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AN IMPROVED VERSION OF PERTURBED COMPANION OF
OSTROWSKI TYPE INEQUALITIES

IM. Z. SARIKAYA, 1H. BUDAK, AND 2A. QAYYUM

ABSTRACT. The purpose of this paper is to establish an improved version
of perturbed companion of Ostrowski type integral inequalities for functions
whose first derivatives are either bounded or of bounded variation.

1. INTRODUCTION

In 1938, Ostrowski first announced his inequality result for different differen-
tiable mappings. Ostrowski inequality has potential applications in Mathematical
Sciences. In the past, many researchers have worked on Ostrowski type inequalities
for functions (bounded, of bounded variation, etc.) see for example ([1]-[6], [8]-
[11], [16],[17],[20]). Furthermore, several works were devoted to study of perturbed
Ostrowski type inequalities for bounded functions and functions of bounded vari-
ation, please refer to ([7], [12]-[15],[19]). The structure of this paper is as follows:
in Section 2 we present inequalities for mappings of bounded variation. In Section
3, we provide inequalities for functions whose derivatives are bounded. Finally, in
Section 4 we extend inequalities for Lipschitzian mappings. Some previous results
are recaptured as special cases.

Ostrowski proved a useful inequality, which gives an upper bound for the ap-
proximation of the integral average by the value of mapping at a certain point of
the interval, which is given below:

Theorem 1. [18] Let f : [a,b] — R be a differentiable mapping on (a,b) whose

derivative f' : (a,b) — R is bounded on (a,b), i.e. |f'|l = sup |f'(t)] < oo.
te(a,b)

Then, we have the inequality

R Dl

Ly |fa@) - TR

1 (b—a)[lfll

for all x € [a,b].

The constant % is the best possible.
In order to prove our inequalities, we need the following identity which although
of interest in itself.
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Lemma 1. Let f : [a,b] — C be an absolutely continuous on [a,b]. Then for any
Ai(x), i=1,2,....5 complex numbers, we have

atax
2

bia /(ta)[f’(t)Al(x)]dt+j<t3‘2”’) [f 7 (t) — Ao(a)] dt

(1.2) + a+/b_x<t - a;b) [ (t) = As(x)] dt
N +/(t ‘”43b> 7 (6) = M) dt + /b (t—b) [ (t) - As(x)] dt
atb—a g s
= i {f(:c)+f(a+bx)+f<a;w> +f<a+22b_x)] - bia/bf(t)dt
+ﬁ {(@ =) Do) = M ()]
. (x_a;b>2_4(x_3“jb>2 <A2<x>—x4<x>>}

for all x € [a, “7%] .

Proof. Using the integration by parts for Riemann-Stieltjes integral for each inte-
gral, we can easily obtain the desired result (1.2). O

Remark 1. By substituting x = a in (1.2), we get

bia/b(t_a;rb) £ 0 = adar = LOTIO L [

a a

which was given by Dragomir in [13].

Corollary 1. Choosing x = GTH’ in (1.2), we get

— 7(t—a>[f'<t>—A1]dt+ / (t—?’“j”) (1) = Ao dt

1
+§(b7a)[/\5+>\4*>\17)\2]
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Corollary 2. If we substitute z = 3%t in (1.2), we get

o [ emarr@-atas [ (-2 0 - xa

(=

—a

* 128

[As — A1+ A2 — A4

Now using above lemma, we will present inequalities via three diferent cases.

2. INEQUALITIES FOR MAPPINGS OF BOUNDED VARIATION

In this section we give some companion of perturbed Ostrowski inwqualities for
function whose derivatives are of bounded variation.

Let f: [a,b] = C be a differentiable function on I°(I° is the interior of I') and
[a,b] C I°.Then, from , we have for

No(z) = & (%); [ (=)
M) = LB+ (atb—)

flla+b—ax)+ f'(=2=2)
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a atz
2

x [f’(t) fl((y);f/(m)] «
+a:/b_$<ta;b) - LRy
atb—a

for any x € [a, “T'H’] .

Theorem 2. Let f : [a,b] = C be a differentiable function on I°(I° is the interior
of I) and [a,b] C I°. If the second derivative f' is of bounded variation on [a,b],
then,

b

@ faro-orr () v s (R -5t [0

a

=

1 2 / /
A CRONTMUEIM0)

% (x_a;—b)g_4<x_3a2—b)2
(5 s (247))
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1 atm /
< 8(b—a){<x_a)2 \a/ (f")

3a+b 3a+b\2 a+b\?
0eTr 4z — B

x

\V ()

ata
2

p\ 2ath-e B 2 B 2 atip—e
+4<xa; ) \/ (f+ 4<x3a: > <xa; ) \/ (£
x a+b—x

Proof. From (2.1),

1{f(x)+f(a+bﬂf)+f<a;x>+f<a+226_$>] *bia/f(t)dt

4 a
+§@§Ejgx—@%f%m—f'mn
% (x_a;b>2_4<x_3a:b)2

x(ﬂ<“§m>+f’@>f%a+b@f’(“+?_x>)ﬂ

. ot
ba{/taf”@f%@dt

IN

+jk—“jbww— : dt

U %a;b PR S TR

N 78‘15@2%’ f/(t)if'(a—l—b—a:);f’(%) "
i

+ f tbf%ﬂf%@d%.

Since f ' is of bounded variation on [a,b], we get

1f @)= f @ <\ (f)
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f’(t>_ 5 S%\/(f/)<\/(f/)

forte[‘HTm’x]

’ Flx)+f'(a+b—z) 1 atb—z /

o 2 <5V ()
for t € [v,a+ b — 2]

latb— (a2 tys atlpos

P s @;f( ; )S% PRV

atb—z a+b—x

fort € [a+b—x, “t2=2]

for t € [4E2=2 p].
Thus, we have

i{f(x)—&—f(a—kb—x)—kf(a;aj)+f<a+22b_x>] _biaa/f(t)dt
A CRRRMOEIO)
1 <m_a+b)2_4<x_3a+b)2

2 4

2

x <f'<a+2x>+f/(m)—f'(a+b—x)—f’(a+22b_m>)}‘

bla{ajr(ta)\:/(f')dt+/xt3ajb \7(f’)dt

IN

atax a;:z
2

26—z
atb—x at2b—z

a+b—x 2 !
+% / ’t_a;'b \/ (f ')y dt + / (G-Z?)b_t) \/ (f ) dt
* v at+b—zx a+b—x
b b
+ / wquvm}

2
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a+tx

3a+b
(t—adt+\/ /‘t— ot ’dt

a+7:

>
[ —
IS

a<
—
&,‘
\_/

@\N

a+42b—x

1ot e +b = / +3b
a a
+5 V ) / ‘t— ‘dH— \VAROR / < I —t>dt
x = a+b—x a+b—z

n 3a+b 1 4 3a+b 2 a+b 2
sgn | x 1 5 T 1 T 5

a+2b—=x
a+b\2r 3a+b\° a+b\?|
(et P22
x at+b—x
b
+@-a)® \/ ()
at+2b—zx
2
Here,
z 2 2
/t73a+b dt:l xiaer 71 z73a+b
4 8 2 2 4
ata
2
for x € [a, 3‘2”’] and
/t_?)a-i-b gL, b\ 1/ atb\?
2 4 8 2
atz
2
a+b a+b
forx€[3+, ;“]

This completes the proof.

Corollary 3. If we choose x = a in Theorem 2, then we get the Liu’s result [17].



8

M. Z. SARIKAYA, 'H. BUDAK, AND 2A. QAYYUM
Corollary 4.

Under assumption of Theorem 2 with x =

3a+b a+3b
;lf(a;‘b>+f( 1 )"’f( )

b
: ]bia/m)dt

a+b

5, we have

(b—a) |,, , () =1 (3%)
TRl lf )~ 1" () + TS
b
< (b;2a)\!(f’)~

3. INEQUALITIES FOR FUNCTIONS WHOSE DERIVATIVES ARE BOUNDED

Now, we obtain some inequalities for bounded function using the identity (1.2)
Recall the sets of complex-valued functions:

U[a,b] (7a F)

{f : [a,b] = C| Re [(1" — f(®) (m) —ﬂ > 0 for almast every t € [a,b}}

and

Ry (1) = {f a,b] — C| ‘f(t) - % < % T —~| for ace. t € [a,b]}.

Proposition 1. For any~v,T' € C, v # T, we have that U[a,b] (~,T) and Z[mb] (,T)
are nonempty and closed sets and

Ulay) (1, T) = Ajg ) (1, 1) .
Let Il = [a, a—’%} 5 IQ = [a;@
Iy = [2t2=2 ] .

727} Is = [$7a+b—$] = [a+b_$,%] and
Theorem 3. Let f : [a,b] —

C be
’Yl(x)7]-—‘z(x) S C, "}/1(57]) 7é I; l‘), 1 =

a differantiable function on (a,b). Suppose that
1,2,3,4,5 and

then we have the inequality

1

@ rar-a e () 1 (U] —bfaa/bfu)dt
15 —a7 L@ = o Ds(@) + T5(0) = () =T (o)
(x_a+b>2_4(x_3a+b>2
2 4

+

(v2(z) + T2(x) — ya(z) — F4(9C))H
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e (e )

3a+b 3a4+b\° b
—|—sgn(3c— a;— ) 4(95— a: ) —(x—a;—
a+b\?
+(0= 250 M) = (o)

4 _3a—|—b 2_ _a—i—b2
Ty Ty

+ (@ = @) [Ps(@) ~ ()]

IN

IT2(2) — 72(2)]

:

_|_

Ta(x) = ya(z)]

for all x € [a, “T'H’] .

. . . i (@)+Ti(z) . .
P?"oof.5 Taking the modulus identity (1.2) for \;(z) = %, 1=1,2,...,5, since
f e NUr (7i,1;), we have

i=1

Hf(xwf(wbx)+f<a;x>+f<a+22bx)] bia/bf(t)dt

a

+m {(1‘ —a)? [ys(x) 4+ Ds(x) — 1 () — Ty (2)]

_a+b 2_4 _Sa—i-b2
T Ty

+

(72(2) + T2 (2) — va(2) — Ta()) } |

e @)+ Ti()
< ba{/"taf’a>fzw
[, 3a+b||., .. ") +Ta)
+ / ‘t -~ ’ F@) - — dt
+ a7zta+b f/(t)773(x)+r3(1’) dit
2 2
2 a-+3b , Ya(x) 4+ Ty(x)
+ / ’t— 1 ’ IO 5 dt
at+b—x
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a+x

< s @ @ [ = ir) - | R
a+b—x ' #
+inao) =@l [ -5 a
T ITa(e) - 1a(a) a/w(“f’b ~t)dt-+ITs(0) = 25(0) / (b — 1)t
a+b—z it
= Sp=a (- INE@ - )
ragn (- 24 12) 4(x—3“jb)2—(x—“‘;b)2 Ta(2) — 72(a)

4 _3a—|—b 2_ _a+b 2
Ty Ty

This completes the proof. ([

Ta(@) = 7a (@) + (& — a)* |Ts(x) - 75(33)|} :

Remark 2. If we choose x = a in Theorem 3, then we get a new result, proved by
Dragomir [13].

Corollary 5. Under assumption of Theorem 3 with x = %‘H’, we get the inequality
b
1 b Batb) 4 ¢ (at3b 1
2 2 2 b—a

+6i4 (b—a) [s(x) +Ts(x) = 71(x) = T1(x)
+72(z) + Ta(x) — va(x) + Ty(x)]|
= bl_Ta [IT1(z) = m(@)| + [F2(z) = v2(2)]].-

In particular, we have

1lf(a+b>+f(3‘1“’)+f(ﬂ%)] ! /bf(t)dt

2 2 2 b—a

oz (0= @) ba(e) + Ta(e) +72(e) + Ta(o)]
< P20 @) @)+ Do) ~ (@]

4. INEQUALITIES FOR LIPSCHITZIAN MAPPINGS

In this section, we obtain some inequalities for function whose derivatives are
Lipschitzian.



AN IMPROVED VERSION OF PERTURBED COMPANION OF OSTROWSKI 11

We say that the function g : [a,b] — C is Lipschitzian with the constant L > 0 if
9(t) —g(s)| < Lt — s
for any t,s € [a,b] .

Theorem 4. Let f : [a,b] — C be a twice differantiable function on (a,b). If the
second derivative f" is a Lipschitzian mapping with the constant L > 0,then we
have the inequality

(4.1) {f(a:)+f(a+b—x)+f<a;x>+f<a+22b_x)]— ! /f(t)dt

1 ’ ’
s {0 0 - 1)

(=3t ) () ()
< m [(m—a)3+8<x—3ajb>3+7(x—a;_b>3

for all x € [a, GTH)] )

==

+

Proof. If we take the Ay = f/(a), A2 =f’(#),/\3=f'(“—b),)\4 :f’(%m’)
and A5 = f ' (b) in equality (1.2), we have

(4.2) i[f(x)+f(a+b—x)+f<a;x)+f<a+22b_x)] —bia/f(t)dt
A GO NI OEF D)
N <x_a;rb>2_4($_3azb)2 <f,<3a4+b>_f,(az3b)>}
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a+42b—x

AR SIEREC ST

at+b—x

for all x € [a, ‘IT“’] .
Since f” is Lipschitzian, taking the madulus in (4.2), we have

Hf(z)+f(a+bx)+f<a;x) +f<a+22bx)] bia/bf(t)dt

# _ 2 ! o
tsp—a L@ )~ 1 (@)
a+b 2 3a+b 2 3a+b a—+ 3b
— —4 — LT ) e 22
) s () - ()
a«;w -
1 3a+b 3a+b
< - o l _pt o I _pt
< gat [ rmair - @ias [ =2 - (28 e
¢ o
o a+b , ,(a+0b
o [ o (52|
a+22b—z b
s [ -2 - (S e [ e-sto- ol
a+b—x 'l+22l7*z
LT [ et T +b\
< . 2 . a _(L
< /(t a)dt+/(t I )dt+/<t 2>dt
a a;z x
at+2b—x
2 2
+ / (t—az?’b) dt + (t —b)2dt
a+b—x a+22b—,7:
L (x—a)3+g S 3a+b\’ T [ a+b)’
- b—a 12 3 4 12 2
which completes the proof. O

Remark 3. If we choose x = a in Theorem 3, then we get another inequality which
was proved by Dragomir [14].
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Corollary 6. Under assumption of Theorem 4 with x = %“’, we get the inequality
b
1 b Batb) | f (at3b 1
2 2 2 b—a
1 , p , [a+3b ,(3a+b
O | o - @ () (2
(b—a)’
< L.
- 48
Corollary 7. Under assumption of Theorem 4 with x = 3“T+b, we get the inequality

() o (552) o (B2) s (5] 52 o

%(b—a) [f’(b)—f’(aHf’(W;Sb)_f/(?m:b)”

IN
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