SOME INEQUALITIES FOR ISOTONIC LINEAR FUNCTIONALS

LOREDANA CIURDARIU

ABSTRACT. In this paper is given a new variant of Minkowski-type inequality for isotonic linear functionals and then some variants of Qi's inequality for isotonic linear functionals using a new Young-type inequality. Also several applications are presented.

1. Introduction

In [1] are given new results which extend many generalizations of Young's inequality given before. We recall these results below in order to use them in the next sections.

Theorem 1. Let λ , ν and τ be real numbers with $\lambda \geq 1$ and $0 < \nu < \tau < 1$. Then

$$\left(\frac{\nu}{\tau}\right)^{\lambda} < \frac{A_{\nu}(a,b)^{\lambda} - G_{\nu}(a,b)^{\lambda}}{A_{\tau}(a,b)^{\lambda} - G_{\tau}(a,b)^{\lambda}} < \left(\frac{1-\nu}{1-\tau}\right)^{\lambda},$$

for all positive and distinct real numbers a and b. Moreover, both bounds are sharp.

The following important definition is given in [3], [5] and we will recall it here.

Let E be a nonempty set and L be a class of real-valued functions $f: E \to \mathbf{R}$ having the following properties:

- (L1) If $f, g \in L$ and $a, b \in \mathbf{R}$, then $(af + bg) \in L$.
- (L2) If f(t) = 1 for all $t \in E$, then $f \in L$.

An isotonic linear functional is a functional $A:L\to \mathbf{R}$ having the following properties:

- (A1) If $f, g \in L$ and $a, b \in \mathbf{R}$, then A(af + bg) = aA(f) + bA(g).
- (A2) If $f \in L$ and $f(t) \ge 0$ for all $t \in E$, then $A(f) \ge 0$.

The mapping A is said to be *normalised* if

(A3) A(1) = 1.

The following Holder-type inequalities are obtained from Theorem 1.1 which is given in [1] and will be used in the next sections as an important tool in our demonstrations.

Theorem 2. If L satisfy conditions L1, L2 and A satisfy A1, A2 on the set E. If f^p , g^q , fg, $f^{p\tau}$, $g^{q(1-\tau)} \in L$, $A(f^p) > 0$, $A(g^q) > 0$, $p\tau > 1$, $\tau < 1$, $\frac{1}{p} + \frac{1}{q} = 1$ and f and g are positive functions then:

1

 $Date \colon \mathbf{May}\ 21,\ 2016.$

 $^{2000\} Mathematics\ Subject\ Classification.\ 26 D20.$

 $Key\ words\ and\ phrases.$ Young's inequality, Holder's inequality, Minkowski's inequality, Qi's inequality .

$$\begin{split} \frac{1}{p\tau} \left[1 - \frac{A(f^{p\tau})A(g^{q(1-\tau)})}{A^{\tau}(f^p)A^{1-\tau}(g^q)} \right] < 1 - \frac{A(fg)}{A^{\frac{1}{p}}(f^p)A^{\frac{1}{q}}(g^q)} < \\ < \frac{1}{q(1-\tau)} \left[1 - \frac{A(f^{p\tau})A(g^{q(1-\tau)})}{A^{\tau}(f^p)A^{1-\tau}(g^q)} \right]. \end{split}$$

2. A refinement of Minkowski's inequality for isotonic linear functional

Using inequalities from Theorem 2 we can obtain some extensions of the classical Minkowski's inequality for isotonic linear functionals.

Theorem 3. Let $1 < p_1 < p < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $\frac{1}{p_1} + \frac{1}{q_1} = 1$, L satisfying conditions L1, L2 and A satisfying A1, A2 on the set E. Considering the nonnegative functions f, h with f^p , h^p , $(f+h)^{\frac{p}{q_1}}f^{\frac{p}{p_1}}$, $(f+h)^{\frac{p}{q_1}}h^{\frac{p}{p_1}}$, $(f+h)^{p-1}f$, $(f+h)^{p-1}h \in L$ and $A(f^p) > 0$, $A(h^p) > 0$, $A((f+h)^p) > 0$ we will have,

$$A^{\frac{1}{p}}((f+h)^p) < A^{\frac{1}{p}}(f^p) \left[1 - \frac{p_1}{p} \left(1 - \frac{A\left((f+h)^{\frac{p}{q_1}} f^{\frac{p}{p_1}} \right)}{A^{\frac{1}{q_1}}((f+h)^p) A^{\frac{1}{p_1}}(f^p)} \right) \right] +$$

$$(2.1) +A^{\frac{1}{p}}(h^p)\left[1-\frac{p_1}{p}\left(1-\frac{A\left((f+h)^{\frac{p}{q_1}}h^{\frac{p}{p_1}}\right)}{A^{\frac{1}{q_1}}((f+h)^p)A^{\frac{1}{p_1}}(h^p)}\right)\right],$$

and

$$A^{\frac{1}{p}}(f^p)\left[1-\frac{q_1}{q}\left(1-\frac{A\left((f+h)^{\frac{p}{q_1}}f^{\frac{p}{p_1}}\right)}{A^{\frac{1}{q_1}}((f+h)^p)A^{\frac{1}{p_1}}(f^p)}\right)\right]+$$

$$(2.2) +A^{\frac{1}{p}}(h^p)\left[1-\frac{q_1}{q}\left(1-\frac{A\left((f+h)^{\frac{p}{q_1}}h^{\frac{p}{p_1}}\right)}{A^{\frac{1}{q_1}}((f+h)^p)A^{\frac{1}{p_1}}(h^p)}\right)\right] < A^{\frac{1}{p}}((f+h)^p).$$

Proof. We will check only inequality (2.1). Applying inequality from Theorem 2 first time for f and $\frac{(f+h)^{p-1}}{A^{\frac{1}{q}}((f+h)^{q(p-1)})}$ and then for h and $\frac{(f+h)^{p-1}}{A^{\frac{1}{q}}((f+h)^{q(p-1)})}$ we will have:

$$\begin{split} A^{\frac{1}{p}}((f+h)^p) &= A\left(\frac{(f+h)^{p-1}}{A^{\frac{1}{q}}((f+h)^{q(p-1)})}(f+h)\right) = \\ &= A\left(\frac{(f+h)^{p-1}}{A^{\frac{1}{q}}((f+h)^{q(p-1)})}f\right) + A\left(\frac{(f+h)^{p-1}}{A^{\frac{1}{q}}((f+h)^{q(p-1)})}h\right) \leq \\ &< A^{\frac{1}{p}}(f^p)A^{\frac{1}{q}}\left(\frac{(f+h)^{q(p-1)}}{A((f+h)^{q(p-1)})}\right)\left[1 - \frac{p_1}{p}\left(1 - \frac{A\left((f+h)^{\frac{p}{q_1}}f^{\frac{p}{p_1}}\right)}{A^{\frac{1}{q_1}}((f+h)^p)A^{\frac{1}{p_1}}(f^p)}\right)\right] + \\ &+ A^{\frac{1}{p}}(h^p)A^{\frac{1}{q}}\left(\frac{(f+h)^{q(p-1)}}{A((f+h)^{q(p-1)})}\right)\left[1 - \frac{p_1}{p}\left(1 - \frac{A\left((f+h)^{\frac{p}{q_1}}h^{\frac{p}{p_1}}\right)}{A^{\frac{1}{q_1}}((f+h)^p)A^{\frac{1}{p_1}}(h^p)}\right)\right] = \end{split}$$

$$=A^{\frac{1}{p}}(f^{p})\left[1-\frac{p_{1}}{p}\left(1-\frac{A\left((f+h)^{\frac{p}{q_{1}}}f^{\frac{p}{p_{1}}}\right)}{A^{\frac{1}{q_{1}}}((f+h)^{p})A^{\frac{1}{p_{1}}}(f^{p})}\right)\right]+$$

$$+A^{\frac{1}{p}}(h^{p})\left[1-\frac{p_{1}}{p}\left(1-\frac{A\left((f+h)^{\frac{p}{q_{1}}}h^{\frac{p}{p_{1}}}\right)}{A^{\frac{1}{q_{1}}}((f+h)^{p})A^{\frac{1}{p_{1}}}(h^{p})}\right)\right].$$

This result allow us to give a refinement of Minkowski's inequality for the cases of the time scales Cauchy delta, Cauchy nabla and α -diamond integrals.

Corollary 1. (i) Let $1 < p_1 < p < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $\frac{1}{p_1} + \frac{1}{q_1} = 1$, and the positive functions $f, h \in C_{rd}([a,b), \mathbf{R})$. The following inequality takes place:

$$\left(\int_{a}^{b} (f(x) + h(x))^{p} \Delta x\right)^{\frac{1}{p}} < \left(\int_{a}^{b} f^{p}(x) \Delta x\right)^{\frac{1}{p}} \left[1 - \frac{p_{1}}{p} \left(1 - \frac{\int_{a}^{b} (f(x) + h(x))^{\frac{p}{q_{1}}} f^{\frac{p}{p_{1}}}(x) \Delta x}{\left(\int_{a}^{b} (f(x) + h(x))^{p} \Delta x\right)^{\frac{1}{q_{1}}} \left(\int_{a}^{b} f^{p}(x) \Delta x\right)^{\frac{1}{p_{1}}}}\right)\right] + \left(\int_{a}^{b} h^{p}(x) \Delta x\right)^{\frac{1}{p}} \left[1 - \frac{p_{1}}{p} \left(1 - \frac{\int_{a}^{b} (f(x) + h(x))^{\frac{p}{q_{1}}} h^{\frac{p}{p_{1}}}(x) \Delta x}{\left(\int_{a}^{b} (f(x) + h(x))^{p} \Delta x\right)^{\frac{1}{q_{1}}} \left(\int_{a}^{b} h^{p}(x) \Delta x\right)^{\frac{1}{p_{1}}}}\right)\right].$$

(ii) Let $1 < p_1 < p < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $\frac{1}{p_1} + \frac{1}{q_1} = 1$, and the positive functions $f, h \in C_{ld}((a,b], \mathbf{R})$. The following inequality takes place:

$$\left(\int_{a}^{b} (f(x) + h(x))^{p} \nabla x \right)^{\frac{1}{p}} <$$

$$< \left(\int_{a}^{b} f^{p}(x) \nabla x \right)^{\frac{1}{p}} \left[1 - \frac{p_{1}}{p} \left(1 - \frac{\int_{a}^{b} (f(x) + h(x))^{\frac{p}{q_{1}}} f^{\frac{p}{p_{1}}}(x) \nabla x}{\left(\int_{a}^{b} (f(x) + h(x))^{p} \nabla x \right)^{\frac{1}{q_{1}}} \left(\int_{a}^{b} f^{p}(x) \nabla x \right)^{\frac{1}{p_{1}}}} \right) \right] +$$

$$+ \left(\int_{a}^{b} h^{p}(x) \nabla x \right)^{\frac{1}{p}} \left[1 - \frac{p_{1}}{p} \left(1 - \frac{\int_{a}^{b} (f(x) + h(x))^{\frac{p}{q_{1}}} h^{\frac{p}{p_{1}}}(x) \nabla x}{\left(\int_{a}^{b} (f(x) + h(x))^{p} \nabla x \right)^{\frac{1}{q_{1}}} \left(\int_{a}^{b} h^{p}(x) \nabla x \right)^{\frac{1}{p_{1}}}} \right) \right].$$

(iii) Let $1 < p_1 < p < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $\frac{1}{p_1} + \frac{1}{q_1} = 1$ and the positive functions $f, h : [a, b] \to \mathbf{R}$ be \diamond_{α} -integrable functions. The following inequality takes place:

$$\left(\int_{a}^{b} (f(x) + h(x))^{p} \diamond_{\alpha} x \right)^{\frac{1}{p}} <$$

$$< \left(\int_{a}^{b} f^{p}(x) \diamond_{\alpha} x \right)^{\frac{1}{p}} \left[1 - \frac{p_{1}}{p} \left(1 - \frac{\int_{a}^{b} (f(x) + h(x))^{\frac{p}{q_{1}}} f^{\frac{p}{p_{1}}}(x) \diamond_{\alpha} x}{\left(\int_{a}^{b} (f(x) + h(x))^{p} \diamond_{\alpha} x \right)^{\frac{1}{q_{1}}} \left(\int_{a}^{b} f^{p}(x) \diamond_{\alpha} x \right)^{\frac{1}{p_{1}}} \right) \right] +$$

$$+ \left(\int_{a}^{b} h^{p}(x) \diamond_{\alpha} x \right)^{\frac{1}{p}} \left[1 - \frac{p_{1}}{p} \left(1 - \frac{\int_{a}^{b} (f(x) + h(x))^{\frac{p}{q_{1}}} h^{\frac{p}{p_{1}}}(x) \diamond_{\alpha} x}{\left(\int_{a}^{b} (f(x) + h(x))^{p} \diamond_{\alpha} x \right)^{\frac{1}{q_{1}}} \left(\int_{a}^{b} h^{p}(x) \diamond_{\alpha} x \right)^{\frac{1}{p_{1}}}} \right) \right].$$

3. Some variants of Qi's inequality for isotonic linear functionals

In this section we give several variants of some inequalities from [9] in the case of isotonic linear functionals for p > 1 using the corresponding Holder's inequalities from Theorem 2.

Lemma 1. Let E, L and A be such that L1, L2, A1, A2 are satisfied. If f, g, $\frac{f^p}{g^{p-1}}$, $f^{\frac{p}{p_1}}g^{1-\frac{p}{p_1}}\in L$ are positive functions with A(g)>0, $A\left(\frac{f^p}{g^{p-1}}\right)>0$ then

$$\left[1 - \frac{p_1}{p} \left(1 - \frac{A\left(f^{\frac{p}{p_1}}g^{1 - \frac{p}{p_1}}\right)}{A^{\frac{1}{p_1}}\left(\frac{f^p}{g^{p-1}}\right)A^{\frac{1}{q_1}}(g)}\right)\right]^p A\left(\frac{f^p}{g^{p-1}}\right) > \frac{A^p(f)}{A^{p-1}(g)},$$

where $p > p_1 > 1$ with $\frac{1}{p_1} + \frac{1}{q_1} = 1$ and $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. We apply Holder's inequality from Theorem 2 when p>1 and $f,\ g,\ \frac{f^p}{g^{p-1}},\ f^{\frac{p}{p_1}}g^{1-\frac{p}{p_1}}\in L$ are positive functions, obtaining:

$$A(f) = A\left(\frac{f}{g^{\frac{1}{q}}}g^{\frac{1}{q}}\right) < A^{\frac{1}{p}}\left(\frac{f^p}{g^{\frac{p}{q}}}\right)A^{\frac{1}{q}}(g)\left[1 - \frac{p_1}{p}\left(1 - \frac{A\left(\frac{f^{\frac{p}{p_1}}}{g^{\frac{p}{p_1q}}}g^{\frac{1}{q_1}}\right)}{A^{\frac{1}{p_1}}\left(\frac{f^p}{p^{\frac{p}{q}}}\right)A^{\frac{1}{q_1}}(g)}\right)\right].$$

Then we take the p-th power on both sides of the inequalities and have:

$$A^{p}(f) < A\left(\frac{f^{p}}{g^{\frac{p}{q}}}\right) A^{\frac{p}{q}}(g) \left[1 - \frac{p_{1}}{p} \left(1 - \frac{A\left(\frac{f^{\frac{p}{p_{1}}}}{\frac{p}{p_{1}q}}g^{\frac{1}{q_{1}}}\right)}{A^{\frac{1}{p_{1}}}\left(\frac{f^{p}}{q^{\frac{p}{q}}}\right) A^{\frac{1}{q_{1}}}(g)}\right)\right]^{p}.$$

Theorem 4. Let E, L and A be such that L1, L2, A1, A2 are satisfied. If $f, f^{p+2}, f^{\frac{p+2}{p_1}} \in L, f$ is positive function and $A(f) \geq A^2(\mathbf{1})$ then

$$A^{p-1}(\mathbf{1})A(f^{p+2})\left[1 - \frac{p_1}{p+2}\left(1 - \frac{A(f^{\frac{p+2}{p_1}})}{A^{\frac{1}{p_1}}(f^{p+2})A^{\frac{1}{q_1}}(\mathbf{1})}\right)\right]^{p+2} > A^{p+1}(f),$$

takes place for $p + 2 > p_1 > 1$.

Proof. By Lemma 1 and hypothesis we have,

$$A(f^{p+2})\left[1 - \frac{p_1}{p+2}\left(1 - \frac{A(f^{\frac{p+2}{p_1}})}{A^{\frac{1}{p_1}}(f^{p+2})A^{\frac{1}{q_1}}(\mathbf{1})}\right)\right]^{p+2} =$$

$$= A\left(\frac{f^{p+2}}{1^{p+1}}\right) \left[1 - \frac{p_1}{p+2} \left(1 - \frac{A(f^{\frac{p+2}{p_1}})}{A^{\frac{1}{p_1}}(f^{p+2})A^{\frac{1}{q_1}}(\mathbf{1})}\right)\right]^{p+2} >$$

$$> \frac{A^{p+2}(f)}{A^{p+1}(\mathbf{1})} = \frac{A^{p+1}(f)A(f)}{A^{p-1}(\mathbf{1})A^2(\mathbf{1})} \ge \frac{A^{p+1}(f)}{A^{p-1}(\mathbf{1})}.$$

Consequence 1. Let E, L and A be such that L1, L2, A1, A2 are satisfied. If f, f^{p+2} , $f^{\frac{p+2}{p_1}} \in L$, f is positive and in addition A is normalised and $A(f) \geq 1$ then

$$A(f^{p+2})\left[1 - \frac{p_1}{p+2}\left(1 - \frac{A(f^{\frac{p+2}{p_1}})}{A^{\frac{1}{p_1}}(f^{p+2})}\right)\right]^{p+2} > A^{p+1}(f),$$

takes place for $p + 2 > p_1 > 1$.

As applications, we will give some refinements of several inequalities given by Qi and Yin, [9], in the cases of delta time-scale integral, the Cauchy nabla time-scales integrals and the Cauchy α -diamond time scale integrals.

Remark 1. Let $a, b \in \mathbb{R}$, a < b. If $f \in C([a, b])$ is strictly positive and

$$\int_{a}^{b} f(x)dx \ge (b-a)^{2}$$

then

$$\int_{a}^{b} f^{p+2}(x) dx \left[1 - \frac{p_{1}}{p+2} \left(1 - \frac{\int_{a}^{b} f^{\frac{p+2}{p_{1}}}(x) dx}{(b-a)^{\frac{1}{q_{1}}} \left(\int_{a}^{b} f^{p+2}(x) dx \right)^{\frac{1}{p_{1}}}} \right) \right]^{p+2} >$$

$$> \frac{1}{(b-a)^{p-1}} \left[\int_{a}^{b} f(x) dx \right]^{p+1},$$

where $p + 2 > p_1 > 1$.

Moreover, when we have delta time-scale integral, the Cauchy nabla time-scales integrals and the Cauchy α -diamond time scale integrals similarly inequalities can be stated like above.

Lemma 2. Let E, L and A be such that L1, L2, A1, A2 are satisfied on the set E. If $1 < p_1 < p < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $\frac{1}{p_1} + \frac{1}{q_1} = 1$ and $f, g, f^{\frac{p}{p_1}} g^{1 - \frac{p}{p_1}}$, $\frac{f^p}{g^{p-1}} \in L$ are positive functions and $A(\frac{f^p}{g^{p-1}}) > 0$, A(g) > 0 then

$$\frac{A^{p}(f)}{A^{p-1}(g)} > A\left(\frac{f^{p}}{g^{p-1}}\right) \left[1 - \frac{q_{1}}{q} \left(1 - \frac{A(f^{\frac{p}{p_{1}}}g^{1 - \frac{p}{p_{1}}})}{A^{\frac{1}{p_{1}}}\left(\frac{f^{p}}{g^{p-1}}\right)A^{\frac{1}{q_{1}}}(g)}\right)\right]^{p}.$$

Proof. We apply Holder's inequality from Theorem 2 when $g, f^{\frac{p}{p_1}}g^{1-\frac{p}{p_1}}, \frac{f^p}{g^{p-1}} \in L$ are positive functions, obtaining:

$$A(f) = A\left(\frac{f}{g^{\frac{1}{q}}}g^{\frac{1}{q}}\right) > A^{\frac{1}{p}}\left(\frac{f^p}{g^{\frac{p}{q}}}\right)A^{\frac{1}{q}}(g)\left[1 - \frac{q_1}{q}\left(1 - \frac{A\left(\left(\frac{f}{g^{\frac{1}{q}}}\right)^{\frac{p}{p_1}}g^{\frac{1}{q_1}}\right)}{A^{\frac{1}{p_1}}\left(\frac{f^p}{g^{\frac{p}{q}}}\right)A^{\frac{1}{q_1}}(g)}\right)\right].$$

Then we take the p-th power on both sides of the inequalities and we obtain by calculus the desired inequality. \blacksquare

The inequality from Lemma 2 can be written again for particular isotonic linear functionals, see for example [3] like below:

Consequence 2. Let $a, b \in \mathbf{T}$, and $1 < p_1 < p < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $\frac{1}{p_1} + \frac{1}{q_1} = 1$. If $f, g \in C_{rd}(\mathbf{T}, \mathbf{R})$ are positive then

$$\frac{\left(\int_{a}^{b} f(x)\Delta x\right)^{p}}{\left(\int_{a}^{b} g(x)\Delta x\right)^{p-1}} > \int_{a}^{b} \frac{f^{p}(x)}{g^{p-1}(x)} \Delta x \left[1 - \frac{q_{1}}{q} \left(1 - \frac{\int_{a}^{b} f^{\frac{p}{p_{1}}}(x)g^{1-\frac{p}{p_{1}}}(x)\Delta x}{\left(\int_{a}^{b} \frac{f^{p}(x)}{g^{p-1}(x)}\Delta x\right)^{\frac{1}{p_{1}}} \left(\int_{a}^{b} g(x)\Delta x\right)^{\frac{1}{q_{1}}}}\right)\right]^{p}.$$

A new inequality for isotonic linear functional is the following:

Theorem 5. Let E, L and A be such that L1, L2, A1, A2 are satisfied. If $f, f^p, f^{\frac{p_1}{p}} \in L, f$ is positive, A(f) > 0 and $A(f) \ge A^{p-1}(1)$ then

$$A^{p-1}(f) < A(f^p) \left[1 - \frac{p_1}{p} \left(1 - \frac{A\left(f^{\frac{p}{p_1}}\right)}{A^{\frac{1}{p_1}}(f^p)A^{\frac{1}{q_1}}(\mathbf{1})} \right) \right]^p$$

when $1 < p_1 < p < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $\frac{1}{p_1} + \frac{1}{q_1} = 1$.

Proof. By Lemma 1 and hypothesis we have,

$$A(f^p) = A\left(\frac{f^p}{\mathbf{1}^{p-1}}\right) = A\left(\frac{f^p}{\mathbf{1}^{\frac{p}{q}}}\right)$$

and

$$\frac{A^{p}(f)}{A^{p-1}(\mathbf{1})} < A\left(\frac{f^{p}}{\mathbf{1}^{p-1}}\right) \left[1 - \frac{p_{1}}{p} \left(1 - \frac{A\left(f^{\frac{p}{p_{1}}}\right)}{A^{\frac{1}{p_{1}}}(f)A^{\frac{1}{q_{1}}}(\mathbf{1})}\right)\right]^{p}$$

or

$$A^{p-1}(f) \le \frac{A(f)A^{p-1}(f)}{A^{p-1}(\mathbf{1})} < A(f^p) \left[1 - \frac{p_1}{p} \left(1 - \frac{A\left(f^{\frac{p}{p_1}}\right)}{A^{\frac{1}{p_1}}(f)A^{\frac{1}{q_1}}(\mathbf{1})} \right) \right]^p.$$

If, in addition, the functional is normalised then previous inequality becomes:

Consequence 3. Let E, L and A be such that L1, L2, A1, A2 are satisfied. If $f, f^p, f^{\frac{p_1}{p}} \in L, f \text{ is positive, } A(f) > 0, A(f) \geq 1 \text{ and in addition, } A \text{ is normalised,}$

$$A^{p-1}(f) < A(f^p) \left[1 - \frac{p_1}{p} \left(1 - \frac{A\left(f^{\frac{p}{p_1}}\right)}{A^{\frac{1}{p_1}}(f^p)} \right) \right]^p$$

when $1 < p_1 < p < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $\frac{1}{p_1} + \frac{1}{q_1} = 1$.

As an application of Consequence 3 for Riemann integrals we obtain:

Consequence 4. (i) Let $a, b \in \mathbb{R}$, a < b. If $f \in C([a, b])$ is positive, and

$$\int_{a}^{b} f(x)dx \ge (b-a)^{p-1}$$

then

$$\left(\int_{a}^{b} f(x)dx\right)^{p-1} < \int_{a}^{b} f^{p}(x)dx \left[1 - \frac{p_{1}}{p} \left(\frac{\int_{a}^{b} f^{\frac{p}{p_{1}}}(x)dx}{(b-a)^{\frac{1}{q_{1}}} \left(\int_{a}^{b} f(x)dx\right)^{\frac{1}{p_{1}}}}\right)\right]^{p},$$

when $1 < p_1 < p < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $\frac{1}{p_1} + \frac{1}{q_1} = 1$.

(ii) In the case of delta time scale integrals, Cauchy nabla time-scales integrals and Cauchy α -diamond time scale integrals similary inequalities can be stated as above.

Now we take into account a particular case when A is a normalised functional and f, g are two applications such that $f, g : E \to \mathbf{R}$ like below, and we will obtain new variant of inequaliities from Lemma 2 and from [9] by using Theorem 2, see

Lemma 3. Let $A: L \to \mathbf{R}$ be an normalised isotonic linear functional and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. If $f, g: E \to \mathbf{R}$ are so that $f, g, \frac{f^p}{g^{p-1}} \in L$ and $0 < m_1 \le f \le M_1 < \infty$, $0 < m_2 \le g \le M_2 < \infty$ for some constants m_1, M_1, m_2, M_2 then we have:

$$\frac{A^p(f)}{A^{p-1}(g)}K^{Up}\left(\left(\frac{M_1}{m_1}\right)^p\left(\frac{M_2}{m_2}\right)^p\right) \geq A\left(\frac{f^p}{g^{p-1}}\right),$$

where $U = \max\{\frac{1}{p}, \frac{1}{q}\}$ and K is the Kantorovich's ratio defined by $K(h) = \frac{(h+1)^2}{4h}, \ h > 0$

Proof. We use Theorem 2 from [7] where we replace f by $\frac{f}{a^{\frac{1}{q}}}$ and g by $g^{\frac{1}{q}}$ obtaining:

$$\begin{split} A(f)K^U\left(\left(\frac{M_1}{m_1}\right)^p\left(\frac{M_2}{m_2}\right)^p\right) &= A\left(\frac{f^p}{g^{\frac{1}{q}}}g^{\frac{1}{q}}\right)K^U\left(\left(\frac{M_1}{m_1}\right)^p\left(\frac{M_2}{m_2}\right)^p\right) \geq \\ &\geq A^{\frac{1}{p}}\left(\frac{f^p}{g^{p-1}}\right)A^{\frac{1}{q}}(g). \end{split}$$

Now we take the p-th power on both sides of the inequalities and we get the conclusion.

П

References

- [1] Alzer, H., Fonseca, C. M., Kovacec, A., Young-type inequalities and their matrix analogues, *Linear and Multilinear Algebra*, 63, 3, 622-635, (2015).
- [2] Andrica D. and Badea C, Gruss'inequality for positive linear functionals, *Periodica Math. Hung.*, 19, 155-167, (1998).
- [3] Anwar, M., Bibi, R., Bohner, M., and Pecaric, J., Integral Inequalities on Time Scales via the Theory of Isotonic Linear Functionals, Abstract and Applied Analysis, Article ID 483595, 16 pages, (2011).
- [4] Bohner, M., Peterson, A., "Dynamic equations on time scales: an introduction with applications". Birkhauser, Boston (2001).
- [5] Dragomir, S., S., A survey of Jessen's type inequalities for positive functionals, RGMIA Res. Rep. Coll., 46 pp, (2011).
- [6] Dragomir, S., S., A Gruss type inequality for isotonic linear functionals and applications, RGMIA Res. Rep. Coll., 10 pp, (2002).
- [7] Dragomir, S. S., Some results for isotonic functionals via an inequality due to Liao, Wu and Zhao, RGMIA Res. Rep. Coll., 11 pp, (2015).
- [8] Guseinov, G. S., Integration on time scales, J. Math. Anal. Appl, 285, 107-127 (2003).
- [9] Yin L, Qi, F., Some Integral Inequalities on Time Scales, Results. Mah., 64, 371-381, (2013).

Department of Mathematics, "Politehnica" University of Timisoara, P-ta. Victoriei, No.2, 300006-Timisoara