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Abstract. Some operator inequalities for synchronous functions that are related to the c̆ebys̆ev

inequality are given. By using the concept of quadruple D-synchronous functions which is gen-

eralizes the concept of a pair of synchronous functions, we establish an inequality similar to

c̆ebys̆ev inequality.

1. Introduction and Preliminaries

Let us consider the real sequences p = (p1, . . . , pn) , a = (a1, . . . , an) and b = (b1, . . . , bn).

Then the Chebyshev functional is defined by

Tn (p; a, b) := Pn

n∑
i=1

piaibi −
n∑

i=1

piai

n∑
i=1

pibi,

where Pn :=
n∑

i=1

pi.

In 1882-1883, C̆ebys̆ev [3, 4], proved that, if a and b are monotonic in the same (opposite)

sense and p is non-negative, then

(1.1) Tn (p; a, b) ≥ (≤) 0.

The inequality (1.1) was mentioned by Hardy, Littlewood, and Pólya in their book [6] in 1934 in

the more general setting of synchronous sequences, i.e. if a, b are synchronous (asynchronous),

this means that

(ai − aj) (bi − bj) ≥ (≤) 0,

for each i, j ∈ {1, . . . , n}, then the inequality (1.1) is valid.

For general, real weights, Mitrinović and Pec̆arić have shown in [13] that the inequality (1.1)

holds true if

0 ≤ Pk ≤ Pn,

for each k ∈ {1, . . . , n− 1}, and a, b are monotonic in the same (opposite) sense.
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2 An operator extension of C̆ebys̆ev inequality

A related notion is synchronicity of functions. We say that the functions f, g : [a, b] → R are

synchronous (asynchronous) on the interval [a, b] if they have satisfy the following condition:

(1.2) (f (t)− f (s)) (g (t)− g (s)) ≥ (≤) 0,

for each t, s ∈ [a, b].

Dragomir [7] generalized C̆ebys̆ev inequality for convex functions on a real inner product

and applied this result to show that if p1, . . . , pn is a sequence of non-negative numbers with
n∑

i=1

pi ≥ 0 and two sequences (v1, . . . , vn) and (u1, . . . , un) in a real inner product space are

synchronous, namely, ⟨vj − vi, uj − ui⟩ ≥ 0 for all i, j = 1, . . . , n, then

n∑
j=1

pj ⟨vj, uj⟩ ≥

⟨
n∑

j=1

pjvj,
n∑

j=1

pjuj

⟩
.

Recently Dragomir in [8], proved the following theorem.

Theorem 1.1. Let A be a self-adjoint operator with sp (A) ⊆ [m,M ] for some real numbers

m < M . If f, g : [m,M ] → R are continuous and synchronous on [m,M ], then

(1.3) ⟨f (A) g (A) x, x⟩ ≥ ⟨f (A) x, x⟩ ⟨g (A)x, x⟩ ,

for any x ∈ H with ∥x∥ = 1.

Motivated by the above results, we provide in this paper several operator extensions of the

C̆ebys̆ev inequality. Some applications for univariate functions of real variable are provided.

As is customary, we reserve M,m for scalars. Other capital letters are used to denote general

elements of the C∗-algebra B (H ) of all bounded linear operators acting on a Hilbert space

(H , ⟨·, ·⟩). An operator A ∈ B (H ) is called positive if ⟨Ax, x⟩ ≥ 0 for all x ∈ H , and we

then write A ≥ 0. For self adjoint operators A,B ∈ B (H ) we say that A ≤ B if B − A ≥ 0.

The Gelfand map establishes an isometrically ∗-isomorphism Φ between the set C (sp (A)) of

all continuous functions on the spectrum of A, denoted sp (A), and the C∗-algebra generated

by A and I (see for instance [15, p. 15]). For any f, g ∈ C (sp (A)) and any α, β ∈ C we have

(I) Φ (αf + βg) = αΦ (f) + βΦ (g);

(II) Φ (fg) = Φ (f) Φ (g);

(III) ∥Φ (f)∥ = ∥f∥ := sup
t∈sp(A)

|f (t)|;

(IV) Φ (f0) = 1H and Φ (f1) = A, where f0 (t) = 1 and f1 (t) = t, for t ∈ sp (A).

With this notation we define f (A) = Φ (f) for all f ∈ C (sp (A)) and we call it the continuous

functional calculus for a self-adjoint operator A. It is well known that, if A is a self-adjoint

operator and f ∈ C (sp (A)), then f (t) ≥ 0 for any t ∈ sp (A) implies that f (A) ≥ 0. It is

extendible for two real valued functions on sp (A). A linear map ϕ is positive if ϕ (A) ≥ 0
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whenever A ≥ 0. It said to be normalized if ϕ (I) = I. For more studies in this direction, we

refer to [2].

2. Main Results

2.1. Inequalities for Synchronous Functions. First of all, we state a generalization of

Theorem 1.1 for normalized positive linear map as follows:

Theorem 2.1. Let A be a self-adjoint operator and f, g ∈ C (sp (A)) are continuous and

synchronous (asynchronous) functions, and let ϕ be a normalized positive linear map on B (H ),

then

(2.1) ⟨ϕ (f (A) g (A))x, x⟩ ≥ (≤) ⟨ϕ (f (A))x, x⟩ ⟨ϕ (g (A))x, x⟩ ,

for any x ∈ H with ∥x∥ = 1.

Proof. We give a proof only in the first case. Since f, g are synchronous functions, from (1.2)

we have for any s, t ∈ [a, b] that

f (t) g (t) + f (s) g (s) ≥ f (t) g (s) + f (s) g (t) .

If we fix s ∈ [a, b], and apply the functional calculus for the above inequality we get

f (A) g (A) + f (s) g (s) 1H ≥ f (A) g (s) + f (s) g (A)

and since ϕ is normalized positive linear map we get

ϕ (f (A) g (A)) + f (s) g (s) 1H ≥ g (s)ϕ (f (A)) + f (s)ϕ (f (A))

or

(2.2) ⟨ϕ (f (A) g (A))x, x⟩+ f (s) g (s) ≥ g (s) ⟨ϕ (f (A))x, x⟩+ f (s) ⟨ϕ (g (A))x, x⟩ ,

for each x ∈ H with ∥x∥ = 1.

Apply again functional calculus to obtain

⟨ϕ (f (A) g (A))x, x⟩ 1H + f (A) g (A) ≥ g (A) ⟨ϕ (f (A))x, x⟩+ f (A) ⟨ϕ (g (A))x, x⟩ .

Again, since ϕ is normalized positive linear map we get

⟨ϕ (f (A) g (A))x, x⟩+ ϕ (f (A) g (A)) ≥ ⟨ϕ (f (A))x, x⟩ϕ (g (A)) + ⟨ϕ (g (A))x, x⟩ϕ (f (A))

or

(2.3)
⟨ϕ (f (A) g (A))x, x⟩+ ⟨ϕ (f (A) g (A)) y, y⟩

≥ ⟨ϕ (f (A))x, x⟩ ⟨ϕ (g (A)) y, y⟩+ ⟨ϕ (g (A))x, x⟩ ⟨ϕ (f (A)) y, y⟩

for each x, y ∈ H with ∥x∥ = ∥y∥ = 1.

Finally, on making y = x in (2.3), we deduce the desired result (2.1). □
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The case of norm operator may be of interest and is embodied in the following remark.

Remark 2.1. Let A be a positive operator in B (H ) and f, g ∈ C (sp (A)) asynchronous and

non-negative functions, and let ϕ be a normalized positive linear map on B (H ). By taking

supremum over x ∈ H with ∥x∥ = 1, we obtain

∥ϕ (f (A) g (A))∥ ≤ ∥ϕ (f (A))∥ ∥ϕ (g (A))∥ .

Corollary 2.1. Let A be a self-adjoint operator and f, g ∈ C (sp (A)) be synchronous functions.

If we take ϕ (A) = A, then we have the inequality (1.3).

The following result follows from Davis-Choi-Jensen’s inequality (see for instance [5, Theorem

1.20]).

Corollary 2.2. All as in Theorem 2.1, and f, g are non-negative and operator convex. Then

by Davis-Choi-Jensen’s inequality we get

⟨ϕ (f (A) g (A))x, x⟩ ≥ ⟨ϕ (f (A))x, x⟩ ⟨(ϕ (g (A)))x, x⟩ ≥ f (⟨ϕ (A) x, x⟩) g (⟨(ϕ (A))x, x⟩)

for any x ∈ H with ∥x∥ = 1.

As a special case of Corollary 2.2, we have the following Kadison inequality:

Corollary 2.3. If we take f (t) = g (t) = t, we obtain⟨
ϕ
(
A2
)
x, x
⟩
≥ ⟨ϕ (A) x, x⟩2

for any x ∈ H with ∥x∥ = 1.

The following lemma is known as the McCarty inequality.

Lemma 2.1. Let A ∈ B (H ) , A ≥ 0 and let x ∈ H be any unit vector. Then

(2.4) ⟨Arx, x⟩ ≤ ⟨Ax, x⟩r, 0 < r ≤ 1.

Corollary 2.4. If we put f (t) = tp, g (t) = tq with p, q ≥ 0 and ϕ (A) = A, by (2.4) we get

⟨Ax, x⟩p+q ≥ ⟨Apx, x⟩ ⟨Aqx, x⟩

for any x ∈ H with ∥x∥ = 1.

It should be mentioned here that ϕ (A) = X∗AX where X is an operator in B (H ) with

X∗X = I, is a normalized positive linear map. According to this fact we have the following

remark.
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Remark 2.2. If we choose ϕ (A) = X∗AX in (2.1), we get

⟨X∗f (A) g (A)Xx, x⟩ ≥ ⟨X∗f (A)Xx, x⟩ ⟨X∗g (A)Xx, x⟩

for any x ∈ H with ∥x∥ = 1.

Some particular cases are of interest for applications.

Corollary 2.5. Let f (t) = g (t) = tr where r ≥ 0, in Remark 2.2. Then⟨
X∗A2rXx, x

⟩
≥ ⟨X∗ArXx, x⟩2

for any x ∈ H with ∥x∥ = 1.

Corollary 2.6. Let X be a unitary and 0 < r ≤ 1 in Corollary 2.5. Then⟨
X∗A2rXx, x

⟩
≥ ⟨X∗AXx, x⟩2r

for any x ∈ H with ∥x∥ = 1.

Remark 2.3. Let A ∈ M2 (C) be a Hermitian matrice. Define ϕ : M2 (C) → M2 (C) where

ϕ (A) = 1
2
tr (A) 1H . Then from inequality (2.1), we have

tr (f (A) g (A)) ≥ 1

2
tr (f (A)) tr (g (A)) .

The following general result for two operators also holds:

Proposition 2.1. Let A,B be a self-adjoint operators and f, g ∈ C (sp (A)) and f, g ∈
C (sp (B)) are continuous and synchronous functions, and let ϕ be a normalized positive linear

map on B (H ), then

(2.5)
⟨ϕ (f (A) g (A))x, x⟩+ ⟨ϕ (f (B) g (B)) y, y⟩

≥ ⟨ϕ (f (A))x, x⟩ ⟨ϕ (g (B)) y, y⟩+ ⟨ϕ (g (A))x, x⟩ ⟨ϕ (f (B)) y, y⟩

for any x, y ∈ H with ∥x∥ = ∥y∥ = 1.

Proof. Follows from proof of Theorem 2.1 by applying functional calculus for self-adjoint oper-

ator B in (2.2). However, the details are not given here. □

We provide now some particular inequalities of interest that can be derived from Proposition

2.1.
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Remark 2.4. By replacing B with A−1 in (2.5), we get

(2.6)
⟨ϕ (f (A) g (A))x, x⟩+

⟨
ϕ
(
f
(
A−1

)
g
(
A−1

))
y, y
⟩

≤
⟨
ϕ
(
g
(
A−1

))
y, y
⟩
⟨ϕ (f (A))x, x⟩+

⟨
ϕ
(
f
(
A−1

))
y, y
⟩
⟨ϕ (g (A))x, x⟩

for any x, y ∈ H with ∥x∥ = ∥y∥ = 1.

Furthermore, by taking supremum over x ∈ H with ∥x∥ = 1, and y ∈ H with ∥y∥ = 1 in

(2.6) respectively, we obtain

(2.7)
∥ϕ (f (A) g (A))∥+

∥∥ϕ (f (A−1
)
g
(
A−1

))∥∥
≤
∥∥ϕ (g (A−1

))∥∥ ∥ϕ (f (A))∥+
∥∥ϕ (f (A−1

))∥∥ ∥ϕ (g (A))∥ .
Remark 2.5. If we put in (2.7), ϕ (A) = A and f (t) = tp, g (t) = tq where p, q ≤ 0, we get∥∥Ap+q

∥∥+ ∥∥A−p−q
∥∥ ≤ ∥Ap∥

∥∥A−q
∥∥+ ∥∥A−p

∥∥ ∥Aq∥ .

The following multiple operator version of Theorem 2.1 holds:

Proposition 2.2. Let Ai ∈ B (H ) be self-adjoint operators and ϕi normalized positive linear

maps (i = 1, . . . , n). If f, g ∈ C (sp (Ai)) are continuous and synchronous, then

n∑
i=1

⟨ϕi (f (Ai) g (Ai))xi, xi⟩ ≥
n∑

i=1

⟨ϕi (f (Ai))xi, xi⟩
n∑

i=1

⟨ϕi (g (Ai))xi, xi⟩.

for each xi ∈ H , i ∈ {1, . . . , n} with
n∑

i=1

∥xi∥2 = 1.

Proposition 2.3. Let Ai ∈ B (H ) be self-adjoint operators and ϕi normalized positive linear

maps (i = 1, . . . , n). Let ω1, . . . , ωn ∈ R+ be any finite number of positive real numbers such

that
n∑

i=1

ωi = 1. If f, g ∈ C (sp (Ai)) are continuous and synchronous, then⟨(
n∑

i=1

ωiϕi (f (Ai) g (Ai))

)
x, x

⟩
≥

⟨(
n∑

i=1

ωiϕi (f (Ai))

)
x, x

⟩⟨(
n∑

i=1

ωiϕi (g (Ai))

)
x, x

⟩
for any x ∈ H with ∥x∥ = 1.

2.2. D-Synchronous Functions. The quadruple (f, g, h, k) is called D-Synchronous

(D-Asynchronous) on I if

det

(
f (s) f (t)

g (s) g (t)

)
det

(
h (s) h (t)

k (s) k (t)

)
≥ (≤) 0,

for each s, t ∈ I.

This concept is generalization of synchronous functions, since for g = 1, k = 1 the quadruple

(f, g, h, k) is D-Synchronous if and only if (f, g) is synchronous on I (see [9]).
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We observe that

det

(
f (s) f (t)

g (s) g (t)

)
det

(
h (s) h (t)

k (s) k (t)

)
= (f (s) g (t)− g (s) f (t)) (h (s) k (t)− k (s)h (t)) ,

for each s, t ∈ I. For D-Synchronous (D-Asynchronous) functions, the reader is referred to [9].

Theorem 2.2. Let A be a self-adjoint operator and f, g, h, k ∈ C (sp (A)) are continuous and

D-synchronous functions, and let ϕ be a normalized positive linear map on B (H ), then

(2.8) det

(
⟨ϕ (f (A)h (A))x, x⟩ ⟨ϕ (f (A) k (A))x, x⟩
⟨ϕ (g (A)h (A))x, x⟩ ⟨ϕ (g (A) k (A))x, x⟩

)
≥ 0.

Proof. Since the quadruple (f, g, h, k) is D-synchronous, then

0 ≤ (f (s) g (t)− g (s) f (t)) (h (x) k (t)− k (s)h (t))

= f (s)h (s) g (t) k (t) + g (s) k (s) f (t)h (t)

− f (s) k (s) g (t)h (t)− g (s)h (s) f (t) k (t)

this is equivalent to

(2.9)
f (s)h (s) g (t) k (t) + g (s) k (s) f (t)h (t)

≥ f (s) k (s) g (t)h (t) + g (s)h (s) f (t) k (t) .

Fix s ∈ [a, b], and apply the functional calculus for the operator A in (2.9), we deduce

f (s)h (s) g (A) k (A) + g (s) k (s) f (A)h (A)

≥ f (s) k (s) g (A)h (A) + g (s)h (s) f (A) k (A) .

Since ϕ is normalized positive linear map we get

f (s)h (s)ϕ (g (A) k (A)) + g (s) k (s)ϕ (f (A)h (A))

≥ f (s) k (s)ϕ (g (A)h (A)) + g (s)h (s)ϕ (f (A) k (A)) ,

which is clearly equivalent with

f (s)h (s) ⟨ϕ (g (A) k (A))x, x⟩+ g (s) k (s) ⟨ϕ (f (A)h (A))x, x⟩

≥ f (s) k (s) ⟨ϕ (g (A)h (A))x, x⟩+ g (s)h (s) ⟨ϕ (f (A) k (A))x, x⟩

for each x ∈ H with ∥x∥ = 1.

Apply again functional calculus we obtain

f (A)h (A) ⟨ϕ (g (A) k (A))x, x⟩+ g (A) k (A) ⟨ϕ (f (A)h (A))x, x⟩

≥ f (A) k (A) ⟨ϕ (g (A)h (A))x, x⟩+ g (A)h (A) ⟨ϕ (f (A) k (A))x, x⟩ .
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Again, since ϕ is normalized positive linear map we get

ϕ (f (A)h (A)) ⟨ϕ (g (A) k (A))x, x⟩+ ϕ (g (A) k (A)) ⟨ϕ (f (A)h (A))x, x⟩

≥ ϕ (f (A) k (A)) ⟨ϕ (g (A)h (A))x, x⟩+ ϕ (g (A)h (A)) ⟨ϕ (f (A) k (A))x, x⟩
or

(2.10)

⟨ϕ (f (A)h (A)) y, y⟩ ⟨ϕ (g (A) k (A))x, x⟩+ ⟨ϕ (g (A) k (A)) y, y⟩ ⟨ϕ (f (A)h (A))x, x⟩

≥ ⟨ϕ (f (A) k (A)) y, y⟩ ⟨ϕ (g (A)h (A))x, x⟩+ ⟨ϕ (g (A)h (A)) y, y⟩ ⟨ϕ (f (A) k (A))x, x⟩ ,

for each x ∈ H with ∥x∥ = 1.

Finally, on making y = x in (2.10) we deduce the desired result (2.8). □

Remark 2.6. If we take f (t) = tp, g (t) = tq, h (t) = tr, k (t) = ts whre p, q, r, s ≥ 0 and

ϕ (A) = A in (2.8), then⟨
Ap+rx, x

⟩ ⟨
Aq+sx, x

⟩
≥
⟨
Ap+sx, x

⟩ ⟨
Aq+rx, x

⟩
.

for any x ∈ H with ∥x∥ = 1.

Proof. The proof is similar to the proof of Theorem 2.2. The details are omitted. □
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