
SOME INEQUALITIES FOR DOUBLE INTEGRALS AND
APPLICATIONS FOR CUBATURE FORMULA

SAMET ERDEN AND MEHMET ZEKI SARIKAYA

Abstract. We establish an Ostrowski type inequality for double integrals of
second order partial derivative functions which are bounded. Then, we deduce
some inequalities of Hermite-Hadamard type for double integrals of functions
whose partial derivatives in absolute value are convex on the co- ordinates on
rectangle from the plane. Finally, some applications in Numerical Analysis in
connection with cubature formula are given.

1. Introduction

Let f : [a; b]! R be a di¤erentiable mapping on (a; b) whose derivative f
0
:

(a; b)! R is bounded on (a; b); i.e., kf 0k1 = sup
t2(a;b)

jf 0(t)j <1: Then, the inequality

holds:

(1.1)

������f(x)� 1

b� a

bZ
a

f(t)dt
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1

4
+
(x� a+b

2 )
2

(b� a)2

#
(b� a) kf 0k1

for all x 2 [a; b] [13]: The constant 1
4 is the best possible. This inequality is well

known in the literature as the Ostrowski inequality.
In a recent paper [2], Barnett and Dragomir proved the following Ostrowski type

inequality for double integrals:

Theorem 1. Let f : [a; b] � [c; d]! R be continuous on [a; b] � [c; d]; f 00x;y = @2f
@x@y

exists on (a; b)� (c; d) and is bounded; i.e.,

f 00x;y

1 = sup
(x;y)2(a;b)�(c;d)

����@2f(x; y)@x@y

���� <1:
Then, we have the inequality:������

bZ
a

dZ
c

f(s; t)dtds� (d� c)(b� a)f(x; y)

�

24(b� a) dZ
c

f(x; t)dt+ (d� c)
bZ
a

f(s; y)ds

35������(1.2)
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1

4
(b� a)2 + (x� a+ b

2
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� �
1

4
(d� c)2 + (y � d+ c
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for all (x; y) 2 [a; b]� [c; d]:

In [2], the inequality (1.2) is established by the use of integral identity involving
Peano kernels. In [14], Pachpatte obtained a new inequality in the view (1.2) by
using elementary analysis. Latif et al. proved some Ostrowski type inequalities for
functions which are co-ordinated convex in [10]. Sarikaya gave inetgral inequalities
for bounded functions in [18]. Authors deduced weighted version of Ostrowski type
inequalities for double integrals involving functions of two independent variables by
using fairly elementary analysis in [1], [16], [17] and [22].
Let us now consider a bidimensional interval � =: [a; b]� [c; d] in R2 with a < b

and c < d. A mapping f : � ! R is said to be convex on � if the following
inequality:

f (tx+ (1� t) z; ty + (1� t)w) � tf (x; y) + (1� t) f (z; w)
holds, for all (x; y) ; (z; w) 2 � and t 2 [0; 1]. A function f : � ! R is said to be
on the co-ordinates on � if the partial mappings fy : [a; b] ! R, fy (u) = f (u; y)
and fx : [c; d]! R, fx (v) = f (x; v) are convex where de�ned for all x 2 [a; b] and
y 2 [c; d] (see, [4]).
A formal de�nition for co-ordinated convex function may be stated as follows:

De�nition 1. A function f : � ! R will be called co-ordinated canvex on �, for
all t; s 2 [0; 1] and (x; y) ; (u; v) 2 �, if the following inequality holds:

f(tx+ (1� t)y; su+ (1� s)v)

� tsf(x; u) + s(1� t)f(y; u) + t(1� s)f(x; v) + (1� t)(1� s)f(y; v):

Clearly, every convex function is co-ordinated convex. Furthermore, there exist
co-ordinated convex function which is not convex, (see, [4]).
Also, in [4], Dragomir established the following similar inequality of Hadamard�s

type for co-ordinated convex mapping on a rectangle from the plane R2.

Theorem 2. Suppose that f : �! R is co-ordinated convex on �. Then one has
the inequalities:

f

�
a+ b

2
;
c+ d

2

�
(1.3)

� 1

2

"
1

b� a

Z b

a

f

�
x;
c+ d

2

�
dx+

1

d� c

Z d

c

f

�
a+ b

2
; y

�
dy

#

� 1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dydx

� 1

4

"
1

b� a

Z b

a

f (x; c) dx+
1

b� a

Z b

a

f (x; d) dx

+
1

d� c

Z d

c

f (a; y) dy +
1

d� c

Z d

c

f (b; y) dy

#

� f (a; c) + f (a; d) + f (b; c) + f (b; d)

4
:

The above inequalities are sharp.
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In recent years, researchers have studied some integral inequalities by using some
convex function on the co-ordinates on a rectangle from the plane R2. For exam-
ple, authors gave some Hadamard�s type inequalities involving Riemann-Liouville
fractional integrals for convex and s-convex functions on the co-ordinates in [3]
and [19]. in [5], Dragomir et al. worked Ostrowski type inequality for two dimen-
sional integtals in term of Lp-norms. Erden and Sarikaya deduced weighted version
of Hermite-Hadamard type inequalities for functions whose partial derivatives in
absolute value are convex on the co- ordinates on rectangle from the plane in [6]
and [7]. In [8], [10]-[12], [20] and [21], some integral inequalities are obtained for
di¤erentiable co-ordinated convex mappings. In [19], Sarikaya et al. proved some
new inequalities that give estimate of the deference between the middle and the
right most terms in (1.3) for di¤erentiable co-ordinated convex functions. In [6],
[9] and [15], some Hermite-Hadamard type inequalities are developed for veriaty
co-ordinated convex functions.
In this study, �rst of all, we establish an identity for second order partial de-

rivative functions. Then, an inequality of Ostrowski type for double integrals is
gotten by using this identity. Also, Hermite-Hadamard type inequalities for convex
mappings on the co-ordinates on the rectangle from the plane are obtained. Fi-
nally, some applications of the Ostrowski type inequality developed in this work for
cubature formula are given.

2. Main Results

In order to prove our main results we need the following lemma:

Lemma 1. Let f : [a; b]� [c; d]! R be an absolutely continuous function such that
the partial derivative of order 2 exists for all (t; s) 2 [a; b] � [c; d]: Then, for all
(x; y) 2 [a; b]� [c; d], we have the equality

bZ
a

dZ
c

Ph (x; t)Qh (y; s) fts (t; s) dsdt(2.1)

=

bZ
a

dZ
c

f (t; s) dsdt+mh(x)

dZ
c

[f (b; s)� f (a; s)] ds

+mh(y)

bZ
a

[f (t; d)� f (t; c)] dt� (d� c)
bZ
a

f (t; y) dt� (b� a)
dZ
c

f (x; s) ds

+(b� a) (d� c) f (x; y) +mh(x)mh(y) [f (a; c)� f (a; d)� f (b; c) + f (b; d)]

� (d� c)mh(x) [f (b; y)� f (a; y)]� (b� a)mh(y) [f (x; d)� f (x; c)]

= Sh (x; y; s; t)

for

Ph (x; t) :=

8<: (t� a�mh(x)) ; a � t < x

(t� b�mh(x)) ; x � t � b
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Qh (y; s) :=

8<: (s� c�mh(y)) ; c � s < y

(s� d�mh(y)) ; y � s � d
where mh(x) = h

�
x� a+b

2

�
and mh(y) = h

�
y � c+d

2

�
; h 2 [0; 2].

Proof. By de�nitions of Ph (x; t) and Qh (y; s) ; we have

bZ
a

dZ
c

Ph (x; t)Qh (y; s) fts (t; s) dsdt(2.2)

=

xZ
a

yZ
c

[t� a�mh(x)] [s� c�mh(y)] fts (t; s) dsdt

+

xZ
a

dZ
y

[t� a�mh(x)] [s� d�mh(y)] fts (t; s) dsdt

+

bZ
x

yZ
c

[t� b�mh(x)] [s� c�mh(y)] fts (t; s) dsdt

+

bZ
x

dZ
y

[t� b�mh(x)] [s� d�mh(y)] fts (t; s) dsdt:

Now, we examine the above integrals. By integration by parts twice, we observe
that

xZ
a

yZ
c

[t� a�mh(x)] [s� c�mh(y)] fts (t; s) dsdt

=

xZ
a

[t� a�mh(x)] f[y � c�mh(y)] ft (t; y)

+mh(y)ft (t; c)�
yZ
c

ft (t; s) ds

9=; dt
= [x� a�mh(x)] [y � c�mh(y)] f (x; y) + [y � c�mh(y)]mh(x)f (a; y)

� [y � c�mh(y)]

xZ
a

f (t; y) dt+mh(y) [x� a�mh(x)] f (x; c)

+mh(x)mh(y)f (a; c)�mh(y)

xZ
a

f (t; c) dt� [x� a�mh(x)]

yZ
c

f (x; s) ds

�mh(x)

yZ
c

f (a; s) ds+

xZ
a

yZ
c

f (t; s) dsdt:

If we calculate the other integrals in a similar way and then we substitute the results
in (2.2), we obtain desired equality (2.1). The proof is completed. �
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Now, we establish a new integral inequality for double integrals and also give
some results related to this theorem.

Theorem 3. Suppose that all the assumptions of Lemma 1 hold. If fts = @2f
@t@s

exists on (a; b)� (c; d) and is bounded; i.e.,

kftsk1 = sup
(t;s)2(a;b)�(c;d)

����@2f(t; s)@t@s

���� <1:
Then, we have the inequality:

jSh (x; y; s; t)j(2.3)

�
"�
b� a
2

�2
+

�
x� a+ b

2

�2
+ (h� 2)

�
x� a+ b

2

�
mh(x)

#

�
"�
d� c
2

�2
+

�
y � c+ d

2

�2
+ (h� 2)

�
y � c+ d

2

�
mh(y)

#
kftsk1

for all (x; y) 2 [a; b]� [c; d]; where mh(x) = h
�
x� a+b

2

�
and mh(y) = h

�
y � c+d

2

�
;

h 2 [0; 2].

Proof. We take absolute value of (2.1). Using bounded of the mapping fts, we �nd
that

jSh (x; y; s; t)j � kftsk1

bZ
a

dZ
c

jPh (x; t)j jQh (y; s)j dsdt(2.4)

= kftsk1

24 xZ
a

jt� a�mh(x)j dt+
bZ
x

jt� b�mh(x)j dt

35
�

24 yZ
c

js� c�mh(y)j dt+
dZ
y

js� d�mh(y)j ds

35 :
We observe the above integrals for the cases a � x � a+b

2 and a+b
2 � x � b;

For all a � x � a+b
2 ; we have

xZ
a

jt� a�mh(x)j dt =
(x� a)2

2
� (x� a)mh(x)

and
bZ
x

jt� b�mh(x)j dt =
(b� x)2

2
+ (b� x)mh(x) + [mh(x)]

2
:

For all a+b2 � x � b; we write
xZ
a

jt� a�mh(x)j dt =
(x� a)2

2
� (x� a)mh(x) + [mh(x)]

2
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and
bZ
x

jt� b�mh(x)j dt =
(b� x)2

2
+ (b� x)mh(x):

Then, we get

xZ
a

jt� a�mh(x)j dt+
bZ
x

jt� b�mh(x)j dt(2.5)

=
(b� x)2 + (x� a)2

2
+ 2

�
a+ b

2
� x

�
mh(x) + [mh(x)]

2

Similarly, we obtain
yZ
c

js� c�mh(y)j dt+
dZ
y

js� d�mh(y)j ds(2.6)

=
(d� y)2 + (y � c)2

2
+ 2

�
c+ d

2
� y

�
mh(y) + [mh(y)]

2
:

If we substitute the equality (2.5) and (2.6) in (2.4), we easily deduce required
inequality (2.3) which completes the proof. �

Remark 1. If we take x = a+b
2 and y = c+d

2 in Theorem 3; then we have the
mid-point inequality������

bZ
a

dZ
c

f (t; s) dsdt+ (b� a) (d� c) f
�
a+ b

2
;
c+ d

2

�

� (d� c)
bZ
a

f

�
t;
c+ d

2

�
dt� (b� a)

dZ
c

f

�
a+ b

2
; s

�
ds

������
� 1

16
(b� a)2 (d� c)2 kftsk1

which was given by Barnett and Dragomir in [2].

Remark 2. Under the same assumptions of Theorem 3 with h = 1 and (x; y) =
(a; c) ; then the following inequality hols:������f (a; c) + f (a; d) + f (b; c) + f (b; d)4

+
1

(b� a) (d� c)

bZ
a

dZ
c

f (t; s) dsdt

�1
2

24 1

d� c

dZ
c

[f (b; s) + f (a; s)] ds+
1

b� a

bZ
a

[f (t; d) + f (t; c)] dt

35������
� (b� a) (d� c)

16
kftsk1 :

Similarly, if we choose (x; y) = (a; d) or (x; y) = (b; c) or (x; y) = (b; d) for h = 1
in Theorem 3, then we deduce inequalities which are the same of the above result.
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Remark 3. If we choose h = 0 in Theorem 3, then the inequality (2.3) reduce to
(1.2).

Theorem 4. Suppose that all the assumptions of Lemma 1 hold. If fts 2 Lp(�),
1
p +

1
q = 1 and q > 1, then we have the inequality

jSh (x; y; s; t)j(2.7)

�
"
[b� x+mh(x)]

q+1
+ [x� a�mh(x)]

q+1

q + 1

# 1
q

"
[d� y +mh(y)]

q+1
+ [y � c�mh(y)]

q+1

q + 1

# 1
q

kftskp

for all (x; y) 2 [a; b]� [c; d]; where mh(x) = h
�
x� a+b

2

�
and mh(y) = h

�
y � c+d

2

�
;

h 2 [0; 2]. Also, kftskp is de�ned by

kftskp =

0@ bZ
a

dZ
c

����@2f(t; s)@t@s

����p dsdt
1A

1
p

:

Proof. Taking absolute value of (2.1) and using Hölder�s inequality, we �nd that

jSh (x; y; s; t)j �

0@ bZ
a

dZ
c

jPh (x; t)jq jQh (y; s)jq dsdt

1A
1
q
0@ bZ
a

dZ
c

����@2f(t; s)@t@s

����p dsdt
1A

1
p

=

24 xZ
a

jt� a�mh(x)jq dt+
bZ
x

jt� b�mh(x)jq dt

35
1
q

�

24 yZ
c

js� c�mh(y)j dt+
dZ
y

js� d�mh(y)j ds

35
1
q

kftskp

We observe the above integrals for the cases a � x � a+b
2 and a+b

2 � x � b;
For the case of a � x � a+b

2 ; we get

xZ
a

jt� a�mh(x)jq dt =
[x� a�mh(x)]

q+1 � [�mh(x)]
q+1

q + 1

and
bZ
x

jt� b�mh(x)jq dt =
[b� x+mh(x)]

q+1
+ [�mh(x)]

q+1

q + 1

For the case of a+b2 � x � b, we obtain
xZ
a

jt� a�mh(x)jq dt =
[x� a�mh(x)]

q+1
+ [mh(x)]

q+1

q + 1
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and
bZ
x

jt� b�mh(x)jq dt =
[b� x+mh(x)]

q+1 � [mh(x)]
q+1

q + 1
:

Then, we can write
xZ
a

jt� a�mh(x)jq dt+
bZ
x

jt� b�mh(x)jq dt(2.8)

=
[b� x+mh(x)]

q+1
+ [x� a�mh(x)]

q+1

q + 1
:

Similarly, we easily deduce the identity
yZ
c

js� c�mh(y)jq dt+
dZ
y

js� d�mh(y)jq ds(2.9)

=
[d� y +mh(y)]

q+1
+ [y � c�mh(y)]

q+1

q + 1
:

Using the equality (2.8) and (2.9), we easily deduce required inequality (2.7) .
Hence, the proof is completed. �

Remark 4. If we take x = a+b
2 and y = c+d

2 in Theorem 4; then we have the
mid-point inequality������

bZ
a

dZ
c

f (t; s) dsdt+ (b� a) (d� c) f
�
a+ b

2
;
c+ d

2

�

� (d� c)
bZ
a

f

�
t;
c+ d

2

�
dt� (b� a)

dZ
c

f

�
a+ b

2
; s

�
ds

������
� (b� a)1+

1
q (d� c)1+

1
q

4 (q + 1)
2
q

kftsk1

which was pgiven by Dragomir et al. in [5].

Remark 5. If we choose h = 0 in Theorem 4, then we have������(b� a) (d� c) f(x; y)� (d� c)
bZ
a

f(t; y)dt

� (b� a)
dZ
c

f(x; s)ds+

bZ
a

dZ
c

f(t; s)dsdt

������
�





 @n+mf@tn@sm






p

"
(x� a)q+1 + (b� x)q+1

q + 1

# 1
q

�
"
(y � c)q+1 + (d� y)q+1

q + 1

# 1
q
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which was proved by Dragomir et al. in [5].

Remark 6. Under the same assumptions of Theorem 4 with h = 1 and (x; y) =
(a; c) ; then the following inequality hols:������f (a; c) + f (a; d) + f (b; c) + f (b; d)4

+
1

(b� a) (d� c)

bZ
a

dZ
c

f (t; s) dsdt

�1
2

24 1

d� c

dZ
c

[f (b; s) + f (a; s)] ds+
1

b� a

bZ
a

[f (t; d) + f (t; c)] dt

35������
� (b� a)1+

1
q (d� c)1+

1
q

4 (q + 1)
2
q

kftsk1 :

Similarly, if we choose (x; y) = (a; d) or (x; y) = (b; c) or (x; y) = (b; d) for h = 1
in Theorem 4, then we deduce inequalities which are the same of the above result.
For convenience, we give the following notations used to simplify the details of

the next theorem,

A = (b� a)
"
(x� a)2

2
� (x� a)mh(x)

#
+
(b� x)3 � (x� a)3

3

+

"�
b� a
2

�2
+

�
x� a+ b

2

�2#
mh(x)�

[mh(x)]
3

3
;

B = (b� a)
"
(b� x)2

2
+ (b� x)mh(x)

#
� (b� x)

3 � (x� a)3

3

�
"�
b� a
2

�2
+

�
x� a+ b

2

�2#
mh(x) +

[mh(x)]
3

3
;

C = (d� c)
"
(y � c)2

2
� (y � c)mh(y)

#
+
(d� y)3 � (y � c)3

3

+

"�
d� c
2

�2
+

�
y � c+ d

2

�2#
mh(y)�

[mh(y)]
3

3

and

D = (d� c)
"
(d� y)2

2
+ (d� y)mh(y)

#
� (d� y)

3 � (y � c)3

3

�
"�
d� c
2

�2
+

�
y � c+ d

2

�2#
mh(y) +

[mh(y)]
3

3
:

We give some inequalities by using convexity of jfts (t; s)j in the following theorem.

Theorem 5. Suppose that all the assumptions of Lemma 1 hold. If jfts (t; s)j is a
convex function on the co-ordinates on [a; b]� [c; d]; then the following inequalities
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hold:

jSh (x; y; s; t)j(2.10)

� jfts (a; c)j
(b� a) (d� c)AC +

jfts (a; d)j
(b� a) (d� c)A

h
D + (d� c) [mh(y)]

2
i

+
jfts (b; c)j

(b� a) (d� c)

h
B + (b� a) [mh(x)]

2
i
C

+
jfts (b; d)j

(b� a) (d� c)

h
B + (b� a) [mh(x)]

2
i h
D + (d� c) [mh(y)]

2
i

for all a � x � a+b
2 and c � y � c+d

2

jSh (x; y; s; t)j(2.11)

� jfts (a; c)j
(b� a) (d� c)A

h
C + (d� c) [mh(y)]

2
i
+

jfts (a; d)j
(b� a) (d� c)AD

+
jfts (b; c)j

(b� a) (d� c)

h
B + (b� a) [mh(x)]

2
i h
C + (d� c) [mh(y)]

2
i

+
jfts (b; d)j

(b� a) (d� c)

h
B + (b� a) [mh(x)]

2
i
D

for all a � x � a+b
2 and c+d

2 � y � d

jSh (x; y; s; t)j(2.12)

� jfts (a; c)j
(b� a) (d� c)

h
A+ (b� a) [mh(x)]

2
i
C

+
jfts (a; d)j

(b� a) (d� c)

h
A+ (b� a) [mh(x)]

2
i h
D + (d� c) [mh(y)]

2
i

+
jfts (b; c)j

(b� a) (d� c)BC +
jfts (b; d)j

(b� a) (d� c)B
h
D + (d� c) [mh(y)]

2
i

for all a+b2 � x � b and c � y � c+d
2

jSh (x; y; s; t)j(2.13)

� jfts (a; c)j
(b� a) (d� c)

h
A+ (b� a) [mh(x)]

2
i h
C + (d� c) [mh(y)]

2
i

+
jfts (a; d)j

(b� a) (d� c)

h
A+ (b� a) [mh(x)]

2
i
D

+
jfts (b; c)j

(b� a) (d� c)B
h
C + (d� c) [mh(y)]

2
i
+

jfts (b; d)j
(b� a) (d� c)BD

for all a+b2 � x � b and c+d
2 � y � d; where mh(x) = h

�
x� a+b

2

�
and mh(y) =

h
�
y � c+d

2

�
; h 2 [0; 2].

Proof. If we take absolute value of (2.1), then we get

jSh (x; y; s; t)j

�
bZ
a

dZ
c

jPh (x; t)j jQh (y; s)j jfts (t; s)j dsdt:
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Since jfts (t; s)j is a convex function on the co-ordinates on [a; b]� [c; d]; we have����fts� b� tb� aa+
t� a
b� ab;

d� s
d� c c+

s� c
d� cd

�����(2.14)

� (b� t) (d� s)
(b� a) (d� c) jfts (a; c)j+

(b� t) (s� c)
(b� a) (d� c) jfts (a; d)j

+
(t� a) (d� s)
(b� a) (d� c) jfts (b; c)j+

(t� a) (s� c)
(b� a) (d� c) jfts (b; d)j :

Utilizing the inequality (2.14), we obtain

jSh (x; y; s; t)j(2.15)

� jfts (a; c)j
(b� a) (d� c)

24 bZ
a

(b� t) jPh (x; t)j dt

3524 dZ
c

(d� s) jQh (y; s)j ds

35
+

jfts (a; d)j
(b� a) (d� c)

24 bZ
a

(b� t) jPh (x; t)j dt

3524 dZ
c

(s� c) jQh (y; s)j ds

35
+

jfts (b; c)j
(b� a) (d� c)

24 bZ
a

(t� a) jPh (x; t)j dt

3524 dZ
c

(d� s) jQh (y; s)j ds

35
+

jfts (b; d)j
(b� a) (d� c)

24 bZ
a

(t� a) jPh (x; t)j dt

3524 dZ
c

(s� c) jQh (y; s)j ds

35
We observe that

bZ
a

(b� t) jPh (x; t)j dt = (b� a)
xZ
a

jt� a�mh(x)j dt(2.16)

�
xZ
a

(t� a) jt� a�mh(x)j dt+
bZ
x

(b� t) jt� b�mh(x)j dt:

Now, let us observe that
rZ
p

jt� pj jt� qj dt =

qZ
p

(t� p) (q � t) dt+
rZ
q

(t� p) (t� q) dt(2.17)

=
(q � p)3

3
+
(r � p)3

3
� (q � p) (r � p)

2

2

for all r; p; q such that p � q � r:
We investigate integrals given in the equality (2.16) for the cases a � x � a+b

2

and a+b
2 � x � b;

For all a � x � a+b
2 ; we have

xZ
a

jt� a�mh(x)j dt =
(x� a)2

2
� (x� a)mh(x);
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xZ
a

(t� a) jt� a�mh(x)j dt =
(x� a)3

3
� (x� a)

2

2
mh(x)

and using the equality (2.17) for second integral, we get

bZ
x

jb� tj jt� b�mh(x)j dt = �
[mh(x)]

3

3
+
(b� x)3

3
+
(b� x)2

2
mh(x):

For all a+b2 � x � b; we have
xZ
a

jt� a�mh(x)j dt =
(x� a)2

2
� (x� a)mh(x) + [mh(x)]

2
;

bZ
x

jb� tj jt� b�mh(x)j dt =
(b� x)3

3
+
(b� x)2

2
mh(x)

and using the equality (2.17), we obtain
xZ
a

ja� tj jt� a�mh(x)j dt =
[mh(x)]

3

3
+
(x� a)3

3
� (x� a)

2

2
mh(x):

Then, we write

bZ
a

(b� t) jPh (x; t)j dt = A

for all a � x � a+b
2 and

bZ
a

(b� t) jPh (x; t)j dt = A+ (b� a) [mh(x)]
2

for all a+b2 < x � b:
Similarly, we easily deduce the other integrals given in the inequality (2.15) for

cases a � x � a+b
2 ;

a+b
2 < x � b; c � y � c+d

2 and c+d
2 � y � d: If we substitute

the resulting inequalities for all cases in (2.15), we obtain desired inequalities. The
proof is thus completed. �

Remark 7. If we take x = a+b
2 and y = c+d

2 in Theorem 5; then we have the
mid-point inequality������

bZ
a

dZ
c

f (t; s) dsdt+ (b� a) (d� c) f
�
a+ b

2
;
c+ d

2

�

� (d� c)
bZ
a

f

�
t;
c+ d

2

�
dt� (b� a)

dZ
c

f

�
a+ b

2
; s

�
ds

������
� (b� a)2 (d� c)2

16

�
jfts (a; c)j+ jfts (a; d)j+ jfts (b; c)j+ jfts (b; d)j

4

�
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which was given by Latif and Dragomir in [10].

Corollary 1. Under the same assumptions of Theorem 5 with h = 0; we get the
inequality������

bZ
a

dZ
c

f(s; t)dtds+ (d� c)(b� a)f(x; y)

�

24(b� a) dZ
c

f(x; t)dt+ (d� c)
bZ
a

f(s; y)ds

35������
�

"
(b� a) (x� a)

2

2
+
(b� x)3 � (x� a)3

3

#

�
(

jfts (a; c)j
(b� a) (d� c)

"
(d� c) (y � c)

2

2
+
(d� y)3 � (y � c)3

3

#

+
jfts (a; d)j

(b� a) (d� c)

"
(d� c) (d� y)

2

2
� (d� y)

3 � (y � c)3

3

#)

+

"
(b� a) (b� x)

2

2
� (b� x)

3 � (x� a)3

3

#

�
(

jfts (b; c)j
(b� a) (d� c)

"
(d� c) (y � c)

2

2
+
(d� y)3 � (y � c)3

3

#

+
jfts (b; d)j

(b� a) (d� c)

"
(d� c) (d� y)

2

2
� (d� y)

3 � (y � c)3

3

#)
for all (x; y) 2 [a; b]� [c; d]:

Remark 8. If we take (x; y) = (a; c) for h = 1 in the inequality (2.10); then we
have the result������f (a; c) + f (a; d) + f (b; c) + f (b; d)4

+
1

(b� a) (d� c)

bZ
a

dZ
c

f (t; s) dsdt

�1
2

24 1

d� c

dZ
c

[f (b; s) + f (a; s)] ds+
1

b� a

bZ
a

[f (t; d) + f (t; c)] dt

35������
� (b� a) (d� c)

16

�
jfts (a; c)j+ jfts (a; d)j+ jfts (b; c)j+ jfts (b; d)j

4

�
which was proved Sarikaya et al. in [19].

Similarly, if we choose (x; y) = (a; d) in (2.11) or (x; y) = (b; c) in (2.12) or
(x; y) = (b; d) in (2.13) for h = 1, then we obtain inequalities which are the same
of the above result.

Theorem 6. Suppose that all the assumptions of Lemma 1 hold. If jfts (t; s)jq is
a convex function on the co-ordinates on [a; b] � [c; d]; 1p +

1
q = 1 and q > 1; then
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the following inequality holds:

jSh (x; y; s; t)j

� (b� a)
1
q (d� c)

1
q

"
[b� x+mh(x)]

p+1
+ [x� a�mh(x)]

p+1

p+ 1

# 1
p

�
"
[d� y +mh(y)]

p+1
+ [y � c�mh(y)]

p+1

p+ 1

# 1
p

�
�
jfts (a; c)jq + jfts (a; d)jq + jfts (b; c)jq + jfts (b; d)jq

4

� 1
q

for all (x; y) 2 [a; b]� [c; d]; where mh(x) = h
�
x� a+b

2

�
and mh(y) = h

�
y � c+d

2

�
;

h 2 [0; 2].

Proof. Taking absolute value of (2.1) and using Hölder�s inequality, we �nd that

jSh (x; y; s; t)j

�

0@ bZ
a

dZ
c

jPh (x; t)jp jQh (y; s)jp dsdt

1A
1
q
0@ bZ
a

dZ
c

jfts (t; s)jq dsdt

1A
1
q

By similar methods in the proof of Theorem 4, we obtain24 bZ
a

dZ
c

jPh (x; t)jp jQh (y; s)jp dsdt

35
1
q

=

"
[b� x+mh(x)]

p+1
+ [x� a�mh(x)]

p+1

p+ 1

# 1
p

�
"
[d� y +mh(y)]

p+1
+ [y � c�mh(y)]

p+1

p+ 1

# 1
p

:

Since jfts (t; s)jq is a convex function on the co-ordinates on �; we have����fts� b� tb� aa+
t� a
b� ab;

d� s
d� c c+

s� c
d� cd

�����q(2.18)

� (b� t) (d� s)
(b� a) (d� c) jfts (a; c)j

q
+
(b� t) (s� c)
(b� a) (d� c) jfts (a; d)j

q

+
(t� a) (d� s)
(b� a) (d� c) jfts (b; c)j

q
+
(t� a) (s� c)
(b� a) (d� c) jfts (b; d)j

q
:

Using the inequality (2.18), it follows that0@ bZ
a

dZ
c

jfts (t; s)jq dsdt

1A
1
q

� (b� a)
1
q (d� c)

1
q

�
�
jfts (a; c)jq + jfts (a; d)jq + jfts (b; c)jq + jfts (b; d)jq

4

� 1
q
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The proof is thus completed. �
Remark 9. If we take x = a+b

2 and y = c+d
2 in Theorem 6; then we have the

mid-point inequality������
bZ
a

dZ
c

f (t; s) dsdt+ (b� a) (d� c) f
�
a+ b

2
;
c+ d

2

�

� (d� c)
bZ
a

f

�
t;
c+ d

2

�
dt� (b� a)

dZ
c

f

�
a+ b

2
; s

�
ds

������
� (b� a)2 (d� c)2

4 (q + 1)
2
q

�
jfts (a; c)jq + jfts (a; d)jq + jfts (b; c)jq + jfts (b; d)jq

4

� 1
q

which was deduced by Latif and Dragomir in [10].

Corollary 2. If we choose h = 0 in Theorem 6, then we have������(b� a) (d� c) f(x; y)� (d� c)
bZ
a

f(t; y)dt

� (b� a)
dZ
c

f(x; s)ds+

bZ
a

dZ
c

f(t; s)dsdt

������
� (b� a)

1
q

"
(b� x)p+1 + (x� a)p+1

p+ 1

# 1
p

� (d� c)
1
q

"
(d� y)p+1 + (y � c)p+1

p+ 1

# 1
p

�
�
jfts (a; c)jq + jfts (a; d)jq + jfts (b; c)jq + jfts (b; d)jq

4

� 1
q

which is a Ostrowski type inequality for co-ordinated convex mappings.

Remark 10. Under the same assumptions of Theorem 6 with h = 1 and (x; y) =
(a; c) ; then the following inequality hols:������f (a; c) + f (a; d) + f (b; c) + f (b; d)4

+
1

(b� a) (d� c)

bZ
a

dZ
c

f (t; s) dsdt

�1
2

24 1

d� c

dZ
c

[f (b; s) + f (a; s)] ds+
1

b� a

bZ
a

[f (t; d) + f (t; c)] dt

35������
� (b� a)2 (d� c)2

4 (q + 1)
2
q

�
jfts (a; c)jq + jfts (a; d)jq + jfts (b; c)jq + jfts (b; d)jq

4

� 1
q

which was proved Sarikaya et al. in [19].

Similarly, if we choose (x; y) = (a; d) or (x; y) = (b; c) or (x; y) = (b; d) for h = 1
in Theorem 6, then we deduce inequalities which are the same of the above result.
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3. Applications to Cubature Formulae

We now consider applications of the integral inequalities developed in the pre-
vious section, to obtain estimates of cubature formula which, it turns out have a
markedly smaller error than that which may be obtained by the classical results.
Let In : a = x0 < x1 < ::: < xn�1 < xn = b and Jm : c = y0 < y1 < ::: < ym�1 <

ym = d be divisions of the intervals [a; b] and [c; d] ; �i 2 [xi; xi+1] (i = 0; :::; n� 1)
and �j 2 [yj ; yj+1] (j = 0; :::;m� 1) : Consider the sum

T (f; In; Jm; �; �)(3.1)

: =
n�1X
i=0

m�1X
j=0

lj

xi+1Z
xi

f
�
t; �j

�
dt+

n�1X
i=0

m�1X
j=0

ki

yj+1Z
yj

f (�i; s) ds�
n�1X
i=0

m�1X
j=0

kiljf
�
�i; �j

�

�
n�1X
i=0

m�1X
j=0

mh(�i)

yj+1Z
yj

[f (xi+1; s)� f (xi; s)] ds

�
n�1X
i=0

m�1X
j=0

mh(�j)

xi+1Z
xi

[f (t; yj+1)� f (t; yj)] dt

+
n�1X
i=0

m�1X
j=0

ljmh(�i)
�
f
�
xi+1; �j

�
� f

�
xi; �j

��
+
n�1X
i=0

m�1X
j=0

kimh(�j) [f (�i; yj+1)� f (�i; yj)]

�
n�1X
i=0

m�1X
j=0

mh(�i)mh(�j) [f (xi; yj)� f (xi; yj+1)� f (xi+1; yj) + f (xi+1; yj+1)]

where ki = xi+1 � xi; lj = yj+1 � yj (i = 0; :::; n� 1; j = 0; :::;m� 1) ; mh(�i) =

h
�
�i �

xi+xi+1
2

�
and mh(�j) = h

�
�j �

yj+yj+1
2

�
:

Theorem 7. Let f : [a; b] � [c; d]! R be an absolutely continuous function such
that the partial derivative of order 2 exists for all (t; s) 2 [a; b]� [c; d]: If fts = @2f

@t@s
exists on (a; b)� (c; d) and is bounded; i.e.,

kftsk1 = sup
(t;s)2(xi;xi+1)�(yj ;yj+1)

����@2f(t; s)@t@s

���� <1:
Then we have the representation

bZ
a

dZ
c

f(t; s)dsdt = T (f; In; Jm; �; �) +R(f; In; Jm; �; �)
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where S(f; f 0; �; In) is as de�ned in (3.1) and the remainder satis�es the astima-
tions:

jR(f; In; Jm; �; �)j(3.2)

�
n�1X
i=0

m�1X
j=0

"
k2i
4
+

�
�i �

xi + xi+1
2

�2
+ (h� 2)

�
�i �

xi + xi+1
2

�
mh(�i)

#

�
"
l2i
4
+

�
�j �

yj + yj+1
2

�2
+ (h� 2)

�
�j �

yj + yj+1
2

�
mh(�j)

#
kftsk1

for all (�i; �j) 2 [xi; xi+1]� [yj ; yj+1] with (i = 0; :::; n� 1; j = 0; :::;m� 1) ; where
mh(�i) = h

�
�i �

xi+xi+1
2

�
and mh(�j) = h

�
�j �

yj+yj+1
2

�
with h 2 [0; 2]:

Proof. Applying Theorem 3 on the interval [xi; xi+1]�[yj ; yj+1]; (i = 0; :::; n� 1; j = 0; :::;m� 1) ;
we obtain�������

xi+1Z
xi

yj+1Z
yj

f(t; s)dsdt� lj

xi+1Z
xi

f
�
t; �j

�
dt� ki

yj+1Z
yj

f (�i; s) ds+ kiljf
�
�i; �j

�

+mh(�i)

yj+1Z
yj

[f (xi+1; s)� f (xi; s)] ds+mh(�j)

xi+1Z
xi

[f (t; yj+1)� f (t; yj)] dt

�ljmh(�i)
�
f
�
xi+1; �j

�
� f

�
xi; �j

��
� kimh(�j) [f (�i; yj+1)� f (�i; yj)]

+mh(�i)mh(�j) [f (xi; yj)� f (xi; yj+1)� f (xi+1; yj) + f (xi+1; yj+1)]
��

� kftsk1

"
k2i
4
+

�
�i �

xi + xi+1
2

�2
+ (h� 2)

�
�i �

xi + xi+1
2

�
mh(�i)

#

�
"
l2i
4
+

�
�j �

yj + yj+1
2

�2
+ (h� 2)

�
�j �

yj + yj+1
2

�
mh(�j)

#
for all i = 0; :::; n� 1; j = 0; :::;m� 1:
Summing over i from 0 to n�1 and over j from 0 to m�1 using the generalized

triangle inequality we obtain the estimations (3.2). �

Remark 11. If we take h = 0 in Theorem 7, then we recapture the cubature formula
bZ
a

dZ
c

f(t; s)dsdt = T (f; In; Jm; �; �) +R(f; In; Jm; �; �)

where the remainder R(f; In; Jm; �; �) satis�es the estimation:

jR(f; In; Jm; �; �)j(3.3)

� kftsk1
n�1X
i=0

m�1X
j=0

"
k2i
4
+

�
�i �

xi + xi+1
2

�2#"
l2i
4
+

�
�j �

yj + yj+1
2

�2#
which was given by Barnett and Dragomir in [2].
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It is clear that inequalities (3.2) and (3.3) are much better than the clasical
avereges of the remainders of the Midpoint cubatures.

Remark 12. If we choose �i =
xi+xi+1

2 and �j =
yj+yj+1

2 in Theorem 7, then we
recapture the midpoint cubature formula

bZ
a

dZ
c

f(t; s)dsdt = TM (f; In; Jm) +RM (f; In; Jm)

where the remainder RM (f; In; Jm) satis�es the estimation:

jRM (f; In; Jm)j �
kftsk1
16

n�1X
i=0

k2i

m�1X
j=0

l2j :
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