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Abstract. We establish a new generalization of weighted Ostrowski type in-
equality for mappings of bounded variation. Spacial cases of this inequality
reduce some well known inequalities. With the help of obtained inequality, we
give applications for the kth moment of random variables.

1. Introduction

In 1938, Ostrowski established the integral inequality which is one of the funde-
mental inequalit¬es of mathematic as follows (see, [22]):
Let f : [a; b]! R be a di¤erentiable mapping on (a; b) whose derivative f

0
:

(a; b)! R is bounded on (a; b); i.e., kf 0k1 = sup
t2(a;b)

jf 0(t)j <1: Then, the inequality

holds:

(1.1)

������f(x)� 1

b� a

bZ
a

f(t)dt

������ �
"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a) kf 0k1

for all x 2 [a; b]: The constant 14 is the best possible.
This inequality is well known in the literature as the Ostrowski inequality.
The inequality (1.1) has attracted remarkable attention from mathematicians

and researchers. Because of this, over the years researchers have devoted much
time and e¤ort to the improvement and generalization of (1.1) for several functions
(bounded function, function of bounded variation, etc.).
Firstly, we start introducing concept of bounded variation:

De�nition 1. Let P : a = x0 < x1 < ::: < xn = b be any partition of [a; b] and let
�f(xi) = f(xi+1)� f(xi) Then f(x) is said to be of bounded variation if the sum

nX
i=1

j�f(xi)j

is bounded for all such partitions.
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Let f be of bounded variation on [a; b], and
P
(P ) denotes the sum

nX
i=1

j�f(xi)j

corresponding to the partition P of [a; b]. The number

b_
a

(f) := sup
nX

(P ) : P 2 P([a; b])
o
;

is called the total variation of f on [a; b] : Here P([a; b]) denotes the family of par-
titions of [a; b] :

A similar result (1.1) is obtained by Dragomir in [14] for functions of bounded
variation as follow:

Theorem 1. Let f : [a; b]! R be a mapping of bounded variation on [a; b] : Then

(1.2)

������
bZ
a

f(t)dt� (b� a) f(x)

������ �
�
1

2
(b� a) +

����x� a+ b2
����� b_

a

(f)

holds for all x 2 [a; b] : The constant 12 is the best possible.

For recent new results regarding Ostrowski�s type inequalities for functions of
bounded variation see [3],[7],[9]-[11], [13]-[19], [21], [25].
In [20], Liu proved the following weighted Ostrowski type inequality for functions

of bounded variation:

Theorem 2. Let f : [a; b] ! R be a mapping of bounded variation; g : [a; b] !
(0;1) continious and positive mapping on (a; b) : Then for any x 2 [a; b] and � 2
[0; 1] we have ������(1� �)

0@ bZ
a

g(u)du

1A f(x)(1.3)

+�

240@ xZ
a

g(u)du

1A f(a) +
0@ bZ
x

g(u)du

1A f(b)
35� bZ

a

f(t)g(t)dt

������
�

�
1

2
+

����12 � �
�����
241
2

bZ
a

g(u)du+

������
xZ
a

g(u)du� 1
2

bZ
a

g(u)du

������
35 bW
a
(f)

where
b_
a

(f) is the total variation of f on the interval [a; b] : The constant
�
1
2 +

�� 1
2 � �

���
is the best possible.

In [5], Budak and Sar¬kaya gave the following weighted Ostrowski�s type inequal-
ities for mapping of bounded variation.

Theorem 3. Let In : a = x0 < x1 < ::: < xn = b be a division of the interval
[a; b] and �i (i = 0; 1; :::; n+ 1) be n + 2 points so that �0 = a; �i 2 [xi�1; xi]
(i = 1; :::; n) ; �n+1 = b. If f : [a; b] ! R is of bounded variation on [a; b] and
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w : [a; b] ! (0;1) be continious and positive mapping on (a; b) ; then we have the
inequalities: ������

nX
i=0

0@ �i+1Z
�i

w(u)du

1A f(xi)� bZ
a

f(t)w(t)dt

������(1.4)

�

241
2
v(L) + max

i2f0;1;:::;n�1g

1

2

������
�i+1Z
xi

w(u)du�
xi+1Z
�i+1

w(u)du

������
35 b_

a

(f)

� v(L)
b_
a

(f)

where �(L) := max fLij i = 0; :::; n� 1g ; Li =
xi+1Z
xi

w(u)du (i = 0; 1; :::; n� 1) and

b_
a

(f) is the total variation of f on the interval [a; b] :

A weighted generalization of trapezoid inequality for mappings of bounded vari-
ation was considered by Tseng et. al. [24]. Recently, researchers gave some weigted
Ostrowski type inequalities for functions of bounded variation in [5], [8], [26].
In [1] and [2], the authors proved some generalizations of weighted companion of
Ostrowski type inequality for mappings of bounded variation
In this paper, we establish a generalized weighted Ostrowski type integral in-

equality for mappings whose nth derivatives are of bounded variation. Then,we
recapture some results given in earlier works by using this inequalities. Finally,
some applications for the kth moment are given.

2. Main Results

In order to prove weighted integral inequalities, we need the following lemma:

Lemma 1. Let f : I � R! R be n+1 times di¤erentiable function on I�, a; b 2 I�
with a < b and let w : [a; b]! R be nonnegative and continuous on [a; b]. Then the
following equality holds:

(2.1)
nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt =

bZ
a

Pw (x; t) df
(n) (t)

where n 2 N; Mk(x) is de�ned by

Mk(x) =
bR
a

(u� x)k w (u) du; k = 0; 1; 2; :::

and

(2.2) Pn (x; t) :=

8>>>><>>>>:
1
n!

tR
a

(u� t)n w (u) du; a � t < x

1
n!

tR
b

(u� t)n w (u) du; x � t � b:
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Proof. Using the integration by parts in Riemann-Stieltjes integral, we have

bZ
a

Pn (x; t) df
(n) (t)

=
1

n!

xZ
a

0@ tZ
a

(u� t)n w (u) du

1A df (n) (t) + 1

n!

bZ
x

0@ tZ
b

(u� t)n w (u) du

1A df (n) (t)
=

1

n!

0@ bZ
a

(u� x)n w (u) du

1A f (n) (x) + bZ
a

Pn�1 (x; t) f
(n) (t) dt

By integration by parts n�times, we get
bZ
a

Pn�1 (x; t) f
(n) (t) dt =

Mn�1(x)

(n� 1)! f
(n�1) (x) + :::+

M2(x)

2!
f 00 (x)

+M1(x)f
0 (x) +M0(x)f (x)�

bZ
a

w (t) f (t) dt

which completes the proof. �

Now, we deduce generalized weighted inequality of Ostrowski type for mappings
whose nth derivatives are of bounded variation..

Theorem 4. Suppose that all the assumptions of Lemma 1 hold. Additionally, we
assume that f (n) is of bounded variation on [a; b], then we have the inequality������

nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������
� 1

n!

241
2

24 xZ
a

(x� u)n w (u) du+
bZ
x

(u� x)n w (u) du

35

+
1

2

������
xZ
a

(x� u)n w (u) du�
bZ
x

(u� x)n w (u) du

������
35 b_

a

(f (n))

for all x 2 [a; b] :

Proof. If we take absolute value of both sides of the equality (2.1), we get������
nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������
� 1

n!

24������
xZ
a

tZ
a

(t� u)n w (u) dudf (n) (t)

������+ 1

n!

������
bZ
x

bZ
t

(u� t)n w (u) dudf (n) (t)

������
35 :
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It is well known that if g; f : [a; b] ! R are such that g is continuous on [a; b] and

f is of bounded variation on [a; b] ; then
bR
a

g(t)df(t) exists and

(2.3)

������
bZ
a

g(t)df(t)

������ � sup
t2[a;b]

jg(t)j
b_
a

(f):

On the other hand, by using (2.3), we obtain������
nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������
� 1

n!

24 sup
t2[a;x]

������
tZ
a

(t� u)n w (u) du

������
x_
a

(fn) + sup
t2[x;b]

������
bZ
t

(u� t)n w (u) du

������
b_
x

(f (n))

35

=
1

n!

0@ xZ
a

(x� u)n w (u) du

1A x_
a

(fn) +
1

n!

0@ bZ
x

(u� x)n w (u) du

1A b_
x

(f (n))

� 1

n!

241
2

24 xZ
a

(x� u)n w (u) du+
bZ
x

(u� x)n w (u) du

35

+
1

2

������
xZ
a

(x� u)n w (u) du�
bZ
x

(u� x)n w (u) du

������
35 b_

a

(f (n)):

This completes the proof. �

Remark 1. If we take w(u) = 1 and n = 0 in Theorem 4, then we get the clasical
Ostrowski inequality (1.2) for function of bounded variation .

Remark 2. If we choose n = 1 in Theorem 4, then we obtain������
0@ bZ
a

(x� u)w (u) du

1A f 0 (x) +
0@ bZ
a

w (u) du

1A f (x)� bZ
a

w (t) f (t) dt

������
�

241
2

24 xZ
a

(x� u)w (u) du+
bZ
x

(u� x)w (u) du

35

+
1

2

������
xZ
a

(x� u)w (u) du�
bZ
x

(u� x)w (u) du

������
35 b_

a

(f 0)

which was given by Budak and Sarikaya in [6].
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Remark 3. If we choose n = 0 in Theorem 4, then we have the inequality������
0@ bZ
a

w (t) dt

1A f (x)� bZ
a

w (t) f (t) dt

������
�

241
2

bZ
a

w (t) dt+

������
xZ
a

w(t)dt� 1
2

bZ
a

w (t) dt

������
35 b_

a

(f)

which was proved by Liu. in [20].

Corollary 1. With the assumptions as in Theorem 4, we have the result������
nX
k=0

(b� x)k+1 � (a� x)k+1
(k + 1)!

f (k) (x)�
bZ
a

f (t) dt

������(2.4)

� 1

(n+ 1)!

�
1

2
(b� a) +

����x� a+ b2
�����n+1 b_

a

(f (n))

Proof. The proof is obvious from the property of maximummax fan; bng = (max fa; bg)n
for a; b > 0; n 2 N; if we take w(u) = 1: �

Remark 4. If we choose n = 1 in Corollary 1, we have the inequality������
�
a+ b

2
� x

�
f 0(x) + f(x)� 1

b� a

bZ
a

f(t)dt

������
� b� a

2

"
1

2
+

�����x� a+b
2

b� a

�����
#2 b_

a

(f 0)

which was given by Budak and Sarikaya in [6].

Corollary 2. In (2.4), if we choose,
i) x = a+b

2 ; then we have
(2.5)������

nX
k=0

(b� a)k+1
h
1 + (�1)k

i
2k+1 (k + 1)!

f (k)
�
a+ b

2

�
�

bZ
a

f (t) dt

������ � (b� a)n+1

2n+1 (n+ 1)!

b_
a

(f (n));

ii) x = a; then we have������
nX
k=0

(b� a)k+1
(k + 1)!

f (k) (a)�
bZ
a

f (t) dt

������ � (b� a)n+1
(n+ 1)!

b_
a

(f (n));

iii) x = b; then we have������
nX
k=0

(�1)k(b� a)k+1
(k + 1)!

f (k) (b)�
bZ
a

f (t) dt

������ � (b� a)n+1
(n+ 1)!

b_
a

(f (n)):
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Remark 5. If we choose n = 1 in (2.5), then we have the inequalities

������f
�
a+ b

2

�
� 1

b� a

bZ
a

f (t) dt

������ � b� a
8

b_
a

(f 0);

which was given by Liu in [21].

Corollary 3. Under the assumption of Theorem 4. Suppose that f 2 Cn+1 [a; b] ;
then we have

������
nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������
� 1

n!

241
2

24 xZ
a

(x� u)n w (u) du+
bZ
x

(u� x)n w (u) du

35
1

2

������
xZ
a

(x� u)n w (u) du�
bZ
x

(u� x)n w (u) du

������
35


f (n+1)




1
:

Here as subsequently k:k1 is the L1�norm




f (n+1)



1
:=

bZ
a

f (n+1)(t)dt:

Corollary 4. Under the assumption of Theorem 4. Let f (n) be a Lipschitzian with
the constant L > 0: Then the inequality holds:

������
nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������
� 1

n!

241
2

24 xZ
a

(x� u)n w (u) du+
bZ
x

(u� x)n w (u) du

35
1

2

������
xZ
a

(x� u)n w (u) du�
bZ
x

(u� x)n w (u) du

������
35 (b� a)L
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Corollary 5. Under the assumption of Theorem 4. Let f (n) be a monotone map-
ping on [a; b] : Then we have������

nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������
� 1

n!

241
2

24 xZ
a

(x� u)n w (u) du+
bZ
x

(u� x)n w (u) du

35
1

2

������
xZ
a

(x� u)n w (u) du�
bZ
x

(u� x)n w (u) du

������
35 hf (n)(b)� f (n)(a)i :

3. Some applications for the moments

We now deal with applications of the result developed in the previous section,
to obtain some new inequalities involving moments. Applying the mathematical
inequalities, some estimations
for the moments of random variables were recently studied (see, [4],[12],[18] and

[23]).
Set X to denote a random variable whose probability density function is w :

[a; b] ! [0;1) on the interval of real numbers I (a; b 2 I; a < b): Denoted by
Mr(x) the rth central moment of the random variable X, de�ned as

Mr(x) =
bR
a

(u� E(x))r w (u) du; r = 0; 1; 2; :::

where E(x) is the mean of the random variablesX. It may be noted thatM0(x) = 1;
M1(x) = 0, M2(x) = �

2(X) where �2(X) is the variance of the random variables
X.
Now, we reconsider the identity (3.1) by changing conditions given in Lemma 1.

Herewith, we deduce an identity involving rth moment.

Lemma 2. Let f : I � R! R be n+1 times di¤erentiable function on I�, a; b 2 I�
with a < b and and let X be a random variable whose p.d.f. is w : [a; b] ! [0;1).
Then the following equality holds:

(3.1)
nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt =

bZ
a

Pw (x; t) df
(n) (t)

where n 2 N; Mk(x) is the kth moment, and Pn (x; t) is de�ned as in (2.2).

Theorem 5. Suppose that all the assumptions of Lemma 2 hold. If f (n) is of
bounded variation on [a; b], then we have the inequality������

nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������
� 1

n!

�
b� a
2

+

����x� a+ b2
�����n b_

a

(f (n))

for all x 2 [a; b] :
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Proof. By similar methods in the proof of Theorem 4, we obtain������
nX
k=0

Mk(x)

k!
f (k) (x)�

bZ
a

w (t) f (t) dt

������
� 1

n!

0@ xZ
a

(x� u)n w (u) du

1A x_
a

(fn) +
1

n!

0@ bZ
x

(u� x)n w (u) du

1A b_
x

(f (n))

�

24 xZ
a

(x� u)n

n!
w (u) du+

bZ
x

(u� x)n

n!
w (u) du

35 b_
a

(fn)

We observe that
xZ
a

(x� u)n

n!
w(u)du+

bZ
x

(u� x)n

n!
w(u)du

� 1

n!

24 sup
u2[a;x]

(x� u)n
xZ
a

w(u)du+ sup
u2[x;b]

(u� x)n
bZ
x

w(u)du

35
=

1

n!

24(x� a)n xZ
a

w(u)du+ (b� x)n
bZ
x

w(u)du

35
� 1

n!
max f(x� a)n ; (b� x)ng

bZ
a

w(u)du

Because g is a p.d.f.,
bR
a

w(u)du = 1: Using the identity

max fX;Y g = X + Y

2
+

����Y �X2
���� ;

we get

max f(x� a)n ; (b� x)ng
bZ
a

g(u)du =

�
b� a
2

+

����x� a+ b2
�����n :

which completes the proof. �

Remark 6. If we choose n = 1 in theorem 7, we have the inequality������f (x)�
bZ
a

w (t) f (t) dt

������ �
�
b� a
2

+

����x� a+ b2
����� b_

a

(f 0):
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