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PERTURBED COMPANION OF OSTROWSKI TYPE
INEQUALITY FOR FUNCTIONS WHOSE FIRST DERIVATIVES
ARE OF BOUNDED VARIATION

IHUSEYIN BUDAK, !\MEHMET ZEKI SARIKAYA, 2ABDULLAH AKKURT,
AND 2HUSEYIN YILDIRIM

ABSTRACT. In this paper, some perturbed companions of Ostrowski type inte-
gral inequalities for functions whose first derivatives are of bounded variation
are established.

1. INTRODUCTION
In 1938, Ostrowski [29] established a following useful inequality:

Theorem 1. Let f : [a,b] — R be a differentiable mapping on (a,b) whose deriva-

tive " : (a,b) = R is bounded on (a,b), i.e. |f'|l = sup |f'(t)| < co. Then, we
te(a,b)

have the inequality

1, (o)
(MRS

b
) |- [ s <

1 (b—a)[lfll

for all x € [a,b].
The constant % is the best possible.

Definition 1. Let P:a =z < 21 < ... < &, = b be any partition of [a,b] and let
Af(x;) = f(wig1) — f(x;), then f is said to be of bounded variation if the sum

Z |Af ()]
i=1
is bounded for all such partitions.

Definition 2. Let f be of bounded variation on [a,b], and > Af (P) denotes the
sum Y |Af(x;)| corresponding to the partition P of [a,b]. The number
i=1

b

\V (1) i=sup {3 AF(P): P e P(la,b]) },
is called the total variation of f on [a,b]. Here P([a,b]) denotes the family of par-
titions of [a,b].

In [16], Dragomir proved the following Ostrowski type inequalities for functions
of bounded variation:
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Theorem 2. Let f : [a,b] — R be a mapping of bounded variation on [a,b]. Then

2

a

(12) /b s~ 0-a 16| < [ oo+ |- Vi

holds for all z € [a,b]. The constant & is the best possible.

For a function of bounded variation v : [a,b] — C. We define the Cumulative
Variation Function (CVF) V : [a;b] — [0,00) by

the total variation of v on the interval [a,t] with ¢ € [a, b].

It is know that the CVF is monotonic nondecreasing on [a,b] and is continuous
in a point ¢ € [a,b] if and only if the generating function v is continuing in that
point. If v is Lipschitzian with the constant L > 0, i.e.

[v(t) —v(s)| < Lt —s|, for any t,s € [a,b],

then V is also Lipschitzian with the same constant.
A simple proof of the following Lemma was given in [17].

Lemma 1. Let f,u : [a,b] — C. If f is continuous on [a,b] and u is of bounded

b
variation on [a,b], then the Riemann-Stieltjes integral [ f(t)du(t) exist and

(13) /f f)dut /|f |d< )><treng>§]|f |\/

In [8], authors obtained the following companion of Ostrowski type inequalities
for functions whose first derivatives are of bounded variation:

Theorem 3. Let f : [a,b] = R be such that f' is a continuous function of bounded
variation on [a,b]. Then we have the inequality

b

o [ = 3 15@) + fla+ b o)

a

t3 (o= 2 @ - e o-a)
1 [5(@—a)?=2@—a)(b—2z)+(b-1x) 3a+0|]\", .,
< 6[ — +4‘ - ’ \a/(f)

for any x € [a7 ’IT'H’] .

In the past, many authors have worked on Ostrowski type inequalities for func-
tions (bounded, of bounded variation, etc.) see for example ([1}-[10], [13]-[19],
[27],128],[30],[32]-[38]). Furthermore, several works were devoted to study of per-
turbed Ostrowski type inequalities for bounded functions and functions of bounded
variation, please refer to ([11],[12], [20]-[26],[31],[35]). In this study, we establish
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some perturbed companion of Ostrowski type inequalities for twice differentiable
functions whose second derivatives are either bounded or of bounded variation.

2. SOME IDENTITIES

Before we start our main results, we state and prove the following lemma:

Lemma 2. Let f : [a,b] — C be a twice differantiable function on (a,b). Then for
any \i(x), i = 1,2,3 complex number and all x € [a, “—er] the following identity

holds ’
(2.1)<$_3a2—b> fl(x)—fla+b—2x) f(m)+f(a+b—x)+ 1 /f(t)dt

2 2 b—a

3
_ﬁ l(gc —a)® (M(z) + X3(x)) +2 <a—21—b - x) )\g(x)]

z a+b—zx 9
- = [/(t—a)zd[f/(t)—/h(x)t]-i- [ (1=57) o - xn

a x

b
+ / (t—=b)*d[f'(t) - As(fﬂ)t]} :
a+b—zx

Proof. Using the integration by parts, we have

xT

(2.2) / (t— a2 d[f'(t) - M(2)1]

_ /ﬂfafﬂﬁﬂ—Am@/@—afﬁ

P ) - 20— o) +2 [ sy - 2 o
a+b—x 9 '
(2.3) / G—a;ﬁ d[f'(t) — Mo(z)1]
aib—m 9 a+b—z 9
- / (t—a;’b> df'(t) — Mo () / (t—a;b> dt
- () ere-n - s
a+b—x

|

“;bx)um+b@+fun+2‘/ F(t)dt

€T
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and
b
(24) [ =0l - e
a+b—x
b b
= [ e-varn-xne [ vt
a+b—x a+b—x
= —(x—-a)’fllatb—2a)—2(x—a)fla+b—x)
b A
42 / F(t)dt — % (@ —a)’.
at+b—2x
If we add the equality (2.2)-(2.4) and divide by 2(b — a), we obtain required
identity. O

Corollary 1. Under assumption of Lemma 2 with A;(x) = N\;,1=1,2,3
i) if we choose x = a, we have

b

A : fla)+f(b) 1 (b—a)?
(25) s o) - ) - BT 2 [ a -
b 2
- ma /(-5 e -,
i1) if we choosean:aTH’7 we have

b
a—i—b) B (b;a) (Ot + A)

(2.6) bla/f(t)dt—f( ! :

_ Q(bia) / (t—a) d[f'(t) — Ait] + /b (t— )2 d[f (1) — Nst] |,
i11) if we choose x = 3"4”’, we have 2
(2.7) b_la/bf(t)dt —% [f (3a: b) +f (az?’b)] - (b?;gZ)Q (A +2X2 + \3)
- ﬁ 7(t—a)2d[f’(t) — \it] + / (t— “;b)Qd[f’(t) — Aot

4

b
b [ -l - s

4
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Corollary 2. If we take A\ = —\3 in (2.6), then we get

f(t)dt — f (“;b>

o>

| | =
IS
@\&

b
(=l dlf - ne+ [ =0l + ]

2

and choosing \y = A3 = —\y in (2.7), we have the inequality

[ L () (1)

= 2<b1_a) 7(ta)2d[f’(t)A1t]+73b<ta;b>2d[f’(t)+klt]dt

b
—F/(#wfﬂfw—Aﬂ

a+3b
1

3. INEQUALITIES FOR FUNCTIONS WHOSE FIRST DERIVATIVES ARE OF
BOUNDED VARIATION

We denote by ¢ : [a,b] — [a,b] the identity function, namely ¢(t) = ¢ for any
t€la,b].

Theorem 4. Let: f : [a,b] — C be a twice differantiable function on I° and [a,b] C
I°. If the first derivative f' is of bounded variation on [a,b], then

(3.1)
b
s s, o
3
—ﬁ l(x_a)3()\1($)+)\3(x))+2(a+b_g[;) Do) ‘
bia /<t_a) <\/(f’—A1(w)f)> dt + / (a;b —t> (\/(f’—&(x)@)) dt

b

+ / (t_a;rb) (aJF\b/_w(f'_,b(x)é)) dt + / (b—t)( \t/ (f’—/\g(x)e)> dt

a+b t at+b—x atb—x
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2 a+b—x

o) V(= el

x

1 (s a+b
= 20 -a) [(f—a)2Y(f —Al(x)e)+< ;

b
+a—a)* \/ (f - A3(96)5)]

<
2(b—a) [2(:1:—a)2+(“7+b z)Q}
s {\f{(f’ “n@0. V(0. V- A3<x>f>}

for all x € [a, “T'H’] .

Proof. Taking the modulus identity (2.1) and using Lemma 1, we have

(3.2)
b
‘(x_i%az—b) f(x)—f;a—i—b—x) _f(x)+f(;+b—x)+bia/f(t)dt
3
_ﬁ l(gc—a)3()\1(x)+)\3(x))+2(a;b—x) Ao ()

z at+b—x 9
= ﬁ [/(t—a)Qd[f’(t)—Al(x)t] + / (t—a"2”’> d[f(t) — Aa(2)t]
b
+L / (t—b)Zd[f’(t)—As(w)t]]
+b—x
1 [ s (G
S 0—a) L/(ta) d(\a/(f )\1(58)5))
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Using the integration by parts in the Riemann-Stieltjes integral, we get

(3.3) / (t—a)’d (\/(f’ - Al(x)f)>

a
a

/ (t - a;b)zd (\t/(f’ _ Ag(x)£)>

’ at+b—x a+b—x ¢
P / <t— “;Lb> (\/(f’ - AQ(x)/z)> dt

a

a+b—zx 2 x
\ (f - Az(x)f)) - (x - a;b) (\/(f’ - Az(mﬂ))

a a

B a—l—b_ 2

/X

_ / (“‘;b_t) <\:/(f’—A2(x)€)> dt+2a+/b_$(t—a; b) (ﬁ\i/_w(f'—Ag(x)e)) dt

a+b
2



SHUSEYIN BUDAK, 'MEHMET ZEKI SARIKAYA, 2ABDULLAH AKKURT, AND HUSEYIN YILDIRIM

and

b t
(3~5)/ (t—b)*d (\/(f’ - )\3(55)£)>

a+b—x @
b b

—2 [ -V

atb—zx at+b—z

= (=" (' = @)

a+b—zx b t
= —(z—a)’ ( V (- Ag(l‘)@) -2 / (t—1b) (\/(f’ - As(@)@) di
a at+b—x a
b a+b—zx b t
- 9 / (b—t) ( \V (f - Ag(x)£)> dt +2 / (b—1t) (\/(f/ - Ag(:c)e)> dt
a+b—x @ at+b—x a
b

- 2 / (b—t)( \/ (f’—Ag(a:)E))dt.

at+b—z +o—z

If we substitute the equalities (3.3)-(3.5) in (3.2), we have the first inequality in
(3.1).
Here, we have

o) [ (\/(f'mme)) ar < (\/(f'wm) [

IA
RS
s <

=

|

>

[ )

&

S
o N—————
Tt
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a+b—z otz
(3.8) / (t = a;b> ( V (- Az(x)£)> it

t

atb—z atb—z
(\/ (f’—Az(x)f)> [ (-5

IN

and

b ¢
(59) / (b—t)( V (f’—As(w)€)> @

With the inequalities (3.6)-(3.9), we obtain the second inequality in (3.1).
The last inequality obvious by maximum properties.

Corollary 3. Under assumption of Theorem 4 with A1, A2, A3z € C,
i) if we choose x = a, then we have

—a a —a)®
g |t re - e - 1L g - B2,

IN
>
| | =
IS
I/
IS
o+
>
|
g
~
Ve
=
=
|
>~
(V]
~
N~—
~
Q
~

IN
—
S
|
S
@<w
—
i
|
>
]
S
\'_/
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i) if we choose x = “tb

5, then we have

b
a —a)?
(3.11) o [ = (50) - E

48

a+b

< bia /(ta)(\z/(f’)\lf))dt+

t

a+b
2

(b_a) a;b / ’ /
< = [V =20+ V(I =x0]

i11) if we choose x = 3‘ITH’, then we have

(3.12)

D) () -

Sath 3a+b ath
1 4 a+ b t ,
< — r_ _ _
< 5 / (t—a) \/ (f' = Ai0) | dt + / ( 5 t) 3>{b(f Aol) | dt
a Saz»b T
a+3b

S — o

+/4 (t_a—;b) (a\t;b(f/_,\Zg)) dt + (b—1) \t/(f’—A3£)> dt

6-a) [\ Vi b _
|V Vo V-

—Asl)

3a+b

Corollary 4. If we choose vy = —v3 in (3.11) and v1 = v3 = —2 in (3.12), then
we have the following inequality respectively,

b

. 1a/f(t)dtf<a;b>

a

(3.13)

a+b

a+b
2

2 b t
< bia /(t—a)(\t/(f'—Alz)> dt++/ (\/ f+)\€)

< (b_a) a;b ’ bW ’ ’
< S5 |V -xo+ Vir+no).

a+b
2
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and
(3.14)
b
1 1 3a+0b a+ 3b
o o= (57) <o (45)
1 N H b ¢
< r— /(ta)(\t/(f’/\le)>dt+ / (a;r t> (Syb(f’+/\£)>
a+43b , a423b b .
+/ (ta; )(\/(f’+A1€))dt+ / (b—1) \/(f’/\lé))dt
(b_a) 30,4+b %3!) b T
< 5 \a/(f’—AléHbeHe\/

4. INEQUALITIES FOR FUNCTIONS WHOSE FIRST DERIVATIVES ARE
LIPSCHITZIAN

Theorem 5. Let f : [a,b] = C be a twice differantiable function on I° and [a,b] C
I°. If f' — A (x)l is Lipschitzian with the constant Ki(x) on the interval [a,z],
f' = Xa(x)l is Lipschitzian with the constant Ko(x) on the interval [z,a + b — x],
and ' — X1 (x)€ is Lipschitzian with the constant K3(x) on the interval [a + b — x, b
then, for any x € [a, “TH’} and X\;i(z), i = 1,2,3 complex numbers, we have the
inequalities

(4.1)

($_3a2—b) f/(x)_fléa—i—b—x)_f(a:)-i—f(;—l—b—x)+bia/f(t>dt

3
_G(b;_a) [(x —a)* M\ (2) + Xs3(2)) + 2 <“;b - a:) )\2(33)] ‘

6(%_@ [Kl(x) (z — a)® 4 2K, () (

< sty eore (52

Proof. Tt is known that, if g : [¢,d] — C is Riemann integrable and u : [¢,d] —
(C is Lipschitzian with the constant K > 0, then the Riemann-Stieltje integral

a+b

IN

- x)3 + Ks(z) (x — a)g’]

max { K1 (x), Ko(z), K1 ()}

f g(t ) exist and

d
/ t)du(t)| < K / t)| dt.
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Taking the modulus (2.1), we get
(4.2)

(zSa:b> f/(x)flgaerw)f(x)+f(;+bx)+bia/f(t)dt

3
_ﬁ l(gc —a)® (M(z) + A3(x)) +2 (a;—b - x) )\2(1’)‘| ‘

2 at+b—zx 9

. 2dlf! a+b )

= -0 L/(t_a) d[f'(t) = M (2)i]| + ! (t— . > ALf'(t) — Xa(@)t]
b
+ (t =02 d[f'(t) — Aa()t]

+b/:r

1 x , at+b—zx a+b 9
< 30—a) Kl(x)/(t—a) dt + Ky (z) / (t— 5 )dt

3
= ﬁ [K1(m) (z —a)® + 2K, (z) (a;rb _x) + Ks(z) (2 — a)?,]

which completes the proof of the first inequality in (4.1).
For the second inequality, using the property of maximum in the last line in
(4.2), we have

Ki(z) (z — a)® + 2Ky () (a;—b - m) + K3(z) (# — a)®

3
< 2 l(;pa)M <a;b x) ]max{Kl(x),Kg(x),Kl(:r)}.

This proves the theorem. (I

Corollary 5. Under the assumption of Theorem 5, we have the following inequal-
ities for the spacial cases,
i) for x = <L,

b

b_la/f(t)dt—f<a;b) - “;;y )| < O [KI;KS}

a



<
- 96

(1]

2]

(3]

(4]

(5]

(6]
7]
(8]
(9]

(10]

(11]

(12]

(13]
(14]
(15]
[16]

(17)

(18]

[19]
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. _ 3atb
ii) for x = 4=

b
1 1 3a+b a+3b (b—a)?
b_a/f(t)dt_Q[f< 1 >+f< 1 ﬂ— 381 A1+ 2X2 + A3

(b—a)2 |:K1 + 2K, +K3:|
1 .
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