
SOME PERTURBED INEQUALITIES OF OSTROWSKI TYPE
FOR TWICE DIFFERENTIABLE FUNCTIONS
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Abstract. We establish new perturbed Ostrowski type inequalities for func-
tions whose second derivatives are of bounded variation. In addition, we obtain
some integral inequalities for absolutely continuous mappings. Finally, some
inequalities related to Lipschitzian derivatives are given.

1. Introduction

In 1938, Ostrowski [28] established a following useful inequality:

Theorem 1. Let f : [a; b]! R be a di¤erentiable mapping on (a; b) whose deriva-
tive f 0 : (a; b)! R is bounded on (a; b) ; i.e. kf 0k1 := sup

t2(a;b)
jf 0(t)j <1: Then, we

have the inequality

(1.1)

������f(x)� 1

b� a

bZ
a

f(t)dt

������ �
"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a) kf 0k1 ;

for all x 2 [a; b].

The constant 14 is the best possible.

De�nition 1. Let P : a = x0 < x1 < ::: < xn = b be any partition of [a; b] and let
�f(xi) = f(xi+1)� f(xi); then f is said to be of bounded variation if the sum

mX
i=1

j�f(xi)j

is bounded for all such partitions.

De�nition 2. Let f be of bounded variation on [a; b], and
P
�f (P ) denotes the

sum
nP
i=1

j�f(xi)j corresponding to the partition P of [a; b]. The number

b_
a

(f) := sup
nX

�f (P ) : P 2 P([a; b])
o
;

is called the total variation of f on [a; b] : Here P([a; b]) denotes the family of par-
titions of [a; b] :

In [16], Dragomir proved the following Ostrowski type inequalities for functions
of bounded variation:
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Theorem 2. Let f : [a; b]! R be a mapping of bounded variation on [a; b] : Then

(1.2)

������
bZ
a

f(t)dt� (b� a) f(x)

������ �
�
1

2
(b� a) +

����x� a+ b2
����� b_

a

(f)

holds for all x 2 [a; b] : The constant 12 is the best possible.

In [13], authors obtained the following Ostroski type inequalities for functions
whose second derivatives are bounded:

Theorem 3. Letf : [a; b] ! R be continuous on [a; b] and twice di¤erentiable on
(a; b), whose second derivative f 00 : (a; b) ! R is bounded on (a; b). Then we have
the inequality ������f(x)� 1

b� a

bZ
a

f(t)dt� f(b)� f(a)
b� a

�
x� a+ b

2

�������
� 1

2

8<:
"�
x� a+b

2

�2
(b� a)2

+
1

4

#2
+
1

12

9=; (b� a)2 kf 00k1
� kf 00k1

6
(b� a)2

for all x 2 [a; b] :

Ostrowski inequality has potential applications in Mathematical Sciences. In
the past, many authors have worked on Ostrowski type inequalities. For ex-
ample, authors gave some Ostrowski type inequalities for function of bounded
variation in ([1]-[10],[14],[6]-[18],[26],[27]). The researchers established Ostrowski
type integral inequalities for mappings whose second derivatives are bounded in
([13],[15],[29],[30]). Moreover, Dragomir proved some perturbed Ostrowski type in-
equalities for bounded functions and functions of bounded variation, please refer to
[19]-[25]. In ([11],[12],[31]), some researchers established new perturbed Ostrowski
type inequalities for twice di¤erentiable functions.
In this study, some new perturbed Ostrowski type integral inequalities for func-

tions whose second derivatives are of bounded variation, absolutely continuous and
Lipschitzian are given.
In [11], Budak et al. deduced the following integral identity:

Lemma 1. Let f : [a; b]! C be a twice di¤erantiable function on (a; b) : Then for
any �1(x) and �2(x) complex number the following identity holds:�

x� a+ b
2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt(1.3)

� 1

2(b� a)

�
�1(x)(x� a)3 + �2(x)(b� x)3

3

�

=
1

2

24 1

b� a

xZ
a

(t� a)2 [f 00(t)� �1(x)] dt+
1

b� a

bZ
x

(t� b)2 [f 00(t)� �2(x)] dt

35 ;
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where the integrals in the right hand side are taken in the Lebesgue sense.

2. Inequalities for Functions Whose Second Derivatives are of
Bounded Variation

Now, we establish the following identity by choosing �1(x) = �2(x) = f
00(x) in

(1.3)

�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt(2.1)

� (b� a)
2

6

"
1

12
+
(x� a+b

2 )
2

(b� a)2

#
f 00(x)

=
1

2 (b� a)

24 xZ
a

(t� a)2 [f 00(t)� f 00(x)] dt+
bZ
x

(t� b)2 [f 00(t)� f 00(x)] dt

35 ;
for any x 2 [a; b] :
We start with the following inequality:

Theorem 4. Let : f : [a; b]! C be a twice di¤erantiable function on I� and [a; b] �
I�: If the second derivative f 00 is of bounded variation on [a; b] ; then������

�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt(2.2)

� (b� a)
2

6

"
1

12
+
(x� a+b

2 )
2

(b� a)2

#
f 00(x)

�����
� 1

6 (b� a)

"
(x� a)3

x_
a

(f 00) + (b� x)3
b_
x

(f 00)

#

� (b� a)2

6

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

h
1
12 +

(x� a+b
2 )2

(b�a)2

i �
1
2

bW
a
(f 00) + 1

2

���� xW
a
(f 00)�

bW
x
(f 00)

����� ;
��

x�a
b�a

�3p
+
�
b�x
b�a

�3p� 1
p

"�
xW
a
(f 00)

�q
+

�
bW
x
(f 00)

�q# 1
q

p > 1; 1
p +

1
q = 1h

1
2 +

���x� a+b
2

b�a

���i3 bW
a
(f 00)

for any x 2 [a; b] :
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Proof. Taking modulus (2.1), we get������
�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt(2.3)

� (b� a)
2

6

"
1

12
+
(x� a+b

2 )
2

(b� a)2

#
f 00(x)

�����
� 1

2 (b� a)

24 xZ
a

(t� a)2 jf 00(t)� f 00(x)j dt+
bZ
x

(t� b)2 jf 00(t)� f 00(x)j dt

35 :
Since f 00 is of bounded variation on [a; b], we get

jf 00(t)� f 00(x)j �
x_
t

(f 00)

for t 2 [a; x] and

jf 00(t)� f 00(x)j �
t_
x

(f 00)

for t 2 [x; b] :
Herewith,

xZ
a

(t� a)2 jf 00(t)� f 00(x)j dt �
xZ
a

(t� a)2
x_
t

(f 00)dt(2.4)

� (x� a)3
3

x_
a

(f 00):

Similarly, we have

(2.5)

bZ
x

(t� b)2 jf 00(t)� f 00(x)j dt � (b� x)3
3

b_
x

(f 00):

Substituting the inequalities (2.4) and (2.5) in (2.3), we obtain������
�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt

� (b� a)
2

6

"
1

12
+
(x� a+b

2 )
2

(b� a)2

#
f 00(x)

�����
� 1

6 (b� a)

"
(x� a)3

x_
a

(f 00) + (b� x)3
b_
x

(f 00)

#
whşch completes the proof of �rst inequality in (2.2).
The second inequality follows by Hölder�s inequality

mn+ pq � (m� + p�)
1
�
�
n� + q�

� 1
� ; m; n; p; q � 0 and � > 1 with 1

�
+
1

�
= 1:
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Thus the theorem is now completely proved. �

Corollary 1. Under assumptions of Theorem 4 with x = a+b
2 ; we have the inequal-

ity ������ 1

b� a

bZ
a

f(t)dt� f
�
a+ b

2

�
� (b� a)

2

72
f 00
�
a+ b

2

������� � (b� a)2

48

b_
a

(f 00):

Corollary 2. If p 2 (a; b) is a median point in bounded variation for the second

derivative, i.e.
pW
a
(f 00) =

bW
p
(f 00); then under the assumptions of Theorem 4, we have

������
�
p� a+ b

2

�
f 0(p)� f(p) + 1

b� a

bZ
a

f(t)dt

� (b� a)
2

6

"
1

12
+
(p� a+b

2 )
2

(b� a)2

#
f 00(p)

�����
� (b� a)2

12

"
1

12
+

�
p� a+b

2

�2
(b� a)2

#
b_
a

(f 00):

3. Inequalities for Absolutely Continious Derivatives

In this section, a perturbed Ostrowski type inequality by utilizing absolutely
continuous of f 00 are obtained.

Theorem 5. Let : f : [a; b]! C be a twice di¤erantiable function on I� and [a; b] �
I�: If the second derivative f 00 is absolutely continuous on [a; b] ; then we have������

�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt(3.1)

� (b� a)
2

6

"
1

12
+
(x� a+b

2 )
2

(b� a)2

#
f 00(x)

�����

� 1

2 (b� a)

8>>>>>><>>>>>>:

(b�x)4+(x�a)4
12 kf 000k[a;b];1

2q3[(x�a)3q+1+(b�x)3q+1]
1
q

(3q+1)(2q+1)(q+1) kf 000k[a;b];p

1
3

�
1
2 (b� a) +

��x� a+b
2

���3 kf 000k[a;b];1
for all x 2 [a; b] ; where p > 1 and 1

p +
1
q = 1:
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Proof. If we take absolute value of (2.1), we �nd that������
�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt

� (b� a)
2

6

"
1

12
+
(x� a+b

2 )
2

(b� a)2

#
f 00(x)

�����
� 1

2 (b� a)

24 xZ
a

(t� a)2 jf 00(t)� f 00(x)j dt+
bZ
x

(t� b)2 jf 00(t)� f 00(x)j dt

35
=

1

2 (b� a)

24 xZ
a

(t� a)2
������
xZ
t

f 000(s)ds

������ dt+
bZ
x

(t� b)2
������
tZ
x

f 000(s)ds

������ dt
35

� 1

2 (b� a)

24 xZ
a

(t� a)2
xZ
t

jf 000(s)j dsdt+
bZ
x

(t� b)2
tZ
x

jf 000(s)j dsdt

35 :
We observe that

xZ
a

(t� a)2
tZ
x

jf 000(s)j dsdt �
xZ
a

(t� a)2 (x� t) kf 000k[t;x];1 dt

� kf 000k[a;x];1

xZ
a

(t� a)2 (x� t)dt

=
(x� a)4

12
kf 000k[a;x];1 :

Using Hölder�s integral inequality, we have

xZ
a

(t� a)2
tZ
x

jf 000(s)j dsdt �
xZ
a

(t� a)2 (x� t)
1
q kf 000k[t;x];p dt

� kf 000k[a;x];p

xZ
a

(t� a)2 (x� t)
1
q dt

=
2q3 (x� a)3+

1
q

(3q + 1) (2q + 1) (q + 1)
kf 000k[a;x];p

for p > 1; 1p +
1
q = 1:

Further,

xZ
a

(t� a)2
tZ
x

jf 000(s)j dsdt �
xZ
a

(t� a)2 kf 000k[t;x];1 dt

� (x� a)3

3
kf 000k[a;x];1 :
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Thus, we obtain the inequalities

xZ
a

(t� a)2
tZ
x

jf 000(s)j dsdt �

8>>>>>><>>>>>>:

(x�a)4
12 kf 000k[a;x];1

2q3(x�a)3+
1
q

(3q+1)(2q+1)(q+1) kf
000k[a;x];p

(x�a)3
3 kf 000k[a;x];1 :

Similarly, we have

bZ
x

(t� b)2
tZ
x

jf 000(s)j dsdt �

8>>>>>><>>>>>>:

(b�x)4
12 kf 000k[x;b];1

2q3(b�x)3+
1
q

(3q+1)(2q+1)(q+1) kf
000k[x;b];p

(b�x)3
3 kf 000k[x;b];1 :

Because of kf 000k[a;x];1 � kf 000k[a;b];1 and kf 000k[a;x];1 � kf 000k[a;b];1 ; we obtain

(x� a)4 kf 000k[a;x];1 + (b� x)4 kf 000k[x;b];1

�
h
(b� x)4 + (x� a)4

i
kf 000k[a;x];1

which completes the proof of the �rst branch in (3.1).
By Holder�s inequality we get

(x� a)3+
1
q kf 000k[a;x];p + (b� x)

3+ 1
q kf 000k[x;b];p

�
h
(x� a)3q+1 + (b� x)3q+1

i 1
q
h
kf 000kp[a;x];p + kf

000kp[x;b];p
i 1
p

=
h
(x� a)3q+1 + (b� x)3q+1

i 1
q kf 000k[a;b];p

producing the second branch in (3.1).
Finally,

(x� a)3 kf 000k[a;x];1 + (b� x)
3 kf 000k[x;b];1

� max
n
(x� a)3 ; (b� x)3

oh
kf 000k[a;x];1 + kf

000k[x;b];1
i

=

�
1

2
(b� a) +

����x� a+ b2
�����3 kf 000k[a;b];1

gives the �nal branch in (3.1) where we have used the fact that max fan; bng =
[max fa; bg]n for a; b � 0 and n > 0:
The proof is thus completed. �
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Corollary 3. Under assumptions of Theorem 5 with x = a+b
2 ; we have the inequal-

ity ������ 1

b� a

bZ
a

f(t)dt� f
�
a+ b

2

�
� (b� a)

2

72
f 00
�
a+ b

2

�������

� 1

2 (b� a)

8>>>>>><>>>>>>:

(b�a)4
96 kf 000k[a;b];1

q3(b�a)3+
1
q

4(3q+1)(2q+1)(q+1) kf
000k[a;b];p

(b�a)3
24 kf 000k[a;b];1 :

4. Inequalities for Lipschitzian Derivatives

In this section, we establish a integral inequality for Lipschitzian mappings. In
addition, we give some results related to this inequality.

Theorem 6. Let : f : [a; b]! C be a twice di¤erantiable function on I� and [a; b] �
I�: If �; � > �1 and L�; L� > 0 are such that

(4.1) jf 00(t)� f 00(x)j � L� (x� t)� for any t 2 [a; x)

and

(4.2) jf 00(t)� f 00(x)j � L� (t� x)� for any t 2 (x; b];

then we have the inequality������
�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt(4.3)

� (b� a)
2

6

"
1

12
+
(x� a+b

2 )
2

(b� a)2

#
f 00(x)

�����
� 1

(b� a)

"
(x� a)�+3

(�+ 1) (�+ 2) (�+ 3)
L� +

(b� x)�+3

(� + 1) (� + 2) (� + 3)
L�

#
for all x 2 (a; b) :

Proof. Taking absolute value both sides of the equality (2.1), we �nd that������
�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt

� (b� a)
2

6

"
1

12
+
(x� a+b

2 )
2

(b� a)2

#
f 00(x)

�����
� 1

2 (b� a)

24 xZ
a

(t� a)2 jf 00(t)� f 00(x)j dt+
bZ
x

(t� b)2 jf 00(t)� f 00(x)j dt

35 :
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Using the properties (4.1) and (4.2), we have

xZ
a

(t� a)2 jf 00(t)� f 00(x)j dt � L�

xZ
a

(t� a)2 (x� t)� dt

=
2 (x� a)�+3

(�+ 1) (�+ 2) (�+ 3)
L�

and

bZ
x

(t� b)2 jf 00(t)� f 00(x)j dt �
bZ
x

(t� b)2 L� (t� x)� dt

=
2 (b� x)�+3

(� + 1) (� + 2) (� + 3)
L� :

From which we get the inequality (4.3) which completes the proof. �

Corollary 4. Let : f : [a; b] ! C be a twice di¤erantiable function on I� and
[a; b] � I�: If the second derivative f 00 is of r � H�Hölder type on [a; b] ; i.e. we
have the condition

jf 00(t)� f 00(s)j � H jt� sjr for any t; s 2 [a; b] ;

where r 2 (0:1] and H > 0 are given, then������
�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt

� (b� a)
2

6

"
1

12
+
(x� a+b

2 )
2

(b� a)2

#
f 00(x)

�����
� H

(r + 1) (r + 2) (r + 3)

"�
x� a
b� a

�r+3
+

�
b� x
b� a

�r+3#
(b� a)r+2

for all x 2 [a; b] :
In particular, if f 00 Lipschitzian with the constant L > 0, then we have������

�
x� a+ b

2

�
f 0(x)� f(x) + 1

b� a

bZ
a

f(t)dt

� (b� a)
2

6

"
1

12
+
(x� a+b

2 )
2

(b� a)2

#
f 00(x)

�����
� L

24

"�
x� a
b� a

�4
+

�
b� x
b� a

�4#
(b� a)3

for all x 2 [a; b] :
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