
NEW WEIGHTED INEQUALITIES FOR HIGHER ORDER
DERIVATIVES AND APPLICATIONS

SAMET ERDEN, MEHMET ZEKI SARIKAYA, AND HUSEYIN BUDAK

Abstract. We establish a new Ostrowski type inequality for n+ 1-times dif-
ferentiable mappings which are bounded. Then, some new inequalities of
Hermite-Hadamard type are obtained for functions whose n + 1:th deriva-
tives in absolute value are convex. Spacial cases of these inequalities reduce
some well known inequalities. With the help of obtained inequalities, we give
applications for the k�moment of random variables.

1. Introduction

In 1938, Ostrowski established the integral inequality which is one of the funde-
mental inequalit¬es of mathematic as follows (see, [20]):
Let f : [a; b]! R be a di¤erentiable mapping on (a; b) whose derivative f

0
:

(a; b)! R is bounded on (a; b); i.e., kf 0k1 = sup
t2(a;b)

jf 0(t)j <1: Then, the inequality

holds:

(1.1)

������f(x)� 1

b� a

bZ
a

f(t)dt

������ �
"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a) kf 0k1

for all x 2 [a; b]: The constant 14 is the best possible.
The following inequality is well known in the literature as the Hermite-Hadamard

integral inequality (see, [7]):

(1.2) f

�
a+ b

2

�
� 1

b� a

Z b

a

f(x)dx � f(a) + f(b)

2

where f : I � R ! R is a convex function on the interval I of real numbers and
a; b 2 I with a < b.
Inequalities (1.1) and (1.2) have wide applications in numerical analysis and in

the theory of some special means; estimating error bounds for some special means,
some mid-point, trapezoid and Simpson rules and quadrature rules, etc. Hence,
inequality (1.1) and (1.2) have attracted considerable attention and interest from
mathematicans and researchers. Now, we give some inequalities related to (1.1)
and (1.2) which were proved in recent years (see, [7], [8], [11], [21], [24], [26]).
In [8], Cerone et.al. proved the following inequalities of Ostrowski type and

Hadamard type, respectively.
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Theorem 1. Let f : [a; b] ! R be a twice di¤erentiable mapping on (a; b) and
f 00 : (a; b) ! R is bounded, i.e., kf 00k1 = sup

t2(a;b)
jf 00(t)j < 1: Then we have the

inequality: �����f(x)� 1

b� a

Z b

a

f(t)dt�
�
x� a+ b

2

�
f 0(x)

�����
�

"
1

24
(b� a)2 + 1

2

�
x� a+ b

2

�2#
kf 00k1

� (b� a)2
6

kf 00k1
for all x 2 [a; b]:

Corollary 1. Under the above assumptions, we have the mid-point inequality:

(1.3)

�����f
�
a+ b

2

�
� 1

b� a

Z b

a

f(x)dx

����� � (b� a)2
24

kf 00k1

In [11], K¬rmac¬proved the following results connected with the left part of (1.2).

Theorem 2. Let f : I� � R! R be a di¤erentiable mapping on I�, a; b 2 I� with
a < b. If jf 0j is convex on [a; b], then we have

(1.4)

������ 1

b� a

bZ
a

f (t) dt� f
�
a+ b

2

������� � b� a
8

(jf 0(a)j+ jf 0(b)j) :

Theorem 3. Let f : I� � R! R be a di¤erentiable mapping on I�, a; b 2 I� with
a < b; and let p > 1. If the mapping jf 0j

p
p�1 is convex on [a; b], then we have������ 1

b� a

bZ
a

f (t) dt� f
�
a+ b

2

�������(1.5)

� b� a
16

�
4

p+ 1

� 1
p
��
3 jf 0(a)j

p
p�1 + jf 0(b)j

p
p�1
� p�1

p

+
�
jf 0(a)j

p
p�1 + 3 jf 0(b)j

p
p�1
� p�1

p

�
:

Sarikaya et. al. pointed out the some inequalities in [24], as follows:

Theorem 4. Let f : I � R ! R be a di¤erentiable function on I�, with f 00 2
L1 [a; b] : If jf 00j is convex on [a; b], then

(1.6)

�����f
�
a+ b

2

�
� 1

b� a

Z b

a

f(x)dx

����� � (b� a)2

24

�
jf 00(a)j+ jf 00(b)j

2

�
:

Theorem 5. Let f : I � R ! R be twice di¤erentiable function on I� such that
f 00 2 L1 [a; b] where a; b 2 I, a < b; If jf 00jq is convex on [a; b], q > 1; then

(1.7)

�����f
�
a+ b

2

�
� 1

b� a

Z b

a

f(x)dx

����� � (b� a)2

8 (2p+ 1)
1
p

�
jf 00(a)jq + jf 00(b)jq

2

� 1
q

:
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In a recent paper, in [4], Barnett and Dragomir obtained a variety of bounds
for the variance and expectation of a continuous random variable whose p.d.f. is
de�ned over a �nite interval base on the identity:

bZ
a

(t�m1)
2
f (t) dt+ (m1 � b) (m1 � a) =

bZ
a

(t� a) (t� b) f (t) dt

where m1 =
bR
a

uf (u) du:

In recent years, researchers have studied some integral inequalities by using n-
time di¤erentiable functions. For example, Authors gave some Ostrowski type in-
equalities for mappings whose n�th derivatives are bounded in [6] and [29]. Sofo
established integral inequalities on Lp norm in [27]. In [22] and [23], the authors
deduced midpoint and trapezoidal formula for n-times di¤erentiable mappings, re-
spectively. In [1], [2], [9], [18] and [28], researchers obtained some integral inequal-
ities for functions whose obsolute value of n�th derivatives are convex, s�convex,
m�convex and (�;m)�convex. Kechriniotis and Theodorou proved some integral
inequalities via n-times di¤erentiable functions and gave some applications for prob-
ability density function in [10]. In [16], [17] and [19], Latif and Dragomir established
Hermite-Hadamard type inequalities for n-times di¤erentiable.
In this study, �rst of all, we derive an identity for n + 1 times di¤erentiable

functions. Then, some weighted integral inequalities are obtained by using this
identity. Some results presented in earlier works related to these inequalities are
given. Finally, some applications for random variable whose probability density
functions are bounded and their derivatives absolute are convex on the interval of
real numbers.

2. Some inequalities for the moments

In order to prove weighted integral inequalities, we need the following lemma:

Lemma 1. Let f : I � R ! R be n + 1 times di¤erentiable function on I�,
a; b 2 I� with a < b, f (n+1) is absolutely continuous on [a; b] and let w : [a; b]! R
be nonnegative and continuous on [a; b]. Then the following equality holds:

(2.1)
nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt =

bZ
a

Pw (x; t) f
(n+1) (t) dt

where n 2 N; Mk(x) is de�ned by

Mk(x) =
bR
a

(u� x)k f (u) du; k = 0; 1; 2; :::

and

(2.2) Pw (x; t) :=

8>>>><>>>>:
1
n!

tR
a

(u� t)n w (u) du; a � t < x

1
n!

tR
b

(u� t)n w (u) du; x � t � b:
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Proof. By integration by parts, we have

bZ
a

Pw (x; t) f
(n+1) (t) dt

=
1

n!

xZ
a

0@ tZ
a

(u� t)n w (u) du

1A f (n+1) (t) dt+ 1

n!

bZ
x

0@ tZ
b

(u� t)n w (u) du

1A f (n+1) (t) dt
=

1

n!

0@ bZ
a

(u� x)n w (u) du

1A f (n) (x) + 1

(n� 1)!

xZ
a

0@ tZ
a

(u� t)n�1 w (u) du

1A f (n) (t) dt
+

1

(n� 1)!

bZ
x

0@ tZ
b

(u� t)n�1 w (u) du

1A f (n) (t) dt:
By integration by parts n�times, we get

bZ
a

Pw (x; t) f
(n+1) (t) dt =

Mn(x)

n!
f (n) (x) +

Mn�1(x)

(n� 1)! f
(n�1) (x) + :::+

M2(x)

2!
f 00 (x)

+M1(x)f
0 (x) +M0(x)f (x)�

bZ
a

w (t) f (t) dt

which is the required identity in (2.1). Hence, the proof is completed. �

We establish a new inequality for functions whose n + 1�th derivatives are
bounded

Theorem 6. Suppose that all the assumptions of Lemma 1 hold. Additionally, we
assume that f (n+1) : (a; b) ! R is bounded, i.e.,

f (n+1)1 = sup
t2(a;b)

��f (n+1)(t)�� <
1, then we have the inequality������

nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������(2.3)

�

f (n+1)
[a;b];1

(n+ 1)!

�

8>>><>>>:
Mn+1 (x) , if n is an odd number"
bR
x

(u� x)n+1 w(u)du�
xR
a

(u� x)n+1 w(u)du
#

, if n is an even number

for all x 2 [a; b] :



NEW WEIGHTED INEQUALITIES FOR HIGHER ORDER DERIVATIVES 5

Proof. If we take absolute value of both sides of the equality (2.1), because f (n+1)

is a bounded function, we can write������
nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������
� 1

n!

xZ
a

0@ tZ
a

(t� u)n w(u)du

1A���f (n+1)(t)��� dt+ 1

n!

bZ
x

0@ bZ
t

(u� t)n w(u)du

1A���f (n+1)(t)��� dt
�

f (n+1)
[a;x];1

n!

xZ
a

0@ tZ
a

(t� u)n w(u)du

1A dt+ f (n+1)[x;b];1
n!

bZ
x

0@ bZ
t

(u� t)n w(u)du

1A dt:
By using the change of order of integration, because n is a odd number, we get������

nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������
�

f (n+1)
[a;x];1

(n+ 1)!

xZ
a

(x� u)n+1 w(u)du+

f (n+1)
[x;b];1

(n+ 1)!

bZ
x

(u� x)n+1 w(u)du

�

f (n+1)
[a;b];1

(n+ 1)!
Mn+1 (x) :

Hence, the proof is completed. �

Remark 1. If we choose n = 1 in Theorem 6, then we obtain������M1 (x) f
0 (x) +M0(x)f (x)�

bZ
a

w (t) f (t) dt

������ � kf 00k[a;b];1
2

M2 (x) :

which was given by Sarikaya and Yaldiz in [25].

Remark 2. If we choose w(u) = 1 in Theorem 6, then we have the inequality������
nX
k=0

(b� x)k+1 + (�1)k (x� a)k+1
(k + 1)!

f (k) (x)�
bZ
a

f (t) dt

������
�

f (n+1)
[a;b];1

(n+ 2)!

h
(b� x)n+2 + (x� a)n+2

i
:

for all n � 0: This inequality was proved by Cerone et al. in [6].

Remark 3. If we take w(u) = 1 and n = 0 in Theorem 6, then we get the clasical
Ostrowski inequality.

Remark 4. If we take w(u) = 1 and n = 1 in Theorem 6, then the Theorem 6
reduces to the Theorem 1 which is proved by Cerone et.al. in [8].
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Remark 5. If we choose w(u) = 1 and x = a+b
2 in Theorem 6, then we have the

inequality ������
nX
k=0

(b� a)k+1
h
1 + (�1)k

i
2k+1 (k + 1)!

f (k)
�
a+ b

2

�
�

bZ
a

f (t) dt

������
�

f (n+1)1 (b� a)n+2
2n+1 (n+ 2)!

:

for all n � 0: This inequality was proved by Cerone et al. in [6].

Remark 6. If we take w(u) = 1; x = a+b
2 and n = 1 in Theorem 6, then the

inequality (2.3) becomes the inequality (1.3) which was given by Cerone et.al. in
[8].

Now, we give an inequality for mappings whose absolute value of n + 1�th
derivatives are convex.

Theorem 7. Suppose that all the assumptions of Lemma 1 hold. If
��f (n+1)�� is

convex on [a; b], then, for all x 2 [a; b] ; the following inequality holds:������
nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������(2.4)

�
kwk[a;b];1

(n+ 1)! (b� a)

" 
(b� a) (x� a)

n+2

n+ 2
+
(b� x)n+3 � (x� a)n+3

n+ 3

!���f (n+1)(a)���
+

 
(x� a)n+3 � (b� x)n+3

n+ 3
+ (b� a) (b� x)

n+2

n+ 2

!���f (n+1)(b)���#

where kwk1 = sup
t2[a;b]

jw(t)j :

Proof. By taking absolute value of (2.1) and using the bounded of mapping w, we
�nd that������

nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������
�

kwk[a;x];1
(n+ 1)!

xZ
a

(t� a)n+1
���f (n+1) (t)��� dt+ kwk[x;b];1

(n+ 1)!

bZ
x

(b� t)n+1
���f (n+1) (t)��� dt:

Since
���f (n+1)(t)��� is convex on [a; b] = [a; x] [ [x; b]

(2.5)

����f (n+1) � b� tb� aa+
t� a
b� ab

����� � b� t
b� a

���f (n+1)(a)���+ t� a
b� a

���f (n+1)(b)��� :



NEW WEIGHTED INEQUALITIES FOR HIGHER ORDER DERIVATIVES 7

Utilising the inequality (2.5), we write

������
nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������(2.6)

�
kwk[a;x];1

(n+ 1)! (b� a)

0@���f (n+1)(a)��� xZ
a

(t� a)n+1 (b� t) dt+
���f (n+1)(b)��� xZ

a

(t� a)n+2 dt

1A

+
kwk[x;b];1

(n+ 1)! (b� a)

0@���f (n+1)(a)��� bZ
x

(b� t)n+2 dt+
���f (n+1)(b)��� bZ

x

(b� t)n+1 (t� a) dt

1A :
If we calculate the above four inetgrals and also substitute the results in (2.6),
because of kwk[a;x];1 ; kwk[x;b];1 � kwk[a;b];1, we obtain desired inequality (2.4)
which completes the proof. �

Remark 7. Under the same assumptions of Theorem 7 with n = 0, then the
following inequality holds:

������f (x)
bZ
a

w (t) dt�
bZ
a

w (t) f (t) dt

������
�

kwk[a;b];1
(b� a)

" 
(b� a) (x� a)

2

2
+
(b� x)3 � (x� a)3

3

!
jf 0(a)j

+

 
(x� a)3 � (b� x)3

3
+ (b� a) (b� x)

2

2

!
jf 0(b)j

#

which is "weighted Ostrowski" inequality provided that jf 0j is convex on [a; b] :
This inequality was given by Sarikaya and Erden in [26].

Remark 8. Under the same assumptions of Theorem 7 with n = 0 and x = a+b
2 ,

then the following inequality hols:

������f
�
a+ b

2

� bZ
a

w (t) dt�
bZ
a

w (t) f (t) dt

������
�

kwk[a;b];1 (b� a)
2

4

�
jf 0(a)j+ jf 0(b)j

2

�

which is "weighted mid-point" inequality provided that jf 0j is convex on [a; b] :
This inequality was given by Sarikaya and Erden in [26].
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Remark 9. If we choose n = 1 in Theorem 7, then we obtain������M1 (x) f
0 (x) +M0(x)f (x)�

bZ
a

w (t) f (t) dt

������
�

kwk[a;b];1
2 (b� a)

" 
(b� a) (x� a)

3

3
+
(b� x)4 � (x� a)4

4

!���f 00(a)���
+

 
(x� a)4 � (b� x)4

4
+ (b� a) (b� x)

3

3

!���f 00(b)���#
which was given by Sarikaya and Yaldiz in [25].

Corollary 2. Under the same assumptions of Theorem 7 with w(u) = 1, then we
have the inequality������

nX
k=0

(b� x)k+1 + (�1)k (x� a)k+1
(k + 1)!

f (k) (x)�
bZ
a

f (t) dt

������
�

" 
(x� a)n+2

(n+ 2)!
+
(b� x)n+3 � (x� a)n+3

(b� a) (n+ 1)! (n+ 3)

!���f (n+1)(a)���
+

 
(x� a)n+3 � (b� x)n+3

(b� a) (n+ 1)! (n+ 3) +
(b� x)n+2

(n+ 2)!

!���f (n+1)(b)���# :
Corollary 3. If we take w(u) = 1 and n = 0 in Theorem 7, then we have������(b� a) f (x)�

bZ
a

f (t) dt

������
�

" 
(x� a)2

2
+
(b� x)3 � (x� a)3

3 (b� a)

!
jf 0(a)j

+

 
(x� a)3 � (b� x)3

3 (b� a) +
(b� x)2

2

!
jf 0(b)j

#
:

Remark 10. If we take w(u) = 1 and n = 1 in Theorem 7, then we get������(b� a) f (x) + (b� a)
�
a+ b

2
� x
�
f 0(x)�

bZ
a

f (t) dt

������
�

" 
(x� a)3

6
+
(b� x)4 � (x� a)4

8 (b� a)

!���f 00(a)���
+

 
(x� a)4 � (b� x)4

8 (b� a) +
(b� x)3

6

!���f 00(b)���#
which was given by Sarikaya and Yaldiz in [25].
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Remark 11. If we choose w(u) = 1 and x = a+b
2 in Theorem 7, then we have the

inequality

������
nX
k=0

(b� a)k+1
h
1 + (�1)k

i
2k+1 (k + 1)!

f (k)
�
a+ b

2

�
�

bZ
a

f (t) dt

������
� (b� a)n+2

2n+1 (n+ 2)!

24
���f (n+1)(a)���+ ���f (n+1)(b)���

2

35
which was derived by Ozdemir and Yildiz in [22].

Remark 12. If we take w(u) = 1; x = a+b
2 and n = 0 in Theorem 7, then the

inequality (2.4) reduce to the inequality (1.4).

Remark 13. If we take w(u) = 1; x = a+b
2 and n = 1 in Theorem 7, then the

inequality (2.4) becomes the inequality (1.6).

We prove some inequalities by using convexity of
��f (n+1)��q :

Theorem 8. Suppose that all the assumptions of Lemma 1 hold. If
��f (n+1)��q is

convex on [a; b], q > 1, then, for all x 2 [a; b] ; we have the inequality

������
nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������(2.7)

�
kwk[a;b];1
(n+ 1)!

(b� a)
1
q

"
(b� x)(n+1)p+1 + (x� a)(n+1)p+1

(n+ 1)p+ 1

# 1
p

�
"��f (n+1)(a)��q + ��f (n+1)(b)��q

2

# 1
q

where 1
p +

1
q = 1; and kwk1 = sup

t2[a;b]
jw(t)j :

Proof. By similar methods in the proof of Theorem 7 and from Hölder�s inequality,
we �nd that ������

nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������(2.8)

�

0@ bZ
a

jPw (x; t)jp dt

1A
1
p
0@ bZ
a

���f (n+1) (t)���q dt
1A

1
q

:
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By simple calculations, we obtain0@ bZ
a

jPw (x; t)jp dt

1A
1
p

(2.9)

=
1

n!

24 xZ
a

0@ tZ
a

(t� u)n w(u)du

1Ap

dt+

bZ
x

0@ bZ
t

(u� t)n w(u)du

1Ap

dt

35
1
p

�
kwk[a;b];1
(n+ 1)!

24 xZ
a

(t� a)(n+1)p dt+
bZ
x

(b� t)(n+1)p dt

35
1
p

=
kwk[a;b];1
(n+ 1)!

"
(b� x)(n+1)p+1 + (x� a)(n+1)p+1

(n+ 1)p+ 1

# 1
p

:

Since
���f (n+1)(t)���q is convex on [a; b] = [a; x] [ [x; b], we have

(2.10)

����f (n+1) � b� tb� aa+
t� a
b� ab

�����q � b� t
b� a

���f (n+1)(a)���q + t� a
b� a

���f (n+1)(b)���q :
Using the inequality (2.10), it follows that

(2.11)

0@ bZ
a

���f (n+1) (t)���q dt
1A

1
q

� (b� a)
1
q

"��f (n+1)(a)��q + ��f (n+1)(b)��q
2

# 1
q

:

Hence, the proof of theorem is completed. �
Corollary 4. Under the same assumptions of Theorem 8 with n = 0, then the
following inequality hols:������f (x)

bZ
a

w (t) dt�
bZ
a

w (t) f (t) dt

������
� kwk[a;b];1 (b� a)

1
q

"
(b� x)p+1 + (x� a)p+1

p+ 1

# 1
p

�
�
jf 0(a)jq + jf 0(b)jq

2

� 1
q

which is "weighted Ostrowski" inequality provided that jf 0jq is convex on [a; b] :
Corollary 5. Under the same assumptions of Theorem 8 with n = 0 and x = a+b

2 ,
then the following inequality hols:������f

�
a+ b

2

� bZ
a

w (t) dt�
bZ
a

w (t) f (t) dt

������
�

kwk[a;b];1 (b� a)
2

2 � (p+ 1)
1
p

�
jf 0(a)jq + jf 0(b)jq

2

� 1
q
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which is "weighted mid-point" inequality provided that jf 0j is convex on [a; b] :

Remark 14. If we choose n = 1 in Theorem 8, then we obtain������M1 (x) f
0 (x) +M0(x)f (x)�

bZ
a

w (t) f (t) dt

������
�

kwk[a;b];1
2

(b� a)
1
q

"
(b� x)2p+1 + (x� a)2p+1

2p+ 1

# 1
p

�
�
jf 00(a)jq + jf 00(b)jq

2

� 1
q

which was given by Sarikaya and Yaldiz in [25].

Corollary 6. Under the same assumptions of Theorem 8 with w(u) = 1, then we
have the inequality������

nX
k=0

(b� x)k+1 + (�1)k (x� a)k+1
(k + 1)!

f (k) (x)�
bZ
a

f (t) dt

������
� (b� a)

1
q

(n+ 1)!

"
(b� x)(n+1)p+1 + (x� a)(n+1)p+1

(n+ 1)p+ 1

# 1
p

�
"��f (n+1)(a)��q + ��f (n+1)(b)��q

2

# 1
q

:

Remark 15. If we take w(u) = 1 and n = 0 in Theorem 8, then we get������(b� a) f (x)�
bZ
a

f (t) dt

������
� (b� a)

1
q

"
(b� x)p+1 + (x� a)p+1

p+ 1

# 1
p

�
�
jf 0(a)jq + jf 0(b)jq

2

� 1
q

:

Remark 16. If we take w(u) = 1 and n = 1 in Theorem 8, then we have������(b� a) f (x) + (b� a)
�
a+ b

2
� x
�
f 0(x)�

bZ
a

f (t) dt

������
� (b� a)

1
q

2

"
(b� x)2p+1 + (x� a)2p+1

2p+ 1

# 1
p

�
�
jf 00(a)jq + jf 00(b)jq

2

� 1
q

which was given by Sarikaya and Yaldiz in [25].
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Corollary 7. If we choose w(u) = 1 and x = a+b
2 in Theorem 8, then we have the

inequality

������
nX
k=0

(b� a)k+1
h
1 + (�1)k

i
2k+1 (k + 1)!

f (k)
�
a+ b

2

�
�

bZ
a

f (t) dt

������
� (b� a)n+2

2n+1 (n+ 1)! [(n+ 1)p+ 1]
1
p

"��f (n+1)(a)��q + ��f (n+1)(b)��q
2

# 1
q

:

Remark 17. If we take w(u) = 1; x = a+b
2 and n = 0 in Theorem 8, then we have

������(b� a) f
�
a+ b

2

�
�

bZ
a

f (t) dt

������
� (b� a)2

2 (p+ 1)
1
p

�
jf 0(a)jq + jf 0(b)jq

2

� 1
q

:

Remark 18. If we take w(u) = 1; x = a+b
2 and n = 1 in Theorem 8, then the

inequality (2.7) becomes the inequality (1.7).

Theorem 9. Suppose that all the assumptions of Lemma 1 hold. If
��f (n+1)��q is

convex on [a; b], q > 1, then for all x 2 [a; b] ; we have the inequality

������
nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������(2.12)

�
kwk[a;b];1

(b� a)
1
q (n+ 1)! [(n+ 1) p+ 1]

1
p

�

8<:(x� a)n+1+ 1
p

"
(b� a)2 � (b� x)2

2

���f (n+1)(a)���q + (x� a)2
2

���f (n+1)(b)���q# 1
q

+(b� x)n+1+
1
p

"
(b� x)2

2

���f (n+1)(a)���q + (b� a)2 � (x� a)2
2

���f (n+1)(b)���q# 1
q

9=;
where 1

p +
1
q = 1; and kwk1 = sup

t2[a;b]
jw(t)j :

Proof. Using similar methods in the proof of Theorem 8 and from Hölder�s inequal-
ity, we obtain the inequality (2.12). Hence, the proof is completed. �
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Remark 19. Under the same assumptions of Theorem 9 with n = 0, then the
following inequality holds:������f (x)

bZ
a

w (t) dt�
bZ
a

w (t) f (t) dt

������
�

kwk[a;b];1
(b� a)

1
q (p+ 1)

1
p

�

8<:(x� a)1+ 1
p

"
(b� a)2 � (b� x)2

2
jf 0(a)jq + (x� a)

2

2
jf 0(b)jq

# 1
q

+(b� x)1+
1
p

"
(b� x)2

2
jf 0(a)jq + (b� a)

2 � (x� a)2

2
jf 0(b)jq

# 1
q

9=;
which is "weighted Ostrowski" inequality provided that jf 0jq is convex on [a; b] :
This inequality was given by Sarikaya and Erden in [26].

Remark 20. Under the same assumptions of Theorem 9 with n = 0 and x = a+b
2 ,

then the following inequality hols:������f
�
a+ b

2

� bZ
a

w (t) dt�
bZ
a

w (t) f (t) dt

������
� (b� a)2

4 [p+ 1]
1
p

(�
3 jf 0(a)jq + jf 0(b)jq

4

� 1
q

+

�
jf 0(a)jq + 3 jf 0(b)jq

4

� 1
q

)
kwk[a;b];1

which is "weighted mid-point" inequality provided that jf 0j is convex on [a; b] :
This inequality was given by Sarikaya and Erden in [26].

Remark 21. If we choose n = 1 in Theorem 9, then we obtain������M1 (x) f
0 (x) +M0(x)f (x)�

bZ
a

w (t) f (t) dt

������
�

kwk[a;b];1
2 (b� a)

1
q [2p+ 1]

1
p

�

8<:(x� a)2+ 1
p

"
(b� a)2 � (b� x)2

2
jf 00(a)jq + (x� a)

2

2
jf 00(b)jq

# 1
q

+(b� x)2+
1
p

"
(b� x)2

2
jf 00(a)jq + (b� a)

2 � (x� a)2

2
jf 00(b)jq

# 1
q

9=;
which was established by Sarikaya and Yaldiz in [25].
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Corollary 8. Under the same assumptions of Theorem 9 with w(u) = 1, then we
have the inequality������

nX
k=0

(b� x)k+1 + (�1)k (x� a)k+1
(k + 1)!

f (k) (x)�
bZ
a

f (t) dt

������
� 1

(b� a)
1
q (n+ 1)! [(n+ 1) p+ 1]

1
p

�

8<:(x� a)n+1+ 1
p

"
(b� a)2 � (b� x)2

2

���f (n+1)(a)���q + (x� a)2
2

���f (n+1)(b)���q# 1
q

+(b� x)n+1+
1
p

"
(b� x)2

2

���f (n+1)(a)���q + (b� a)2 � (x� a)2
2

���f (n+1)(b)���q# 1
q

9=; :
Remark 22. If we take w(u) = 1 and n = 1 in Theorem 9, then we get������(b� a) f (x) + (b� a)

�
a+ b

2
� x
�
f 0(x)�

bZ
a

f (t) dt

������
� 1

2 (b� a)
1
q [2p+ 1]

1
p

�

8<:(x� a)2+ 1
p

"
(b� a)2 � (b� x)2

2
jf 00(a)jq + (x� a)

2

2
jf 00(b)jq

# 1
q

+(b� x)2+
1
p

"
(b� x)2

2
jf 00(a)jq + (b� a)

2 � (x� a)2

2
jf 00(b)jq

# 1
q

9=;
which was given by Sarikaya and Yaldiz in [25].

Remark 23. If we choose w(u) = 1 and x = a+b
2 in Theorem 9, then we have the

inequality ������
nX
k=0

(b� a)k+1
h
1 + (�1)k

i
2k+1 (k + 1)!

f (k)
�
a+ b

2

�
�

bZ
a

f (t) dt

������
� (b� a)n+2

2n+2 (n+ 1)! [(n+ 1) p+ 1]
1
p

8>><>>:
243
���f (n+1)(a)���q + ���f (n+1)(b)���q

4

35
1
q

+

24
���f (n+1)(a)���q + 3 ���f (n+1)(b)���q

4

35
1
q

9>>=>>;
which was proved by Ozdemir and Yildiz in [22].

Remark 24. If we take w(u) = 1; x = a+b
2 and n = 0 in Theorem 9, then the

inequality (2.12) reduce to the inequality (1.5).
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Remark 25. If we take w(u) = 1; x = a+b
2 and n = 1 in Theorem 9, then we have

the inequality ������f
�
a+ b

2

�
� 1

b� a

bZ
a

f (t) dt

������
� (b� a)2

16 [2p+ 1]
1
p

(�
3 jf 00(a)jq + jf 00(b)jq

4

� 1
q

+

�
jf 00(a)jq + 3 jf 00(b)jq

4

� 1
q

)

which was given by Sarikaya and Yaldiz in [25].

Theorem 10. Suppose that all the assumptions of Lemma 1 hold. If
��f (n+1)��q is

convex on [a; b], q � 1, then, for all x 2 [a; b] ; the following inequality holds:������
nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������(2.13)

�
kwk[a;b];1

(n+ 1)! (b� a)
1
q

 
(b� x)n+2 + (x� a)n+2

(n+ 2)

! 1
p

�
" 
(b� a) (x� a)

n+2

n+ 2
+
(b� x)n+3 � (x� a)n+3

n+ 3

!���f (n+1)(a)���q
+

 
(x� a)n+3 � (b� x)n+3

n+ 3
+ (b� a) (b� x)

n+2

n+ 2

!���f (n+1)(b)���q# 1
q

where 1
p +

1
q = 1 and kwk1 = sup

t2[a;b]
jw(t)j :

Proof. From (2.3), using the properties of modulus and from Hölder�s inequality,
we get ������

nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������(2.14)

�

0@ bZ
a

jPw (x; t)j dt

1A
1
p
0@ bZ
a

jPw (x; t)j
���f (n+1) (t)���q dt

1A
1
q

:

By simple calculations, we obtain

(2.15)

bZ
a

jPw (x; t)j dt � kwk[a;b];1
(b� x)n+2 + (x� a)n+2

(n+ 2)!
:
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Because of convexity of
��f (n+1)��q and bounded of w; appliying similar methods in

the proof of Theorem 7 and using the inequality (2.10), we �nd that

bZ
a

jPw (x; t)j
���f (n+1) (t)���q dt(2.16)

�
kwk[a;b];1

(n+ 1)! (b� a)

�
" 
(b� a) (x� a)

n+2

n+ 2
+
(b� x)n+3 � (x� a)n+3

n+ 3

!���f (n+1)(a)���q 
(x� a)n+3 � (b� x)n+3

n+ 3
+ (b� a) (b� x)

n+2

n+ 2

!���f (n+1)(b)���q# :
Substituting the inequalities (2.15) and (2.16) in (2.14), we easily deduce required
inequality (2.13) which completes the proof. �

Remark 26. In case (p; q) = (1; 1); if we take limit as p ! 1 in Theorem 10,
then the inequality (2.13) becomes the inequality (2.4). Thus, we obtain all of the
results which are similar to Theorem 7.

Remark 27. If we take w(u) = 1; x = a+b
2 and n = 0 in Theorem 10, then we

obtain ������f
�
a+ b

2

�
� 1

b� a

bZ
a

f (t) dt

������ � b� a
4

�
jf 0(a)jq + jf 0(b)jq

2

� 1
q

which was established by Pearce and Peµcaríc in [21].

3. Some applications for the moments

Distribution functions and density functions provide complete descriptions of the
distribution of probality for a given random variable. However, they do not allow
us to easily make comparisons between two di¤erent distributions. The set of mo-
ments that uniquely characterizes the distribution under reasonable conditions are
useful in making comparisons. Knowing the probability function, we can determine
moments if they exist. Applying the mathematical inequalities, some estimations
for the moments of random variables were recently studied (see, [3]-[5], [12]-[15],
[25]).
Set X to denote a random variable whose probability function is f : [a; b] �

R ! R+ is a convex function on the interval of real numbers I and let a; b 2 I;
(a < b): Denote by Mr(x) the rth moment about any arbitrary point x of the
random variable X; r � 0; de�ned as

Mr(x) =
bR
a

(u� x)r f (u) du; r = 0; 1; 2; :::

Now, we reconsider the identity (2.1) by changing conditions given in Lemma 1.
Herewith, we deduce an identity involving rth moment.

Lemma 2. Let X be random variable whose p.d.f. f : I � R! R+ be n+1 times
di¤erentiable function on I�, a; b 2 I� with a < b, f (n+1) is absolutely continuous
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on [a; b] and let w : [a; b] ! R be nonnegative and continuous on [a; b]. Then the
following equality holds:

nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt =

bZ
a

Pw (x; t) f
(n+1) (t) dt

where n 2 N; Mk(x) is the kth moment and Pw (x; t) is de�ned as (2.2).

Similarly, using boundedness of f (n+1); convexity of
��f (n+1)�� or convexity of��f (n+1)��q in addition to conditions of Lemma 2, we obtain same of the inequalities

given in previous section for random variable.
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