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Abstract

Here we present self adjoint operator Korovkin type theorems, via self
adjoint operator Shisha-Mond type inequalities, also we give self adjoint
operator polynomial approximations. This is a quantitative treatment
to determine the degree of self adjoint operator uniform approximation
with rates, of sequences of self adjoint operator positive linear operators.
The same kind of work is performed over important operator polynomial
sequences. Our approach is direct based on Gelfand isometry.
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1 Background

Let A be a selfadjoint linear operator on a complex Hilbert space (H; h�; �i).
The Gelfand map establishes a ��isometrically isomorphism � between the set
C (Sp (A)) of all continuous functions de�ned on the spectrum of A, denoted
Sp (A), and the C�-algebra C� (A) generated by A and the identity operator
1H on H as follows (see e.g. [6, p. 3]):
For any f; g 2 C (Sp (A)) and any �; � 2 C we have
(i) � (�f + �g) = �� (f) + �� (g) ;
(ii) � (fg) = � (f) � (g) (the operation composition is on the right) and

�
�
f
�
= (� (f))

�
;

(iii) k� (f)k = kfk := sup
t2Sp(A)

jf (t)j ;
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(iv) � (f0) = 1H and � (f1) = A, where f0 (t) = 1 and f1 (t) = t; for
t 2 Sp (A) :
With this notation we de�ne

f (A) := � (f) , for all f 2 C (Sp (A)) ;

and we call it the continuous functional calculus for a selfadjoint operator A.
If A is a selfadjoint operator and f is a real valued continuous function on

Sp (A) then f (t) � 0 for any t 2 Sp (A) implies that f (A) � 0, i.e. f (A) is a
positive operator on H. Moreover, if both f and g are real valued continuous
functions on Sp (A) then the following important property holds:
(P) f (t) � g (t) for any t 2 Sp (A), implies that f (A) � g (A) in the operator

order of B (H) :
Equivalently, we use (see [5], pp. 7-8):
Let U be a selfadjoint operator on the complex Hilbert space (H; h�; �i) with

the spectrum Sp (U) included in the interval [m;M ] for some real numbers
m < M and fE�g� be its spectral family.
Then for any continuous function f : [a; b] ! C, where [m,M]� (a,b), it is

well known that we have the following spectral representation in terms of the
Riemann-Stieljes integral:

hf (U)x; yi =
Z M

m�0
f (�) d (hE�x; yi) ;

for any x; y 2 H. The function gx;y (�) := hE�x; yi is of bounded variation on
the interval [m;M ], and

gx;y (m� 0) = 0 and gx;y (M) = hx; yi ;

for any x; y 2 H. Furthermore, it is known that gx (�) := hE�x; xi is increasing
and right continuous on [m;M ] :
In this article we will be using a lot the formula

hf (U)x; xi =
Z M

m�0
f (�) d (hE�x; xi) ; 8 x 2 H:

As a symbol we can write

f (U) =

Z M

m�0
f (�) dE�:

Above, m = min f�j� 2 Sp (U)g := minSp (U), M = max f�j� 2 Sp (U)g :=
maxSp (U). The projections fE�g�2R ; are called the spectral family of A, with
the properties:
(a) E� � E�0 for � � �0;
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(b) Em�0 = 0H (zero operator), EM = 1H (identity operator) and E�+0 =
E� for all � 2 R.
Furthermore

E� := '� (U) , 8 � 2 R;

is a projection which reduces U , with

'� (s) :=

�
1, for �1 < s � �;
0; for � < s < +1:

The spectral family fE�g�2R determines uniquely the self-adjoint operator U
and vice versa.
For more on the topic see [9], pp. 256-266, and for more detalis see there

pp. 157-266. See also [4].
Some more basics are given (we follow [5], pp. 1-5):
Let (H; h�; �i) be a Hilbert space over C. A bounded linear operator A de�ned

on H is selfjoint, i.e., A = A�, i¤ hAx; xi 2 R, 8 x 2 H, and if A is selfadjoint,
then

kAk = sup
x2H:kxk=1

jhAx; xij :

Let A;B be selfadjoint operators on H. Then A � B i¤ hAx; xi � hBx; xi, 8
x 2 H.
In particular, A is called positive if A � 0:
Denote by

P :=
(
' (s) :=

nX
k=0

�ks
kjn � 0, �k 2 C, 0 � k � n

)
:

If A 2 B (H) (the Banach algebra of all bounded linear operators de�ned on H,
i.e. from H into itself) is selfadjoint, and ' (s) 2 P has real coe¢ cients, then
' (A) is selfadjoint, and

k' (A)k = max fj' (�)j ; � 2 Sp (A)g :

If ' is any function de�ned on R we de�ne

k'kA := sup fj' (�)j ; � 2 Sp (A)g :

If A is selfadjoint operator on Hilbert space H and ' is continuous and given
that ' (A) is selfadjoint, then k' (A)k = k'kA. And if ' is a continuous real
valued function so it is j'j, then ' (A) and j'j (A) = j' (A)j are selfadjoint
operators (by [5], p. 4, Theorem 7).
Hence it holds

kj' (A)jk = kj'jkA = sup fjj' (�)jj ; � 2 Sp (A)g
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= sup fj' (�)j ; � 2 Sp (A)g = k'kA = k' (A)k ;

that is kj' (A)jk = k' (A)k :
For a selfadjoint operator A 2 B (H) which is positive, there exists a unique

positive selfadjoint operator B :=
p
A 2 B (H) such that B2 = A, that is�p

A
�2
= A: We call B the square root of A.

Let A 2 B (H), then A�A is selfadjoint and positive. De�ne the �operator
absolute value� jAj :=

p
A�A. If A = A�, then jAj =

p
A2:

For a continuous real valued function ' we observe the following:

j' (A)j (the functional absolute value) =
Z M

m�0
j' (�)j dE� =

Z M

m�0

q
(' (�))

2
dE� =

q
(' (A))

2
= j' (A)j (operator absolute value),

where A is a selfadjoint operator.
That is we have

j' (A)j (functional absolute value) = j' (A)j (operator absolute value).

The next comes from [4], p. 3:
We say that a sequence fAng1n=1 � B (H) converges uniformly to A (con-

vergence in norm), i¤
lim
n!1

kAn �Ak = 0;

and w denote it as lim
n!1

An = A:

We will be using Hölder�s-McCarthy, 1967 ([10]), inequality: Let A be a
selfadjoint positive operator on a Hilbert space H. Then

hArx; xi � hAx; xir ;

for all 0 < r < 1 and x 2 H : kxk = 1:
Let A;B 2 B (H), then

kABk � kAk kBk ;

by Banach algebra property.

2 Main Results

Here we derive self adjoint operator-Korovkin type theorems via operator-Shisha-
Mond type inequalities. This is a quantitative approach, studying the degree
of operator-uniform approximation with rates of sequences of operator-positive
linear operators in the operator order of B (H). We continue similarly with

4



important polynomial operators. Our approach is direct based on Gelfand�s
isometry.
All the functions we are dealing here are real valued. We assume that

Sp (A) � [m;M ] :
Let fLngn2N be a sequence of positive linear operators from C ([m;M ]) into

itself (i.e. if f; g 2 C ([m;M ]) such that f � g, then Ln (f) � Ln (g)). It is
interesting to study the convergence of Ln ! I (unit operator, i.e. I (f) = f , 8
f 2 C ([m;M ])). By property (i) we have that

� (Lnf � f) = � (Lnf)� � (f) = (Lnf) (A)� f (A) ; (1)

and
� (Ln1� 1) = � (Ln1)� � (1) = (Ln1) (A)� 1H ; (2)

the last comes by property (iv).
And by property (iii) we obtain

k� (Lnf � f)k = k(Lnf) (A)� f (A)k = kLnf � fk ; (3)

and
k� (Ln1� 1)k = k(Ln1) (A)� 1Hk = kLn (1)� 1k : (4)

We need

Theorem 1 (Shisha and Mond ([12]), 1968) Let fLngn2N be a sequence of
positive linear operators from C ([m;M ]) into itself. For n = 1; 2; :::; suppose
Ln (1) is bounded. Let f 2 C ([m;M ]). Then for n = 1; 2; :::; we have

kLnf � fk1 � kfk1 kLn1� 1k1 + kLn (1) + 1k1 !1 (f; �n) ; (5)

where

�n :=
Ln �(t� x)2� (x) 1

2

1
; (6)

with
!1 (f; �) := sup

x;y2[m;M ]

jx�yj��

jf (x)� f (y)j ; � > 0; (7)

and k�k1 stands for the sup-norm over [m;M ].
In particular, if Ln (1) = 1, then (5) becomes

kLn (f)� fk1 � 2!1 (f; �n) : (8)

Note: (i) In foming �2n, x is kept �xed, however t forms the functions t; t
2

on which Ln acts.
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(ii) One can easily �nd, for n = 1; 2; :::;

�2n �
�Ln �t2�� (x)� x21 + 2c k(Ln (t)) (x)� xk1 + c2 k(Ln (1)) (x)� 1k1 ;

(9)
where

c := max (jmj ; jM j) :

So, if the Korovkin�s assumptions are ful�lled, i.e. if Ln
�
id2
� u! id2, Ln (id)

u!
id and Ln (1)

u! 1, as n ! 1, id is the identity map and u is the uniform
convergence, then �n ! 0, and then !1 (f; �n)! 0, as n! +1, and we obtain
from (5) that kLnf � fk1 ! 0, i.e. Ln (f)

u! f , as n!1; 8 f 2 C ([m;M ]) :
We give

Theorem 2 All as in Theorem 1. Then

k(Lnf) (A)� f (A)k �

kf (A)k k(Ln1) (A)� 1Hk+ k(Ln (1)) (A) + 1Hk!1 (f; �n) ; (10)

where

�n :=
Ln �(t�A)2� (A) 1

2

: (11)

In particular, if (Ln (1)) (A) = 1H , then

k(Ln (f)) (A)� f (A)k � 2!1 (f; �n) : (12)

Furthermore it holds

�2n �
�Ln �t2�� (A)�A2+ 2c k(Ln (t)) (A)�Ak+ c2 k(Ln (1)) (A)� 1Hk :

(13)
So, if

�
Ln
�
t2
��
(A) ! A2, (Ln (t)) (A) ! A, (Ln (1)) (A) ! 1H , uniformly,

as n ! 1, then by (13) and (10) we get (Ln (f)) (A) ! f (A), uniformly, as
n!1:
That is establishing the self adjoint operator Korovkin theorem with rates.
Next we follow [2], pp. 273-274.

Theorem 3 Let Ln : C ([m;M ])! C ([m;M ]), n 2 N, be a sequence of positive
linear operators, f 2 C ([m;M ]), g 2 C ([m;M ]) and it is an (1� 1) function.
Assume fLn (1)gn2N is uniformly bounded. Then

kLn (f)� fk � kfk kLn (1)� 1k+ (1 + kLn (1)k)!g (f; �n) ; (14)

where
!g (f; h) := sup

x;y
fjf (x)� f (y)j : jg (x)� g (y)j � hg ; (15)
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h > 0, with

�n :=
�Ln �(g � g (y))2� (y)� 1

2

: (16)

Here k�k stands for the supremum norm. If Ln (1) = 1, then (14) simpli�es to

kLn (f)� fk � 2!g (f; �n) : (17)

We also have that

�2n �
Ln �g2�� g2+ 2 kgk kLn (g)� gk+ kgk2 kLn (1)� 1k : (18)

If Ln (1)
u! 1, Ln (g)

u! g; Ln
�
g2
� u! g2; then !g (f; �n) ! 0, and then

Ln (f)
u! f , as n! +1,8 f 2 C ([m;M ]), where u stands for uniform conver-

gence, so we get a generalization of Korovkin theorem quantitatively, and clearly
by Ln (1)

u! 1, we get kLn (1)k � K, 8 n 2 N, where K > 0.

We present

Theorem 4 All as in Theorem 3. Then

k(Ln (f)) (A)� f (A)k �

kf (A)k k(Ln (1)) (A)� 1Hk+ (1 + k(Ln (1)) (A)k)!g (f; �n) ; (19)

with

�n :=
�Ln �(g � g (A))2� (A)� 1

2

: (20)

If (Ln (1)) (A) = 1H , then

k(Ln (f)) (A)� f (A)k � 2!g (f; �n) : (21)

It holds
�2n �

�Ln �g2�� (A)� g2 (A)+
2 kg (A)k k(Ln (g)) (A)�Ak+ kg (A)k2 k(Ln (1)) (A)� 1Hk : (22)

If (Ln (1)) (A)! 1H , (Ln (g)) (A)! A;
�
Ln
�
g2
��
(A)! g2 (A) ; uniformly, as

n! +1, then (Ln (f)) (A)! f (A), uniformly, as n! +1:

We make

Remark 5 Next we consider the general Bernstein positive linear polynomial
operators from C ([m;M ]) into itself, for f 2 C ([m;M ]) we de�ne

(BNf) (s) =
NX
i=0

�
N

i

�
f

�
m+ i

�
M �m
N

���
s�m
M �m

�i�
M � s
M �m

�N�i
;

(23)
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8 s 2 [m;M ] ; see [13], p. 80.
Then by [13], p. 81, we get that

kBNf � fk1 � 5

4
!1

�
f;
M �mp

N

�
; (24)

8 N 2 N, i.e. BNf
u! f , as N ! +1, 8 f 2 C ([m;M ]), the convergence is

given with rates.
We clearly have that

k(BNf) (A)� f (A)k �
5

4
!1

�
f;
M �mp

N

�
; (25)

8 N 2 N, i.e. (BNf) (A)! f (A), uniformly, as N ! +1:

We need

Notation 6 Let x 2 [m;M ]. Denote

c (x) := max (x�m;M � x) = 1

2
[M �m+ jM +m� 2xj] > 0: (26)

Let h > 0 be �xed, n 2 N. De�ne (see [1], p. 210)

��n (x) :=

 
jxjn+1

(n+ 1)!h
+
jxjn

2n!
+
h jxjn�1

8 (n� 1)!

!
: (27)

We need

Theorem 7 ([1], p. 219) Let fLNgN2N be a sequence of positive linear opera-
tors from C ([m;M ]) into itself, x 2 [m;M ], f 2 Cn ([m;M ]) :
Here c (x) ; ��n (x) as in Notation 6. Assume that !1

�
f (n); h

�
� w, where

w; h are �xed positive numbers, 0 < h < M �m: Then

j(LN (f)) (x)� f (x)j � jf (x)j j(LN (1)) (x)� 1j+
nX
k=1

��f (k) (x)��
k!

����LN �(t� x)k�� (x)���+ w��n (c (x))
(c (x))

n (LN (jt� xjn)) (x) : (28)

Inequality (28) is sharp, for details see [1], p. 220.

Clearly all functions involved in (28) are continuous, see also [3], i.e. both
sides of (28) are continuous functions.
Using properties (P) and (ii) and (28) we derive

Theorem 8 All as in Theorem 7. Then

j(LN (f)) (A)� f (A)j � jf (A)j j(LN (1)) (A)� 1H j+
nX
k=1

��f (k) (A)��
k!

����LN �(t�A)k�� (A)���+ w��n (c (A))
(c (A))

n (LN (jt�Ajn)) (A) : (29)
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Remark 9 Inequality (29) implies

k(LN (f)) (A)� f (A)k � kf (A)k k(LN (1)) (A)� 1Hk+
nX
k=1

f (k) (A)
k!

�LN �(t�A)k�� (A)+w ��n (c (A))(c (A))
n

 k(LN (jt�Ajn)) (A)k :
(30)

Remark 10 (to Theorem 8 and (30)) Assume further

kLN (1)k1 � �; 8 N 2 N; � > 0: (31)

By Riesz representation theorem, for each s 2 [m;M ], there exists a positive
�nite measure �s on [m;M ] such that

(LN (f)) (s) =

Z
[m;M ]

f (t) d�sN (t) ; 8 f 2 C ([m;M ]) : (32)

Therefore (k = 1; :::; n� 1)

����LN (� � s)k� (s)��� =
�����
Z
[m;M ]

(�� s)k d�sN (�)
����� �

Z
[m;M ]

j�� sjk d�sN (�)

(by Hölder�s inequality)

�
 Z

[m;M ]

1d�sN (�)

!n�k
n
 Z

[m;M ]

j�� sjn d�sN (�)
! k

n

= ((LN (1)) (s))
n�k
n ((LN (j� � sjn)) (s))

k
n � �

n�k
n ((LN (j� � sjn)) (s))

k
n : (33)

That is ����LN (� � s)k� (s)��� � �n�k
n ((LN (j� � sjn)) (s))

k
n ; (34)

k = 1; :::; n� 1:
Of course it holds

j(LN (� � s)n) (s)j � (LN j� � sjn) (s) : (35)

By property (P) we obtain����LN (� �A)k� (A)��� � �n�k
n ((LN (j� �Ajn)) (A))

k
n ; (36)

for k = 1; :::; n� 1; and

j(LN (� �A)n) (A)j � (LN j� �Ajn) (A) : (37)
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Therefore �LN (� �A)k� (A) � �n�k
n

((LN (j� �Ajn)) (A)) kn  (38)

= �
n�k
k sup
x2H:kxk=1

D
((LN (j� �Ajn)) (A))

k
n x; x

E
(by Hölder�s-Mc Carthy inequality)

� �
n�k
k sup
x2H:kxk=1

h((LN (j� �Ajn)) (A))x; xi
k
n

= �
n�k
k

 
sup

x2H:kxk=1
h((LN (j� �Ajn)) (A))x; xi

! k
n

= �
n�k
k k(LN (j� �Ajn)) (A)k

k
n : (39)

Therefore it holds�LN (t�A)k� (A) � �n�k
k k(LN (jt�Ajn)) (A)k

k
n ; (40)

k = 1; :::; n� 1; and of course

k(LN (t�A)n) (A)k � k(LN (jt�Ajn)) (A)k : (41)

Based on (40) and (41) and by assuming that (Ln (1)) (A)! 1H and
(LN (jt�Ajn)) (A) ! 0H , uniformly, as N ! +1, we obtain by (30) that
(LN (f)) (A)! f (A), uniformly as N ! +1:

We mention

Theorem 11 ([1], p. 230) For any f 2 C1 ([0; 1]) consider the Bernstein poly-
nomials

(�n (f)) (t) :=

nX
k=0

f

�
k

n

��
n

k

�
tk (1� t)n�k ; t 2 [0; 1] :

Then

k(�nf)� fk1 � 0:78125p
n

!1

�
f 0;

1

4
p
n

�
: (42)

We make

Remark 12 The map

[m;M ] 3 s = ' (t) = (M �m) t+m, t 2 [0; 1] ; (43)

maps (1� 1) and onto, [0; 1] onto [m;M ] :
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Let f 2 C1 ([m;M ]), then

f (s) = f (' (t)) = f ((M �m) t+m) ; (44)

and
df (s)

dt
= (f (' (t)))

0
= f 0 (' (t)) (M �m) = f 0 (s) (M �m) : (45)

By (42) we get that

k�n (f ((M �m)) t+m)� f ((M �m) t+m)k1;[0;1] �

0:78125p
n

!1

�
f 0 (s) (M �m) ; 1

4
p
n

�
=
0:78125p

n
(M �m)!1

�
f 0 (s) ;

1

4
p
n

�
:

(46)
However we have

!1

�
f 0 (s) ;

1

4
p
n

�
= !1

�
f 0 ((M �m) t+m) ; 1

4
p
n

�
= (47)

sup
t1;t22[0;1]
jt1�t2j� 1

4
p
n

jf 0 ((M �m) t1 +m)� f 0 ((M �m) t2 +m)j =

sup
s1;s22[m;M ]

js1�s2j�M�m
4
p
n

jf 0 (s1)� f 0 (s2)j = !1
�
f 0;
M �m
4
p
n

�
; (48)

above notice that

js1 � s2j = j((M �m) t1 +m)� ((M �m) t2 +m)j =

(M �m) jt1 � t2j �
M �m
4
p
n
: (49)

So we have proved that

!1

�
f 0 (s) ;

1

4
p
n

�
= !1

�
f 0;
M �m
4
p
n

�
: (50)

Finally, we observe that

(�n (f ((M �m) t+m)) (t)) =
nX
k=0

�
f

�
(M �m) k

n
+m

���
n

k

�
tk (1� t)n�k =

nX
k=0

�
f

�
(M �m) k

n
+m

���
n

k

��
s�m
M �m

�k �
M � s
M �m

�n�k
=: (Bn (f)) (s) ;

(51)
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s 2 [m;M ] :
The operators (Bn (f)) (s) are the general Bernstein polynomials.
From (46) and (50), we derive that

k(Bnf) (s)� f (s)k1;[m;M ] �
0:78125p

n
(M �m)!1

�
f 0;
M �m
4
p
n

�
: (52)

Based on the above and the property (iii), we can give

Theorem 13 Let f 0 2 [m;M ]. Then

k(Bnf) (A)� f (A)k �
0:78125 (M �m)p

n
!1

�
f 0;
M �m
4
p
n

�
: (53)

I.e. (Bnf) (A)! A, uniformly, with rates as n! +1.

We make

Remark 14 Let f 2 C ([m;M ]), then the function f ((M �m) t+m) is a con-
tinuous function in t 2 [0; 1].
Let r 2 N, we evaluate the modulus of smoothness (� > 0)

!r (f ((M �m) t+m) ; �) =

sup
0�h��


rX

k=0

�
r

k

�
(�1)r�k f ((M �m) (t+ kh) +m)


1;[0;1�rh]

=

sup
0�h���(M�m)


rX

k=0

�
r

k

�
(�1)r�k f (s+ kh�)


s;1;[m;M�rh�]

(h� = (M �m)h)
= !r (f; (M �m) �) ; (54)

proving that

!r (f ((M �m) t+m) ; �) = !r (f; (M �m) �) ; (55)

for any r 2 N, and � > 0:

We need

Theorem 15 ([11], p. 97) For f 2 C ([0; 1]), n 2 N, we have

k�n (f)� fk � !2
�
f;

1p
n

�
; (56)

a sharp inequality.
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We get

Theorem 16 Let f 2 C ([m;M ]), n 2 N. Then

k(Bn (f)) (A)� f (A)k = kBn (f)� fk1 � !2
�
f;
M �mp

n

�
: (57)

We need

De�nition 17 ([11], p. 151) Let f 2 C ([0; 1]), n 2 N. We de�ne the Dur-
rmeyer type operators (the genuine Bernstein-Durrmeyer operators)�

M�1;�1
n (f)

�
(x) = f (0) (1� x)n + f (1)xn+

(n� 1)
n�1X
k=1

pn;k (x)

Z 1

0

f (t) pn�2;k�1 (t) dt; (58)

where

pn;k (x) =

�
n

k

�
xk (1� x)n�k ; n 2 N; x 2 [0; 1] :

We will use

Theorem 18 ([11], p. 155) For f 2 C ([0; 1]), n 2 N, we have

M�1;�1
n (f)� f


1 � 5

4
!2

�
f;

1p
n+ 1

�
: (59)

We make

Remark 19 Let f 2 C ([m;M ]), then f ((M �m) t+m) 2 C ([0; 1]). Hence
(s 2 [m;M ], t 2 [0; 1])�

M
�1;�1
n f

�
(s) :=M�1;�1

n (f ((M �m) t+m)) (t) (58)=

f (m)

�
M � s
M �m

�n
+ f (M)

�
s�m
M �m

�n
+

(n� 1)
n�1X
k=1

�
n

k

��
s�m
M �m

�k �
M � s
M �m

�n�k �
n� 2
k � 1

�Z M

m

f (s) �

�
s�m
M �m

�k�1�
M � s
M �m

�n�k�1
ds: (60)

We give
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Theorem 20 Let f 2 C ([m;M ]), n 2 N. Then�M�1;�1
n f

�
(A)� f (A)

 = M�1;�1
n f � f


1
� 5

4
!2

�
f;
M �mp
n+ 1

�
: (61)

We need

De�nition 21 ([7]) For f 2 C ([0; 1]), w 2 N, and 0 � � � , we de�ne the
Stancu-type positive linear operators�

Lh0�iw0 f
�
(x) =

wX
k=0

f

�
k + �

w + 

�
pw;k (x) ; x 2 [0; 1] ; (62)

pw;k (x) =

�
w

k

�
xk (1� x)w�k :

We need

Theorem 22 ([2], p. 516 and [7]) For N 3 w >
�
2
�
(d�e is the ceiling),

f 2 C ([0; 1]) we have:

Lh0�iw0 f � f

1
�
"
3 +

�
w3 + 4w�2

�
w � 2

��
4 (w � 2) (w + )2

#
!2

�
f;

1p
w

�

+
2 (� + )

p
w

(w + )
!1

�
f;

1p
w

�
: (63)

We make

Remark 23 Let f 2 C ([m;M ]), then f ((M �m) t+m) 2 C ([0; 1]). Hence
(s 2 [m;M ], t 2 [0; 1])�

L
h0�i
w0 f

�
(s) := Lh0�iw0 (f ((M �m) t+m)) (t) (62)=

wX
k=0

f

�
(M �m)

�
k + �

w + 

�
+m

��
w

k

��
s�m
M �m

�k �
M � s
M �m

�w�k
: (64)

We give

Theorem 24 Let f 2 C ([m;M ]), w 2 N, 0 � � � . We take w >
�
2
�
.

Then �Lh0�iw0 f
�
(A)� f (A)

 = �Lh0�iw0 f
�
� f


1
�"

3 +

�
w3 + 4w�2

�
w � 2

��
4 (w � 2) (w + )2

#
!2

�
f;
M �mp

w

�
+
2 (� + )

p
w

(w + )
!1

�
f;
M �mp

w

�
:

(65)
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We make

Remark 25 Next we assume that the spectrum of A is [0; 1]. For example, it
could be Af = xf (x) on L2 ([0; 1]) which is a self adjoint operator and it has
spectrum [0; 1] :

We need

De�nition 26 ([14]) Let f 2 C ([0; 1]), we de�ne the special Stancu operator

Sn (f; x) =
2 (n!)

(2n)!

nX
k=0

f

�
k

n

��
n

k

�
(nx)k (n� nx)n�k ; (66)

where (a)0 = 1, (a)b =
b�1P
k=0

(a� k), a 2 R, b 2 N; n 2 N, x 2 [0; 1] :

Theorem 27 ([8], p. 75) Let f 2 C ([0; 1]), n 2 N. Then

����Sn �M�1;�1
n

�
(f)
�
(x)
�� � c1!4 f; 4

s
3x (1� x)
n (n+ 1)

!
; (67)

8 x 2 [0; 1], where c1 > 0 is an absolute constant independent of n, f and x.

We obtain

Theorem 28 Let f 2 C ([0; 1]), n 2 N. Then

�Sn �M�1;�1
n

�
(A)
 = Sn �M�1;�1

n


1 � c1!4

 
f; 4

s
3

4n (n+ 1)

!
: (68)
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