
SOME GENERALIZED INEQUALITIES INVOLVING LOCAL
FRACTIONAL INTEGRALS AND ITS APPLICATIONS FOR
RANDOM VARIABLES AND NUMERICAL INTEGRATION

SAMET ERDEN, MEHMET ZEKI SARIKAYA, AND NURI ÇELIK

Abstract. We establish generaized pre-Grüss inequality for local fractional
integrals. Then, we obtain some inequalities involving generalized expectation,
p�moment, variance and cumulative distribution function of random variable
whose probability density function is bounded. Finally, some applications for
generalized Ostrowski-Grüss inequality in numerical integration are given.

1. Introduction

In 1935, G. Grüss [10] proved the following inequality which establishes a con-
nection between the integral of the product of two functions and the product of the
integrals of these two functions:

(1.1)������ 1
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f(x)g(x)dx� 1
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f(x)dx
1

b� a
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g(x)dx

������ � 1

4
(M �m)(N � n);

provided that f and g are two integrable function on [a; b] satisfying the condition

(1.2) m � f(x) �M and n � g(x) � N for all x 2 [a; b]:
The constant 14 is best possible.
In 1938, Ostrowski established the following interesting integral inequality for

di¤erentiable mappings with bounded derivatives [14]:

Theorem 1 (Ostrowski inequality). Let f : [a; b]! R be a di¤erentiable mapping
on (a; b) whoose derivative f 0 : (a; b) ! R is bounded on (a; b) ; i.e. kf 0k1 :=
sup
t2(a;b)

jf 0(t)j <1: Then, we have the inequality

(1.3)

������f(x)� 1

b� a

bZ
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f(t)dt

������ �
"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a) kf 0k1 ;

for all x 2 [a; b]. The constant 14 is the best possible.

Inequality (1.3) has wide applications in numerical analysis and in the theory
of some special means. Hence inequality (1.3) has attracted considerable attention
and interest from mathematicans and researchers. We refer to our recent paper [7].
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From [11], if f : [a; b] ! R is di¤erentiable on (a; b) with the �rst derivative f 0
integrable on [a; b]; then Montgomery identity holds:

(1.4) f(x) =
1

b� a

bZ
a

f(t)dt+

bZ
a

P (x; t)f 0(t)dt;

where P (x; t) is the Peano kernel de�ned by

P (x; t) =

� t�a
b�a ; a � t � x
t�b
b�a ; x < t � b:

In [8], Dragomir and Wang proved the following result which is Ostrowski type
inequality using the inequality (1.1) and Montgomery identity (1.4).

Theorem 2. Let f : I � R! R be a di¤erentiable mapping in I0 and let a; b 2 I0
with a < b: If f 2 L1 [a; b] and


 � f 0(x) � � 8x 2 [a; b] ;
then we have the following inequality������f(x)� 1

b� a

bZ
a

f(t)dt� f(b)� f(a)
b� a

�
x� a+ b

2

������� � 1

4
(b� a) (�� 
)

for all x 2 [a; b]:

In a recent paper [12], Matíc et al. established the following inequality, which
has been called the pre-Grüss ineqaulity in [3].

Theorem 3. Let f; g : [a; b] ! R be two integrable functions and 
1 � g(x) � �1;
for all x 2 [a; b], where 
1;�1 2 R are constants. Then we have������ 1

b� a

bZ
a

f(x)g(x)dx� 1

b� a

bZ
a

f(x)dx
1

b� a

bZ
a

g(x)dx

������
� 1

2
(�1 � 
1)

264 1

b� a

bZ
a

f2(x)dx�

0@ 1

b� a

bZ
a

f(x)dx

1A2
375

1
2

:

In the last years, many papers were devoted to the generalization of Grüss type
inequalities and also were derived some statistical applications related to this in-
equalities, we can mention the works [2], [3], [5]-[8], [12], [15], [16].

2. Preliminaries

Recall the set R� of real line numbers and use the Gao-Yang-Kang�s idea to
describe the de�nition of the local fractional derivative and local fractional integral,
see [20, 21] and so on.
Recently, the theory of Yang�s fractional sets [20] was introduced as follows.
For 0 < � � 1; we have the following �-type set of element sets:
Z� : The �-type set of integer is de�ned as the set f0�;�1�;�2�; :::;�n�; :::g :
Q� : The �-type set of the rational numbers is de�ned as the set fm� =

�
p
q

��
:

p; q 2 Z; q 6= 0g:
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J� : The �-type set of the irrational numbers is de�ned as the set fm� 6=
�
p
q

��
:

p; q 2 Z; q 6= 0g:
R� : The �-type set of the real line numbers is de�ned as the set R� = Q� [J�:
If a�; b� and c� belongs the set R� of real line numbers, then
(1) a� + b� and a�b� belongs the set R�;
(2) a� + b� = b� + a� = (a+ b)� = (b+ a)� ;
(3) a� + (b� + c�) = (a+ b)� + c�;
(4) a�b� = b�a� = (ab)� = (ba)� ;
(5) a� (b�c�) = (a�b�) c�;
(6) a� (b� + c�) = a�b� + a�c�;
(7) a� + 0� = 0� + a� = a� and a�1� = 1�a� = a�:
The de�nition of the local fractional derivative and local fractional integral can

be given as follows.

De�nition 1. [20] A non-di¤erentiable function f : R ! R�; x ! f(x) is called
to be local fractional continuous at x0, if for any " > 0; there exists � > 0; such that

jf(x)� f(x0)j < "�

holds for jx� x0j < �; where "; � 2 R: If f(x) is local continuous on the interval
(a; b) ; we denote f(x) 2 C�(a; b):
De�nition 2. [20]The local fractional derivative of f(x) of order � at x = x0 is
de�ned by

f (�)(x0) =
d�f(x)

dx�

����
x=x0

= lim
x!x0

�� (f(x)� f(x0))
(x� x0)�

;

where �� (f(x)� f(x0)) e=�(�+ 1) (f(x)� f(x0)) :
If there exists f (k+1)�(x) =

k+1 timesz }| {
D�
x :::D

�
xf(x) for any x 2 I � R; then we denoted

f 2 D(k+1)�(I); where k = 0; 1; 2; :::
Lemma 1. [20] Suppose that f(x) 2 C� [a; b] and f(x) 2 D�(a; b); then for 0 <
� � 1 we have a ��di¤erential form

d�f(x) = f (�)(x)dx�:

De�nition 3. [20] Let f(x) 2 C� [a; b] : Then the local fractional integral is de�ned
by,

aI
�
b f(x) =

1

�(�+ 1)

bZ
a

f(t)(dt)� =
1

�(�+ 1)
lim
�t!0

N�1X
j=0

f(tj)(�tj)
�;

with �tj = tj+1 � tj and �t = max f�t1;�t2; :::;�tN�1g ; where [tj ; tj+1] ; j =
0; :::; N � 1 and a = t0 < t1 < ::: < tN�1 < tN = b is partition of interval [a; b] :
Lemma 2. [20]
(1) (Local fractional integration is anti-di¤erentiation) Suppose that f(x) =

g(�)(x) 2 C� [a; b] ; then we have

aI
�
b f(x) = g(b)� g(a):

(2) (Local fractional integration by parts) Suppose that f(x); g(x) 2 D� [a; b] and
f (�)(x); g(�)(x) 2 C� [a; b] ; then we have

aI
�
b f(x)g

(�)(x) = f(x)g(x)jba �a I
�
b f

(�)(x)g(x):
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Lemma 3. [20] We have

i)
d�xk�

dx�
=

�(1 + k�)

�(1 + (k � 1)�)x
(k�1)�;

ii)
1

�(�+ 1)

bZ
a

xk�(dx)� =
�(1 + k�)

�(1 + (k + 1)�)

�
b(k+1)� � a(k+1)�

�
; k 2 R:

In [1], Akkurt et al. proved the following theorem. In this article, we give some
results related to this inequality and some applications for generalized Ostrowski-
Grüss inequality in numerical integration.

Theorem 4 (Generalized Ostrowski-Grüss inequality). Let I � R be an interval,
f : I0 � R ! R� (I0 is the interior of I) such that f 2 D�(I0) for a; b 2 I0 with
a < b: If f (�) 2 I�x [a; b] and

� � f (�)(x) � �
where �;� 2 R�; then we have����f(x)� � (1 + �)(b� a)� aI

�
b f(t)� 2�

�2 (1 + �)

� (1 + 2�)

f(b)� f(a)
(b� a)�

�
x� a+ b

2

������
(2.1)

� (b� a)�

4�� (1 + �)
(�� �)

for all x 2 [a; b] :

In [19], the following result called generalized Grüss inequality was derived by
Sarikaya et al.

Theorem 5 (Geneneralized Grüss inequality). Let f; g 2 I�x [a; b] : Then, ' �
f(x) � � and 
 � g(x) � �; for all x 2 [a; b]; ';�; 
 and � 2 R�; we have

(2.2) jT�(f; g)j �
(b� a)2�

4��2 (1 + �)
(�� ')(�� 
)

where

(2.3) T�(f; g) =
(b� a)�

� (1 + �)
aI
�
b f(x)g(x)� [ aI�b f(x)] [ aI�b g(x)] :

The concept of local fractional calculus (also called fractal calculus) is introduced
by Yang in [20]. The local fractional calculus is utilized to handle various nondif-
ferentiable problems that appear in complex systems of the real-world phenomena.
Especially, the nondi¤erentiability occurring in science and engineering was modeled
by the local fractional ordinary or partial di¤erential equations. Thus, these topics
are important and interesting for researchers working in such �elds as mathemati-
cal physics and applied sciences. Authors give some inetgral inequalities involving
generalized moments in [1]. Chen established Hölder�s inequality and some inet-
gral inequalities on fractal space in [4]. Erden and Sarikaya proved some Pompeiu
type inequalities involving local fractional integrals and gave its applications. In
[13], generalized convex functions are introduced by Mo et al.. In [17]-[19], a¬thors
deduced some generalized integral inequalities which are Ostrowski and Grüss type
by using local fractional integrals. Yang mantioned some topics related to local
fractional calculus and its applications in [21]-[24].
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In this study, we establish generaized Pre-Grüss inequality for local fractional
integrals. Then, some application of this inequality for generalized continuous ran-
dom variables are given. Finally, we obtain some estimates of composite quadrature
rules by using generalized Ostrowski-Grüss inequality.

3. Generalized pre-Grüss inequality for local fractional intagrals

We establish generalized pre-Grüss inequality by using local fractional intagrals.

Theorem 6 (Geneneralized Pre-Grüss inequality). Let f; g 2 I�x [a; b] and ' �
f(x) � �; for all x 2 [a; b]; where ',� 2 R�: Then we have

(3.1) jT�(f; g)j �
(b� a)�

2�� (1 + �)
(�� ') [T�(g; g)]

1
2

where T�(f; g) is de�ned as (2.3).

Proof. By using the local fractional integrals for mappings f; g 2 I�x [a; b], we have
the generalized Korkine�s identity

1

�2 (1 + �)

bZ
a

bZ
a

[f(x)� f(y)] [g(x)� g(y)] (dy)� (dx)�(3.2)

=
2� (b� a)�

� (1 + �)
aI
�
b f(x)g(x)� 2� [ aI�b f(x)] [ aI�b g(x)]

= 2�T�(f; g):

Appling generalized Hölder�s integral inequality for p = q = 2, we obtain 
1

(b� a)2�
T�(f; g)

!2
(3.3)

=

24 1

2� (b� a)2� �2 (1 + �)

bZ
a

bZ
a

[f(x)� f(y)] [g(x)� g(y)] (dy)� (dx)�
352

�

0@ 1

2� (b� a)2� �2 (1 + �)

bZ
a

bZ
a

[f(x)� f(y)]2 (dy)� (dx)�
1A

�

0@ 1

2� (b� a)2� �2 (1 + �)

bZ
a

bZ
a

[g(x)� g(y)]2 (dy)� (dx)�
1A

=

 
1

(b� a)2�
T�(f; f)

! 
1

(b� a)2�
T�(g; g)

!
:
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We observe that

1

(b� a)2�
T�(f; f) =

0@ �

� (1 + �)
� 1

(b� a)� � (1 + �)

bZ
a

f(x) (dx)
�

1A
0@ 1

� (1 + �) (b� a)�
bZ
a

f(x) (dx)
� � '

� (1 + �)

1A
� 1

(b� a)� �2 (1 + �)

bZ
a

[�� f(x)] [f(x)� '] (dx)� :

Using the fact that [�� f(x)] [f(x)� '] � 0 and also the elementary inequality for
��type set of the real line numbers

4�pq � (p+ q)2 ; p; q 2 R�;

we obtain

(3.4)
1

(b� a)2�
T�(f; f) �

1

4��2 (1 + �)
(�� ')2:

If we substitute the inequality (3.4) in (3.3), then we obtain the inequality (3.1).
The proof is thus completed. �

4. Some Inequalities for Random Variables

Let X be a random variable having the probability distribution function f :
[a; b]! R�: Assume that there exists the lower and upper bound for f; i.e., ��type
real numbers ',� such that f(t) 2 C� [a; b] and 0 � ' � f(t) � � � 1 for all
t 2 [a; b] : De�ne the generalized expectation, p�moment, variance of the random
variable X as follows:

E�(X) =
1

�(�+ 1)

bZ
a

t�f(t)(dt)�;

E�p (X) =
1

�(�+ 1)

bZ
a

tp�f(t)(dt)�; where p � 0;

V ar�(X) = �2�(X) =
1

�(�+ 1)

bZ
a

(t� �)2� f(t)(dt)�

= E�2 (X)� [E�(X)]
2
; where � = E�(X) and � 2 [a; b] � R�

respectively.
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Theorem 7. Let X; f and E�(X) be as de�ned in above. Then we have the
inequality ���� E�(X)� (1 + �)

� � (1 + �)

� (1 + 2�)
(a+ b)

�

����(4.1)

� (b� a)�

2�� (1 + �)
(�� ')

�
� (1 + 2�)

� (1 + �) � (1 + 3�)

�
a2 + ab+ b2

��
� �2 (1 + �)

�2 (1 + 2�)
(a+ b)

2�

� 1
2

for all x 2 [a; b] :

Proof. Chosing g(t) = t� in (3.1), it follows that

(b� a)�

� (1 + �)
aI
�
b t
�f(t)� [ aI�b f(t)] [ aI�b t�](4.2)

� (b� a)�

2�� (1 + �)
(�� ')

�
(b� a)�

� (1 + �)
aI
�
b t
2� � [ aI�b t�]

2

� 1
2

:

Because f is a pdf and above de�nition, we have

(4.3) aI
�
b f(t) = 1

and

(4.4) E�(X) = aI
�
b t
�f(t):

Also, using the Lemma 3, we get

(4.5) aI
�
b t
� =

� (1 + �)

� (1 + 2�)

�
b2 � a2

��
and �

(b� a)�

� (1 + �)
aI
�
b t
2� � [ aI�b t�]

2

� 1
2

(4.6)

= (b� a)�
�

� (1 + 2�)

� (1 + �) � (1 + 3�)

�
a2 + ab+ b2

��
� �2 (1 + �)

�2 (1 + 2�)
(a+ b)

2�

� 1
2

:

Substituting the equalities (4.3), (4.4), (4.5) and (4.6) in (4.2), we easily deduce
desired inequality (4.1) which completes the proof. �
Let us recall generalized p�Logarithmic mean:

Lp(a; b) =

�
� (1 + p�)

� (1 + (p+ 1)�)

�
b(p+1)� � a(p+1)�

(b� a)�
�� 1

p

; p 2 Zn f�1; 0g ; a; b 2 R; a 6= b:

Proposition 1. Let X; f and E�p (X) be as de�ned in above. Then we have the
inequality ���� E�p (X)� (1 + �)

� Lpp(a; b)
����

� (b� a)�

2�� (1 + �)
(�� ')

�
1

� (1 + �)
L2p2p(a; b)� L2pp (a; b)

� 1
2

:
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The proof is obvious by the inequality (3.1) in which we choose g(t) = tp�;
p 2 Zn f�1; 0g and use the de�nition of generalized p�Logarithmic mean.
Theorem 8. Let X; f and V ar�(X) be as de�ned in above. Then we have the
inequality ����V ar�(X)� (1 + �)

�A
����(4.7)

� (b� a)�

2�� (1 + �)
(�� ')

�
B

� (1 + �)
�A2

� 1
2

:

where

A =
� (1 + 2�)

� (1 + 3�)

"
(b� a)2�

4�
+ 3�

�
�� a+ b

2

�2�#
and

B =
� (1 + 4�)

� (1 + 5�)

"
(b� a)4�

16�
+ 5�

�
�� a+ b

2

�4�
+10�

(b� a)2�

4�

�
�� a+ b

2

�2�#
:

Proof. Chosing g(t) = (t� �)2� in (3.1), it follows that���� (b� a)�� (1 + �)
aI
�
b (t� �)

2�
f(x)� [ aI�b f(x)]

h
aI
�
b (t� �)

2�
i����(4.8)

� (b� a)�

2�� (1 + �)
(�� ')

�
(b� a)�

� (1 + �)
aI
�
b (t� �)

4� �
h
aI
�
b (t� �)

2�
i2� 12

:

Because f is a pdf and above de�nition, we have

(4.9) aI
�
b f(t) = 1

and

(4.10) V ar�(X) = aI
�
b (t� �)

2�
f(x):

Also, using the Lemma 3, we get

(4.11) aI
�
b (t� �)

2�
=
� (1 + 2�)

� (1 + 3�)
(b� a)�

"
(b� a)2�

4�
+ 3�

�
�� a+ b

2

�2�#
and

aI
�
b (t� �)

4�
=

� (1 + 4�)

� (1 + 5�)
(b� a)�

h
(b� �)4 � (b� �)3 (�� a)(4.12)

+(b� �)2 (�� a)2 � (b� �) (�� a)3 + (�� a)4
i�

=
� (1 + 4�)

� (1 + 5�)
(b� a)�

"
(b� a)4�

16�
+ 5�

�
�� a+ b

2

�4�
+10�

(b� a)2�

4�

�
�� a+ b

2

�2�#
:

If we substitute the equalities (4.9), (4.10), (4.11) and (4.12) in (4.8), then we obtain
required inequality (4.1) which completes the proof. �
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5. An Application for Cumulative Distirbution Function

The following theorem contains an inequality which connects the generalized
expectation E�(X); the Cumulative Distirbution Function

Pr
�
(X � x) = F�(X) :=

1

� (1 + �)

xZ
a

f(t)(dt)�

and the probability distribution function f : [a; b] ! R� has the bounds ' and �;
where ', � 2 R�:

Theorem 9. Let X; f; E�(X); F�(�) and ', � be as de�ned in above. Then we
have the inequality����E�(X) + (b� a)� F�(X)� b�� (1 + �)

� C
����(5.1)

� (b� a)�

2�� (1 + �)
(�� ')

�
"

� (1 + 2�)

� (1 + �) � (1 + 3�)

"
(b� a)2�

4�
+ 3�

�
x� a+ b

2

�2�#
� C2

# 1
2

for all x 2 [a; b] ; where

C = 2�
� (1 + �)

� (1 + 2�)

�
x� a+ b

2

��
:

Proof. De�ne the mapping

P�(x; t) :=

�
(t� a)� ; a � t � x
(t� b)� ; x < t � b:

Using the Lemma 1, because f is a pdf, we write

1

� (1 + �)

bZ
a

P (x; t)f(t)(dt)�(5.2)

= E�(X) + (b� a)� F�(X)� b�:

If we take the inequality (3.1) for g(t) = P�(x; t); we get���� (b� a)�� (1 + �)
aI
�
b P�(x; t)f(t)� [ aI�b f(t)] [ aI�b P�(x; t)]

����(5.3)

� (b� a)�

2�� (1 + �)
(�� ')

�
(b� a)�

� (1 + �)
aI
�
b P

2
�(x; t)� [ aI�b P�(x; t)]

2

� 1
2

:

Because f is a pdf, we have

(5.4) aI
�
b f(t) = 1:

Now, using the Lemma 3, we obtain

(5.5) aI
�
b P�(x; t) = 2

� � (1 + �)

� (1 + 2�)

�
x� a+ b

2

��
(b� a)�
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and

(5.6) aI
�
b P

2
�(x; t) =

� (1 + 2�)

� (1 + 3�)
(b� a)�

"
(b� a)2�

4�
+ 3�

�
x� a+ b

2

�2�#
:

If we substitute the equalities (5.2), (5.4), (5.5) and (5.6) in (5.3), then we obtain
required inequality (5.1) which completes the proof. �

Remark 1. If we take x = a+b
2 in (5.1), then we have the inequality����E�(X) + (b� a)� Pr�

�
X � a+ b

2

�
� b�

����
�

�
� (1 + 2�)

� (1 + �) � (1 + 3�)

� 1
2 (b� a)2�

4�
(�� '):

Remark 2. Under the same assumptions of Theorem 9 with x = a; x = b, adding
the results and using the triangle inequality for the modulus, we get the inequality����E�(X)� �a+ b2

������
�

"
� (1 + 2�)

� (1 + �) � (1 + 3�)
�
�
� (1 + �)

� (1 + 2�)

�2# 1
2
(b� a)2�

2�
(�� '):

6. Applications to Numerical Quadrature Rules

We give some results related to the inequality (2.1).

Corollary 1. Under the same assumptions of Theorem 4 with x = a; x = b, adding
the results and using the triangle inequality for the modulus, we get the inequality

(6.1)

����f(a) + f(b)2�
� � (1 + �)
(b� a)� aI

�
b f(t)

���� � (b� a)�

4�� (1 + �)
(�� �) :

Remark 3. If we choose x = a+b
2 in Theorem 4, we obtain����f �a+ b2

�
� � (1 + �)
(b� a)� aI

�
b f(t)

���� � (b� a)�

4�� (1 + �)
(�� �) :

We now consider applications of the generalized Ostrowski-Grüss inequality, to
obtain estimates of composite quadrature rules which, it turns out have a markedly
smaller error than that which may be obtained by the classical results.
Let In : a = x0 < x1 < ::: < xn�1 < xn = b be a division of the interval [a; b] ;

�i 2 [xi; xi+1] (i = 0; :::; n� 1) : De�ne the quadrature

S(f; In; �) : =
1

� (1 + �)

n�1X
i=0

f(�i)h
�
i(6.2)

�2� � (1 + �)
� (1 + 2�)

n�1X
i=0

�
�i �

xi + xi+1
2

��
[f(xi+1)� f(xi)]

where hi = xi+1 � xi; i = 0; :::; n� 1:
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Theorem 10. Let f : [a; b] � R ! R� be a mapping such that f 2 C� [a; b] and
f 2 D�(a; b): If

� � f (�)(x) � �
where �;� 2 R�; then we have the representation

1

� (1 + �)

bZ
a

f(t)(dt)� = S(f; In; �) +R(f; In; �)

where S(f; In; �) is as de�ned in (6.2) and the remainder satis�es the estimation:

(6.3) jR(f; In; �)j �
�� �

4��2 (1 + �)

n�1X
i=0

h2�i :

Proof. Applying Theorem 4 on the interval [xi; xi+1] for the intermadiate points
�i; we obtain���� h�i

� (1 + �)
f(�i)�xi I�xi+1f(t)� 2

� � (1 + �)

� (1 + 2�)

�
�i �

xi + xi+1
2

��
[f(xi+1)� f(xi)]

����
� h2�i

4��2 (1 + �)
(�� �)

for all i = 0; :::; n � 1. Summing over i from 0 to n � 1 and using the triangle
inequality we obtain the estimation (6.3). �

Now, de�ne the mid-point and trapezoidal quadrature rule, respectively, as the
followings:

AM (f; In) :=
1

�(1 + �)

n�1X
i=0

f

�
xi + xi+1

2

�
h�i ;

AT (f; In) :=
1

�(1 + �)

n�1X
i=0

f (xi) + f (xi+1)

2�
h�i

where hi = (xi+1 � xi); i = 0; :::; n� 1:
It is clear that inequality (6.3) are much better than the clasical avereges of the

remainders of the generalized Midpoint and Trapezoidal quadratures.

Remark 4. If we choose �i =
xi+xi+1

2 in Theorem 10, then we recapture the mid-
point quadrature formula

1

� (1 + �)

bZ
a

f(t)(dt)� = AM (f; In) +RM (f; In)

where the remainder RM (f; In) satis�es the estimation

jRM (f; In)j �
�� �

4��2 (1 + �)

n�1X
i=0

h2�i :

Also, if we consider the inequality (6.1), then we recapture the trapezoidal quadrature
formula

1

� (1 + �)

bZ
a

f(t)(dt)� = AT (f; In) +RT (f; In)
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where the remainder RT (f; In) satis�es the estimation

jRT (f; In)j �
�� �

4��2 (1 + �)

n�1X
i=0

h2�i :
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