
µCEBY�EV�S TYPE INEQUALITIES FOR POSITIVE LINEAR
MAPS OF SELFADJOINT OPERATORS IN HILBERT SPACES

S. S. DRAGOMIR1;2

Abstract. Some inequalities for positive linear maps of continuous synchro-
nous (asynchronous) functions of selfadjoint linear operators in Hilbert spaces,
under suitable assumptions for the involved operators, are given. Applications
for power function and logarithm are provided as well.

1. Introduction

We say that the functions f; g : [a; b] �! R are synchronous (asynchronous) on
the interval [a; b] if they satisfy the following condition:

(f (t)� f (s)) (g (t)� g (s)) � (�) 0 for each t; s 2 [a; b] :

It is obvious that, if f; g are monotonic and have the same monotonicity on
the interval [a; b] ; then they are synchronous on [a; b] while if they have opposite
monotonicity, they are asynchronous.
In 1882-1883, µCeby�ev [3] and [4] proved that if the n-tuples a =(a1; :::; an) and

b =(b1; :::; bn) are monotonic in the same (opposite) sense, then

(1.1)
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nX
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pibi � (�) 0;

where p =(p1; :::; pn) are positive weights.
In the special case p = a � 0, it appears that the inequality (1.1) has been

obtained by Laplace long before µCeby�ev (see for example [19, p. 240]).
The inequality (1.1) was mentioned by Hardy, Littlewood and Pólya in their

book [17] in 1934 in the more general setting of synchronous sequences, i.e., if a; b
are synchronous (asynchronous), this means that

(1.2) (ai � aj) (bi � bj) � (�) 0 for any i; j 2 f1; : : : ; ng ;

then (1.1) holds true as well.
For other recent results on the µCeby�ev inequality in either discrete or integral

form see [2], [6], [7], [8], [9], [10], [19], [21], [22], [26], [27], [28], and the references
therein.
The following result provides an inequality of µCeby�ev type for functions of

selfadjoint operators [14] (see also [13, p. 73] or [15, p. 73]):
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Theorem 1. Let A be a selfadjoint operator with Sp (A) � [m;M ] for some real
numbers m < M: If f; g : [m;M ] �! R are continuous and synchronous (asyn-
chronous) on [m;M ] ; then

(1.3) hf (A) g (A)x; xi � (�) hf (A)x; xi hg (A)x; xi

for any x 2 H with kxk = 1:

Assume that A is a positive operator on the Hilbert space H and p; q > 0: Then
for each x 2 H with kxk = 1 we have by (1.3) the inequality

(1.4)


Ap+qx; x

�
� hApx; xi hAqx; xi :

If A is positive de�nite then the inequality (1.4) also holds for p; q < 0: If A is
positive de�nite and either p > 0; q < 0 or p < 0; q > 0, then the reverse inequality
holds in (1.4).
Assume that A is positive de�nite and p > 0: Then by (1.3) we have

(1.5) hAp logAx; xi � hApx; xi hlogAx; xi

for each x 2 H with kxk = 1: If p < 0 then the reverse inequality holds in (1.5).
The following result that is related to the µCeby�ev inequality also holds [14] (see

also [13, p. 73] or [15, p. 73]):

Theorem 2. Let A be a selfadjoint operator with Sp (A) � [m;M ] for some real
numbers m < M:
If f; g : [m;M ] �! R are continuous and synchronous on [m;M ] ; then

hf (A) g (A)x; xi � hf (A)x; xi hg (A)x; xi(1.6)

� [hf (A)x; xi � f (hAx; xi)] [g (hAx; xi)� hg (A)x; xi]

for any x 2 H with kxk = 1:
If f; g are asynchronous, then

hf (A)x; xi hg (A)x; xi � hf (A) g (A)x; xi(1.7)

� [hf (A)x; xi � f (hAx; xi)] [hg (A)x; xi � g (hAx; xi)]

for any x 2 H with kxk = 1:

Let A be a selfadjoint operator with Sp (A) � [m;M ] for some real numbers
m < M: If f; g : [m;M ] �! R are continuous, synchronous and one is convex while
the other is concave on [m;M ] ; then by Jensen�s inequality for convex (concave)
functions and by (1.6) we have

hf (A) g (A)x; xi � hf (A)x; xi hg (A)x; xi(1.8)

� [hf (A)x; xi � f (hAx; xi)] [g (hAx; xi)� hg (A)x; xi] � 0

for any x 2 H with kxk = 1:
If f; g are asynchronous and either both of them are convex or both of them

concave on [m;M ], then

hf (A)x; xi hg (A)x; xi � hf (A) g (A)x; xi(1.9)

� [hf (A)x; xi � f (hAx; xi)] [hg (A)x; xi � g (hAx; xi)] � 0

for any x 2 H with kxk = 1:
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Assume that A is a positive operator on the Hilbert space H: If p 2 (0; 1) and
q 2 (1;1) ; then for each x 2 H with kxk = 1 we have the inequality


Ap+qx; x
�
� hApx; xi hAqx; xi(1.10)

� [hAqx; xi � hAx; xiq] [hAx; xip � hApx; xi] � 0:
If A is positive de�nite and p > 1; q < 0; then

hApx; xi hAqx; xi �


Ap+qx; x

�
(1.11)

� [hAqx; xi � hAx; xiq] [hApx; xi � hAx; xip] � 0
for each x 2 H with kxk = 1:

Assume that A is positive de�nite and p > 1: Then also

hAp logAx; xi � hApx; xi hlogAx; xi(1.12)

� [hApx; xi � hAx; xip] [log hAx; xi � hlogAx; xi] � 0
for each x 2 H with kxk = 1:
Let H be a complex Hilbert space and B (H) ; the Banach algebra of bounded

linear operators acting on H: We denote by B+ (H) the convex cone of all positive
operators on H and by B++ (H) the convex cone of all positive de�nite operators
on H:
Let H, K be complex Hilbert spaces. Following [5] (see also [30, p. 18]) we can

introduce the following de�nition:

De�nition 1. A map � : B (H)! B (K) is linear if it is additive and homogeneous,
namely

� (�A+ �B) = �� (A) + �� (B)

for any �; � 2 C and A; B 2 B (H) : The linear map � : B (H)! B (K) is positive
if it preserves the operator order, i.e. if A 2 B+ (H) then � (A) 2 B+ (K) : We
write � 2 P [B (H) ;B (K)] : The linear map � : B (H)! B (K) is normalised if it
preserves the identity operator, i.e. � (1H) = 1K :We write � 2 PN [B (H) ;B (K)] :

We observe that a positive linear map � preserves the order relation, namely

A � B implies � (A) � � (B)
and preserves the adjoint operation � (A�) = � (A)

�
: If � 2 PN [B (H) ;B (K)]

and �1H � A � �1H ; then �1K � � (A) � �1K :
If the map 	 : B (H)! B (K) is linear, positive and 	(1H) 2 B++ (K) then by

putting � = 	�1=2 (1H)		�1=2 (1H) we get that � 2 PN [B (H) ;B (K)] ; namely
it is also normalised.
In the recent paper [25] the following results of µCeby�ev type have been obtained:

Theorem 3. Let f; g : [m;M ] �! R be continuous and synchronous (asynchro-
nous) on [m;M ] : If A and B are selfadjoint operators with spectra contained in
[m;M ] and � 2 PN [B (H) ;B (K)] ; then for any x; y 2 K with kxk = kyk = 1 we
have

h� (f (A) g (A))x; xi+ h� (f (B) g (B)) y; yi(1.13)

� (�) h� (f (A))x; xi h� (g (B)) y; yi+ h� (g (A))x; xi h� (f (B)) y; yi

In particular, we have the µCeby�ev type inequality

(1.14) h� (f (A) g (A))x; xi � (�) h� (f (A))x; xi h� (g (A))x; xi ;
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for any x 2 K with kxk = 1:

Motivated by the above results, we obtain in this paper some new inequalities
for positive linear maps of continuous synchronous (asynchronous) functions of
selfadjoint linear operators in Hilbert spaces, under suitable assumptions for the
involved operators. Applications for power function and logarithm are provided as
well.

2. µCeby�ev Type Inequalities for Positive Maps

The following generalization of Theorem 3 may be stated:

Theorem 4. Let f; g : [m;M ] �! R be continuous and synchronous (asynchro-
nous) on [m;M ] : If A and B are selfadjoint operators with spectra contained in
[m;M ] and �; 	 2 PN [B (H) ;B (K)] ; then for any x; y 2 K with kxk = kyk = 1
we have

h� (f (A) g (A))x; xi+ h	(f (B) g (B)) y; yi(2.1)

� (�) h� (f (A))x; xi h	(g (B)) y; yi+ h� (g (A))x; xi h	(f (B)) y; yi :
In particular, we have (1.13) and

h� (f (A) g (A))x; xi+ h	(f (A) g (A)) y; yi(2.2)

� (�) h� (f (A))x; xi h	(g (A)) y; yi+ h� (g (A))x; xi h	(f (A)) y; yi :

Proof. We consider only the case of synchronous functions. In this case we have
that

(2.3) f (t) g (t) + f (s) g (s) � f (t) g (s) + f (s) g (t)
for each t; s 2 [a; b] :
Using the continuous functional calculus for the operator A we have

f (A) g (A) + f (s) g (s) 1H � g (s) f (A) + f (s) g (A)
for any s 2 [a; b] :
If we apply to this inequality the positive map � then we get

(2.4) � (f (A) g (A)) + f (s) g (s) 1K � g (s) � (f (A)) + f (s) � (g (A))
for any s 2 [a; b] :
Let x 2 K with kxk = 1: If we take the inner product in (2.4), then we get

h� (f (A) g (A))x; xi+ f (s) g (s)(2.5)

� g (s) h� (f (A))x; xi+ f (s) h� (g (A))x; xi
for any s 2 [a; b] :
Using the functional calculus for the operator B we get from (2.5) that

h� (f (A) g (A))x; xi 1H + f (B) g (B)(2.6)

� h� (f (A))x; xi g (B) + h� (g (A))x; xi f (B)
x 2 K with kxk = 1:
If we apply to this inequality the positive map 	 then we get

h� (f (A) g (A))x; xi 1K +	(f (B) g (B))(2.7)

� h� (f (A))x; xi	(g (B)) + h� (g (A))x; xi	(f (B))
for any x 2 K with kxk = 1:
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Let y 2 K with kyk = 1: By taking the inner product in (2.7) we deduce the
desired result (2.1). �

Remark 1. If we take in (1.13) B = A, then we get

h� (f (A) g (A))x; xi+ h� (f (A) g (A)) y; yi(2.8)

� (�) h� (f (A))x; xi h� (g (A)) y; yi+ h� (g (A))x; xi h� (f (A)) y; yi ;

for any x; y 2 K with kxk = kyk = 1 and in particular, for y = x; in (2.8) we get
the µCeby�ev type inequality (1.14)

(2.9) h� (f (A) g (A))x; xi � (�) h� (f (A))x; xi h� (g (A))x; xi :
If the map 	 : B (H) ! B (K) is linear, positive and 	(1H) 2 B++ (K) then

� = 	�1=2 (1H)		
�1=2 (1H) is normalised and by (2.9) we getD
	�1=2 (1H)	 (f (A) g (A))	

�1=2 (1H)x; x
E

(2.10)

� (�)
D
	�1=2 (1H)	 (f (A))	

�1=2 (1H)x; x
E

�
D
	�1=2 (1H)	 (g (A))	

�1=2 (1H)x; x
E

for any x 2 K with kxk = 1:
Moreover, if in (2.10) we take

x =
1

	1=2 (1H) v

	1=2 (1H) v; v 2 K with v 6= 0

then we get

(2.11) h	(1H) v; vi h	(f (A) g (A)) v; vi � (�) h	(f (A)) v; vi h	(g (A)) v; vi
for any v 2 K:

We also have the following Cauchy-Schwarz�type inequalities:

Corollary 1. Let f : [m;M ] �! R be continuous on [m;M ] : If A and B are self-
adjoint operators with spectra contained in [m;M ] and �; 	 2 PN [B (H) ;B (K)] ;
then for any x; y 2 K with kxk = kyk = 1 we have


�
�
f2 (A)

�
x; x

�
+


	
�
f2 (B)

�
y; y
�

(2.12)

� h� (f (A))x; xi h	(f (B)) y; yi+ h� (f (A))x; xi h	(f (B)) y; yi :
In particular, we have for 	 = �; that

(2.13)


�
�
f2 (A)

�
x; x

�
+


�
�
f2 (B)

�
y; y
�
� 2 h� (f (A))x; xi h� (f (B)) y; yi

and, for y = x; we get the following Cauchy-Schwarz inequality

(2.14)


�
�
f2 (A)

�
x; x

�
� h� (f (A))x; xi2 :

Assume that A is a positive operator on the Hilbert space H and p; q > 0: Then
for each x 2 H with kxk = 1 we have by (2.9) the inequality
(2.15)



�
�
Ap+q

�
x; x

�
� h� (Ap)x; xi h� (Aq)x; xi :

If A is positive de�nite then the inequality (2.15) also holds for p; q < 0: If A is
positive de�nite and either p > 0; q < 0 or p < 0; q > 0, then the reverse inequality
holds in (2.15).
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Assume that A is positive de�nite and p > 0: Then by (2.8) we have

(2.16) h� (Ap logA)x; xi � h� (Ap)x; xi h� (logA)x; xi
for each x 2 H with kxk = 1: If p < 0 then the reverse inequality holds in (2.16).
These results generalize the corresponding inequalities from (1.3)-(1.5).
Let Pj 2 B (H) ; j = 1; :::; k be contractions with

(2.17)
kX
j=1

P �j Pj = 1H :

The map � : B (H)! B (H) de�ned by [30]

� (A) :=
kX
j=1

P �j APj

is a normalized positive linear map on B (H) :
If f; g : [m;M ] �! R are continuous and synchronous (asynchronous) on [m;M ]

and A is selfadjoint with Sp (A) � [m;M ] ; then by (2.9) we have*
kX
j=1

P �j f (A) g (A)Pjx; x

+
(2.18)

� (�)
*

kX
j=1

P �j f (A)Pjx; x

+*
kX
j=1

P �j g (A)Pjx; x

+
for each x 2 H with kxk = 1:
Assume that A is a positive operator on the Hilbert space H and p; q > 0: Then

for each x 2 H with kxk = 1 we have by (2.18) that

(2.19)

*
kX
j=1

P �j A
p+qPjx; x

+
�
*

kX
j=1

P �j A
pPjx; x

+*
kX
j=1

P �j A
qPjx; x

+
for each x 2 H with kxk = 1: If A is positive de�nite and either p > 0; q < 0 or
p < 0; q > 0, then the reverse inequality holds in (2.19). In this case, by taking the
supremum over x 2 H with kxk = 1; we get the norm inequality

(2.20)








kX
j=1

P �j A
p+qPj







 �








kX
j=1

P �j A
pPj
















kX
j=1

P �j A
qPj







 ;
where A is positive de�nite and either p > 0; q < 0 or p < 0; q > 0:
Moreover, by the elementary arithmetic mean-geometric mean inequality, we

have*
kX
j=1

P �j A
p+qPjx; x

+1=2
�
*

kX
j=1

P �j A
pPjx; x

+1=2* kX
j=1

P �j A
qPjx; x

+1=2

� 1

2

24* kX
j=1

P �j A
pPjx; x

+
+

*
kX
j=1

P �j A
qPjx; x

+35
=

*
1

2

kX
j=1

P �j (A
p +Aq)Pjx; x

+
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and by taking the supremum over x 2 H with kxk = 1; we get

(2.21)








kX
j=1

P �j A
p+qPj








1=2

� 1

2








kX
j=1

P �j (A
p +Aq)Pj







 ;
where A is positive de�nite and either p > 0; q < 0 or p < 0; q > 0:
Assume that A is positive de�nite and p > 0: Then by (2.18) we have

(2.22)

*
kX
j=1

P �j (A
p logA)Pjx; x

+
�
*

kX
j=1

P �j A
pPjx; x

+*
kX
j=1

P �j (logA)Pjx; x

+

for each x 2 H with kxk = 1: If p < 0 then the reverse inequality holds in (2.22).
If we assume that A � 1H and p < 0; then by (2.22) we have

0 �
*

kX
j=1

P �j (A
p logA)Pjx; x

+
�
*

kX
j=1

P �j A
pPjx; x

+*
kX
j=1

P �j (logA)Pjx; x

+

and by taking the supremum over x 2 H with kxk = 1 we get

(2.23)








kX
j=1

P �j (A
p logA)Pj







 �








kX
j=1

P �j A
pPj
















kX
j=1

P �j (logA)Pj







 :
In general, we can state the following norm inequality:

Corollary 2. Let f; g : [m;M ] �! R be continuous, asynchronous and nonnegative
on [m;M ] : If A and B are selfadjoint operators with spectra contained in [m;M ]
and �; 	 2 PN [B (H) ;B (K)] ; then

k� (f (A) g (A))k+ k	(f (B) g (B))k(2.24)

� k� (f (A))k k	(g (B))k+ k� (g (A))k k	(f (B))k :

In particular, we have

k� (f (A) g (A))k+ k� (f (B) g (B))k(2.25)

� k� (f (A))k k� (g (B))k+ k� (g (A))k k� (f (B))k ;

k� (f (A) g (A))k+ k	(f (A) g (A))k(2.26)

� k� (f (A))k k	(g (A))k+ k� (g (A))k k	(f (A))k

and

(2.27) k� (f (A) g (A))k � k� (f (A))k k� (g (A))k :

Proof. From the inequality (2.1) we have

0 � h� (f (A) g (A))x; xi+ h	(f (B) g (B)) y; yi(2.28)

� h� (f (A))x; xi h	(g (B)) y; yi+ h� (g (A))x; xi h	(f (B)) y; yi ;

for any x; y 2 K with kxk = kyk = 1:
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Taking the supremum in (2.28) over x; y 2 K with kxk = kyk = 1; we get
sup

kxk=kyk=1
[h� (f (A) g (A))x; xi+ h	(f (B) g (B)) y; yi](2.29)

� sup
kxk=kyk=1

[h� (f (A))x; xi h	(g (B)) y; yi

+ h� (g (A))x; xi h	(f (B)) y; yi] :
Since

sup
kxk=kyk=1

[h� (f (A) g (A))x; xi+ h	(f (B) g (B)) y; yi]

= sup
kxk=1

h� (f (A) g (A))x; xi+ sup
kyk=1

h	(f (B) g (B)) y; yi

= k� (f (A) g (A))k+ k	(f (B) g (B))k
and

sup
kxk=kyk=1

[h� (f (A))x; xi h	(g (B)) y; yi+ h� (g (A))x; xi h	(f (B)) y; yi]

� sup
kxk=kyk=1

[h� (f (A))x; xi h	(g (B)) y; yi]

+ sup
kxk=kyk=1

[h� (g (A))x; xi h	(f (B)) y; yi]

= sup
kxk=1

h� (f (A))x; xi sup
kyk=1

h	(g (B)) y; yi

+ sup
kxk=1

h� (g (A))x; xi sup
kyk=1

h	(f (B)) y; yi :

�

We observe that, if Pj 2 B (H) ; j = 1; :::; k are contractions satisfying condition
(2.17), f; g : [m;M ] �! R are continuous, asynchronous and nonnegative on
[m;M ] ; then for any A and B selfadjoint operators with spectra contained in [m;M ]
and � 2 PN [B (H) ;B (K)] we have the norm inequality

(2.30)








kX
j=1

P �j � (f (A) g (A))Pj







 �








kX
j=1

P �j � (f (A))Pj
















kX
j=1

P �j � (g (A))Pj







 :
3. Related Results

We have:

Theorem 5. Let f; g : [m;M ] �! R be continuous and synchronous (asynchro-
nous) on [m;M ] : If A and B are selfadjoint operators with spectra contained in
[m;M ] and �; 	 2 PN [B (H) ;B (K)] ; then for any x; y 2 K with kxk = kyk = 1
we have

h	(f (B) g (B)) y; yi+ f (h� (A)x; xi) g (h� (A)x; xi)(3.1)

� (�) f (h� (A)x; xi) h	(g (B)) y; yi+ g (h� (A)x; xi) h	(f (B)) y; yi :
In particular,

h� (f (B) g (B)) y; yi+ f (h� (A)x; xi) g (h� (A)x; xi)(3.2)

� (�) f (h� (A)x; xi) h� (g (B)) y; yi+ g (h� (A)x; xi) h� (f (B)) y; yi
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and

h	(f (A) g (A)) y; yi+ f (h� (A)x; xi) g (h� (A)x; xi)(3.3)

� (�) f (h� (A)x; xi) h	(g (A)) y; yi+ g (h� (A)x; xi) h	(f (A)) y; yi :

Proof. Since m1H � A �M1H ; then by taking the map � we get m1K � � (A) �
M1K : If x 2 K with kxk = 1; then m � h� (A)x; xi �M:
We consider only the case of synchronous functions. In this case we have that

(3.4) [f (t)� f (h� (A)x; xi)] [g (t)� g (h� (A)x; xi)] � 0

for any t 2 [m;M ] and x 2 K with kxk = 1:
This can be written as

f (t) g (t) + f (h� (A)x; xi) g (h� (A)x; xi)(3.5)

� f (h� (A)x; xi) g (t) + g (h� (A)x; xi) f (t)

for any t 2 [m;M ] and x 2 K with kxk = 1:
Fix x 2 K with kxk = 1: By utilizing the continuous functional calculus for the

operator B we have by (3.5) that

f (B) g (B) + f (h� (A)x; xi) g (h� (A)x; xi) 1H(3.6)

� f (h� (A)x; xi) g (B) + g (h� (A)x; xi) f (B) :

If we take the map 	 in the inequality (3.6), we get

	(f (B) g (B)) + f (h� (A)x; xi) g (h� (A)x; xi) 1K(3.7)

� f (h� (A)x; xi)	 (g (B)) + g (h� (A)x; xi)	 (f (B)) :

If y 2 K with kyk = 1; then by taking the inner product in (3.7) we deduce the
desired result (3.1). �

Corollary 3. Let f; g : [m;M ] �! R be continuous, A a selfadjoint operators with
spectrum contained in [m;M ] and � 2 PN [B (H) ;B (K)] :
If f; g are synchronous on [m;M ] ; then

h� (f (A) g (A))x; xi � h� (f (A))x; xi h� (g (A))x; xi(3.8)

� (f (h� (A)x; xi)� h� (f (A))x; xi) (h� (g (A))x; xi � g (h� (A)x; xi))

for any x 2 K with kxk = 1:
If f; g are asynchronous on [m;M ] ; then

h� (f (A))x; xi h� (g (A))x; xi � h� (f (A) g (A))x; xi(3.9)

� (h� (f (A))x; xi � f (h� (A)x; xi)) (h� (g (A))x; xi � g (h� (A)x; xi))

for any x 2 K with kxk = 1:

Proof. From the inequality (3.2) we have for B = A and y = x that

h� (f (A) g (A))x; xi+ f (h� (A)x; xi) g (h� (A)x; xi)
� (�) f (h� (A)x; xi) h� (g (A))x; xi+ g (h� (A)x; xi) h� (f (A))x; xi
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that is equivalent to

h� (f (A) g (A))x; xi � h� (f (A))x; xi h� (g (A))x; xi
� (�) f (h� (A)x; xi) h� (g (A))x; xi+ g (h� (A)x; xi) h� (f (A))x; xi
� f (h� (A)x; xi) g (h� (A)x; xi)� h� (f (A))x; xi h� (g (A))x; xi
= (f (h� (A)x; xi)� h� (f (A))x; xi) (h� (g (A))x; xi � g (h� (A)x; xi))

for any x 2 K with kxk = 1:
The case of asynchronous functions goes likewise and the details are omitted. �

Remark 2. If the map z : B (H) ! B (K) is linear, positive and z (1H) 2
B++ (K) then � = z�1=2 (1H)zz�1=2 (1H) is normalised and by (3.8) we have

hz (f (A)) v; vi
hz (1H) v; vi

hz (g (A)) v; vi
hz (1H) v; vi

� hz (f (A) g (A)) v; vihz (1H) v; vi
(3.10)

�
�
f

�
hz (A) v; vi
hz (1H) v; vi

�
� hz (f (A)) v; vihz (1H) v; vi

�
�
�
hz (g (A)) v; vi
hz (1H) v; vi

� g
�
hz (A) v; vi
hz (1H) v; vi

��
for any v 2 K with v 6= 0; when f; g are synchronous on [m;M ] ; and

hz (f (A) g (A)) v; vi
hz (1H) v; vi

� hz (f (A)) v; vihz (1H) v; vi
hz (g (A)) v; vi
hz (1H) v; vi

(3.11)

�
�
f

�
hz (A) v; vi
hz (1H) v; vi

�
� hz (f (A)) v; vihz (1H) v; vi

�
�
�
g

�
hz (A) v; vi
hz (1H) v; vi

�
� hz (g (A)) v; vihz (1H) v; vi

�
for any v 2 K with v 6= 0; when f; g are asynchronous on [m;M ] :
We need the following Jensen�s type inequality that has been obtained recently

in [16]:

Lemma 1. Let f : I ! R be a convex function on the interval I and � : B (H)!
B (K) a normalised positive linear map. Then for any selfadjoint operator A whose
spectrum Sp (A) is contained in I we have

(3.12) f (h� (A) y; yi) � h� (f (A)) y; yi
for any y 2 K; kyk = 1:
Proof. For the sake of completeness, we give here a short proof.
Let m; M with m < M and such that Sp (A) � [m;M ] � I. Then m1H �

A � M1H and since � 2 PN [B (H) ;B (K)] we have that m1K � � (A) � M1K
showing that h� (A) y; yi 2 [m;M ] for any y 2 K; kyk = 1:
By the gradient inequality for the convex function we have for a = h� (A) y; yi 2

[m;M ] that

f (t) � f (h� (A) y; yi) + (t� h� (A) y; yi) f 0+ (h� (A) y; yi)
for any t 2 I; where f 0+ is the right lateral derivative.
Using the continuous functional calculus for the operator A we have for a �xed

y 2 K with kyk = 1 that
(3.13) f (A) � f (h� (A) y; yi) 1H + f 0+ (h� (A) y; yi) (A� h� (A) y; yi 1H) :
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Since � 2 PN [B (H) ;B (K)] ; then by taking the functional � in the inequality
(3.13) we get

(3.14) � (f (A)) � f (h� (A) y; yi) 1K + f 0+ (h� (A) y; yi) (� (A)� h� (A) y; yi 1K)
for any y 2 K with kyk = 1:
This inequality is of interest in itself.
Taking the inner product in (3.14) we have for any y 2 K with kyk = 1 that
h� (f (A)) y; yi

� f (h� (A) y; yi) kyk2 + f 0+ (h� (A) y; yi)
�
h� (A) y; yi � h� (A) y; yi kyk2

�
= f (h� (A) y; yi)

and the inequality (3.12) is proved. �

We can establish now some re�nements of the µCeby�ev type inequality (2.9)
when some convexity properties are assumed.

Corollary 4. Let f; g : [m;M ] �! R be continuous, A a selfadjoint operators with
spectrum contained in [m;M ] and � 2 PN [B (H) ;B (K)] :
If f; g are synchronous on [m;M ] and one is convex while the other is concave

on [m;M ] ; then

h� (f (A) g (A))x; xi � h� (f (A))x; xi h� (g (A))x; xi(3.15)

� (f (h� (A)x; xi)� h� (f (A))x; xi) (h� (g (A))x; xi � g (h� (A)x; xi))
� 0

for any x 2 K with kxk = 1:
If f; g are asynchronous and either both of them are convex or both of them

concave on [m;M ], then

h� (f (A))x; xi h� (g (A))x; xi � h� (f (A) g (A))x; xi(3.16)

� (h� (f (A))x; xi � f (h� (A)x; xi)) (h� (g (A))x; xi � g (h� (A)x; xi))
� 0

for any x 2 K with kxk = 1:

Let � 2 PN [B (H) ;B (K)] and assume that A is a positive operator on the
Hilbert space H: If p 2 (0; 1) and q 2 (1;1) ; then for each x 2 K with kxk = 1 we
have the inequality


�
�
Ap+q

�
x; x

�
� h� (Ap)x; xi h� (Aq)x; xi(3.17)

� [h� (Aq)x; xi � h� (A)x; xiq] [h� (A)x; xip � h� (Ap)x; xi] � 0:
If A is positive de�nite and p > 1; q < 0 then

h� (Ap)x; xi h� (Aq)x; xi �


�
�
Ap+q

�
x; x

�
(3.18)

� [h� (Aq)x; xi � h� (A)x; xiq] [h� (Ap)x; xi � h� (A)x; xip] � 0
for all x 2 K with kxk = 1:
Assume that A is positive de�nite and p > 1: Then

h� (Ap logA)x; xi � h� (Ap)x; xi h� (logA)x; xi(3.19)

� [h� (Ap)x; xi � h� (A)x; xip] [log h� (A)x; xi � h� (logA)x; xi] � 0
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for all x 2 K with kxk = 1:
These results generalize the corresponding inequalities from (1.10)-(1.12).
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Mat. (N.S.)(Romania), 53 (2007), no. 1, 97�102.

[28] J. Peµcaríc, Remarks on Biernacki�s generalization of µCeby�ev�s inequality. Ann. Univ. Mariae
Curie-Sklodowska Sect. A 47 (1993), 116�122.

[29] J. Peµcaríc and S. S. Dragomir, Some remarks on µCeby�ev�s inequality, L�Anal. Num. Théor
de L�Approx. 19 (1)(1990), 58-65.

[30] J. Peµcaríc, T. Furuta, J. Mícíc Hot and Y. Seo, Mond-Peµcaríc Method in Operator Inequal-
ities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb,
2005.

[31] J. Peµcaríc, J. Mícíc and Y. Seo, Inequalities between operator means based on the Mond-
Peµcaríc method. Houston J. Math. 30 (2004), no. 1, 191�207.

1Mathematics, College of Engineering & Science, Victoria University, PO Box 14428,
Melbourne City, MC 8001, Australia.

E-mail address : sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2School of Computer Science & Applied Mathematics, University of the Witwater-
srand, Private Bag 3, Johannesburg 2050, South Africa




