( ) Spamalal a0 afi e <
=

q1 "I n 1 i ne o(m— oy ko Ln
<(%) [Z( ) S la a0 — a5

q
=0 141
We multiply last inequality by positive quantities |p;||gx| and then summing over
j and k from 0 to m we obtain:

P "o n e .
(2) (7)) o S ol “Zm a0

p 1=0 LS —

m

kLn, (kZLn
- Sl A7 3 oo o) <
n n 1
<> (] ) S a3 gl
=0

rq =0 k=0

- Z [pjllal™ [P Z |ax||a]*" b*" <
q1 " - n— n—
<<> [ ( ) = Z |a|JPl|b‘JQ( Z)Z|qk”b|kpl|a‘kq( h_
=0 1

q Z 1 j=o k=0

Y o
—leyllalf B Y el a7,
k=0

Taking above the hmlt when m — oo we get the desired inequality, because all the
series whose partial sums are involved are convergenton the disk D(0, R).

Theorem 3. Let f(z) = Y07 pn2z™ and g(z) = Y07 o qnz" be two power series
with real coefficients and convergent on the open disk D(0,R), R > 0. Ifa, b€ C,
a, b # 0 so that |aP™, |a|?, [bP™, |2 € D(0,R). If p, q, p1, q1 be like in
previous inequality and in addition 1 < py < p. Let also f(z) = Y oo pnz" and
g(z) = Y07 o qnz™ be two power series with real coefficients and convergent on the
open disk D(0,R), R > 0. If a, b € C, a, b # 0 so that € D(0,R). Then the
following inequality takes place:

pl)n[ - ( n > 1 f plyp|p(n—1) q(n—1)|p|q!
— —— fa(|al”"|b] )g4(lal 16]7")—
<p ; L) phat™!

—fa(lal>r" b7 ") g a(la

< ( l )plqnlfA(la”llblp( D)9.(1al7™ DB~ fa(la[" b D)g (lal" B0 D) <
0

1=
T n n n 1 . o
<() [Z( : )meambw( D)ga(lal =D b —
141

q =0

el )] <

—fallal7" b= ") ga(lal =" [b[")].
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Proof. We use the hypothesis |a|P", |a]?™, |bP™, |b]?™ € D(0, R) which implies the
following inclusions |a|P![b[P("=D, |a|2(n=D|b|a!, |a|71"[b|3", |a|7™||71", |a|"|b|" P~ D,
la|™|b|*@=Y) € D(0, R), I = 0,n by calculus.

Now we choose a = % and b = % and use the same method like in Theorem

Theorem 4. Let f(z) = >0 pn2z™ and g(z) = Y07 1 qnz" be two power series
with real coefficients and convergent on the open disk D(0,R), R > 0. Ifa, b€ C,
a, b#0 so that |aP™, |al?™, |b|P™, |b|7" € D(0, R). Let also p, q, p1, q1 be like in
previous inequality and in addition 1 < p1 < p. Then the following inequality takes

place: .
() &

=0

n 1 e n—
() s a7 D)o~
141

— fa(la] bl ™) g a(|al T b7 <

- n 1 _ _ nla— _
< ( l )plqnlfAWW(" D)g.(al7 DB~ £ (|a|" @ DB P=D) g4 (a]"[bl") <
=0

n n
Q1 n 1 e e
<(B) () s alal ot gadan- o)~
q 1=0 plql

—fa(lalPr" b7 ")ga(Jal 2" [b]7r")].
Proof. We use the hypothesis |a|P", |a|?™, |bP™, |b\q” € D(O R) which implies the
following inclusions |a|2! |b|P("=0 |a|2?(=V|p|PL, |a|7r"[b|a", |a|a"[b|7i ", |a|™a=D) |p|me—1),
la|™b]™ € D(0,R), I =0,n by calculus

In this case we take a = ‘Izllj and b =
2.1

Theorem 5. Let f(z),9(z) and p, q, p1, q1 be as in Theorem 2, a,b € C with
a # b, |a|®, |bP", |a|%p”, \b|%q" and in addition 1 < py < p. Then one has the
inequality:

pl)n [ - < n > 1 f q(n—=1)3,pl 2plip2q(n—1)
— ——=fallal 1b["")ga(lala™[b] )—
(p ; L) phap™

— Fa(al T B 7" ga (ol TP ] F )] <

= n 1 e 20000120 (n_ nin 2,002,
= < l )plq”lfA(|aq( 16" galal s b2 1) = fa(la]"[b]")ga(lal " [b] ") <
0

=
(ql> Z( ) F ——=7 Fallal® Db )g (a7 b 29—
15

1

2

Ln L2 2P p 2.4,
_fA(|a|‘11 |b|P1 )gA(|a|qP1 |b|pq1 )]
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Proof. First we check that the corresponding products of |a| and |b| are in D(0, R)
using hypothesis and then by choosing a = \a|%k|b|j and b = |a|j|b\%k and using
the same method as in [5] we will obtain the desired inequality.

Theorem 6. Let f(2),9(z) and p, q, p1, q1 be as in Theorem 2, a, b € C with
a#b, [al®, |a>?™, [bP", [b]27™ € D(0,R) and in addition 1 < py < p. Then one
has the inequality:

P\ o n 1 . 20(n—1)1y2
() E( ! )quamw( D)ga(lalBem Db P) -
141

p =0

— Fa(lal 7" || T ™) ga (el 7" [b| P ™)) <
n

n 1 n— 2g(n— 2 n(qg— n(p— 2ni112n
- ( l )plqwa(la‘”Iblp(’ D)galal» 2™V b[ )= fallal™ @D b =) ga(|al 7" o] ") <
=0

o\ — n 1 e 2 (p— 2
< () 0 (7 ) s ala eyt Dhgatial e lni) -

77 1= 141
—Fa(al 7" BT ) g (alF T B F ).

Proof. We also check the corresponding products of |a| and |b| are in D(0, R) using
2 2

2 2
hypothesis. This time we replace a by bl and b by la |p in order to obtain the

|
b7 lald
inequality of the theorem. |

Theorem 7. Let f(2),9(z) and p, q, p1, q1 be as in Theorem 2, a, b€ C, a # b
and in addition 1 < p; < p. Then the following inequality takes place:

) = n 1 2 (1 1a(n—1) 2(n—1) ppl
L) ( ) (a2 B[ g (a2 D b=
(p) ; ! pllql !

20 4y 202y
—fa(la[P" (bl ") ga(lal =" [b[7r7)] <

" n 1 n— n— 2ni11n 2ni1n
= ( ! )plqnlfA(|a2l|b|q( Nga(lal?=D o) = fallal»"[b]")ga(lal =" b]") <
=0

1\ o n 1 _ e
< () [Z( l )plqmmmlﬂbw D)ga (a0 b~
171

a 1=0
2.4, 2, P,
—fa(la[?r7" (b7 ™)ga(lal= (b7 7)),
if |a|®™, b2, |b|P™ € D(0, R).
Proof. Tt is easily to check that the corresponding products of |a| and |b| are in

D(0, R) using hypothesis. Then we choose a = |a|%j\b|k and b = |a\%k|b|j and
repeat the same method as above. i
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Corollary 1. Let f(2), g(z), a, b and p, q, p1, q1 be as in Theorem 2,1 <p; <p
and in addition, we take n =1 in the same Theorem 2. Then we obtain:

) {1fA(|b|q)gA(|aq>+ L fatla)ga(bl?) —fA(Iap”le)gA(ambm)] )
poin P

< éfA(lb\q)gA(\alq) + %fA(Ia\p)gA(Iblp) — fa(labl)ga(lab]) <

< D | Famaa(al®) + - Fa(laPhaaC?) = Fallal¥ 07 haa(alE i)
q Lq1 b1

Corollary 2. (a) If we take f(z) = g(z) in previous inequality, in Corollary 1,
then we obtain:

Dy {1fA(|b|q)fA(|a|q) + ifA(|a\p)fA<|b|p) . fA(|a|:1|b|“ql)fA(|a|:1|b;fl)] ;
P la b1
< FalHDLallal + Falla) fa(7) = F (Jab) <

<& [1fA(|b|q)fA(|a|q) + ifA(|CL|”)J“A(|b‘p) _ fA(|a|’f)1|b|;1)fA(|a|qql|b|p’1):| |
¢ L b1

(b) We can also state the following form of the left side of the inequality from
Theorem 2, a form where appears the functions f(z) and g(z).

£ (a"0")g(a"b")] <

p n - n 1 1 n— n—
<=l ( z )(p—ll) Fa(lal?'[b|7 D) g (laj =0 b+
=0 1

qn—l P1q
p " D q q p
1 P a a P
(B) a7l a0 ),
(¢) The inequality from Theorem 2 can be also rewritten like below:

n n n n p " £ € L Loy
Fallal™ B ga(la" bl") — (p) Fallal®= B E™) galal E7 B E™) <

<[1—<“>”1Z(?)( : —1_1)fA<|a|Plb|q<”-l>>gA<|a|q<"-“|b|Pl>.

L n—l1 l
P Pt phgy

Corollary 3. (a) If we consider the function f(z) = sin(z) = > " é;_?:ﬁﬁ"“, z €

C then fa(z) = sinh(z), z € C and under condition from Corollary 2 (a), inequality
becomes:

1 1 Da a e
% [q sinh(|b]|?) sinh(|a|?) + o sinh(|a|P) sinh(|b|”) — sinh(|a|?1 |b] 1) sinh(|a| e |b| 71 )] <
1 1

1 1
< p sinh(|b]9) sinh(|a|?) + Z;sinh(|a|p) sinh(|b|?) — sinh?(|ab]) <

1 1 L a4 9 P
<& { sinh(|b]?) sinh(|a|?) + — sinh(|a|?) sinh(|b|P) — sinh(|a|?1 [b] 71 ) sinh(|a| 7 |b| 71 )} .
q a1 b1
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(b) If f(z) = exp(z) = ZZOZO %z" = fa(z), z € C then under conditions from
Corollary 2 (a) the inequality will be the following:
1 1 P» o a 4 P
% [ql exp([b]? + |al?) + o exp(|al?’ + [b]”) — exp(|a|?r [b|or + |a| |b]#r )} <

1 1
< 5eXp(|b\q + lal) + ];exp(lalp +[bl7) — exp?(Jabl) <

1 1 P4 .. 2
< i;{qlexpubw-+|aw>+—plexpuav>+wbw>-—exp0avlu4ﬂ +¢al“'“plﬂ'

(c) If f(z) = =5 = fa(2), z € D(0,1) and a, b are complex numbers as in
Theorem 2, then we have:

plll 1 1 11 1 1 1 ]

- N _’_7 —
plenl—[pl2l—al?  pr1—[pP1—alP 1 _|q7T|b|71 1 — |a|5t|b|7t

_1o L1 1 1 2<
gl—1[pl91—lal?  pl—[bjP1—]al 1 — |abl

q |1 1 1 1 1 1 1 1
e T = =i bl SplE
q1— bl la[? " p11—[b] lalP 1 —|a|#r|p|a 1 — |a|ar || e

q

Corollary 4. If Li,(z) is the polylogarithm function, that is Lin(z) = Y poy Z—Z
then we have
1 1 p o a a4 P
L) D l") + =i fl? i (1) = il 1) i 1l 1617 | <
1 1

1 1
< 6Lin(|b|q)Lin(‘a|q) + ];Lin(lal”)Lin(\blp) — Lig,(|ab]) <

1 1 P a4 a P
<§[muaw%uaww+muawmuaw%—Mawmwﬂnnmﬂwwﬂ

for any a,b € C, a, b # 0 under conditions of Corollary 2 (a) when D(0,R) is
D(0,1).
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