
INEQUALITIES FOR POSITIVE LINEAR MAPS OF
SELFADJOINT OPERATORS VIA A KITTANEH-MANASRAH

RESULT

S. S. DRAGOMIR1;2

Abstract. Some inequalities for positive linear maps of positive selfadjoint
linear operators in Hilbert spaces via a Kittaneh-Manasrah result, are given.
Operator and vector inequalities involving the weighted operator geometric
mean are also obtained. Reverses of the celebrated Ando�s inequality are
provided.

1. Introduction

As is well-known, the famous Young inequality for scalars says that if a; b > 0
and � 2 [0; 1]; then
(1.1) a1��b� � (1� �) a+ �b
with equality if and only if a = b. The inequality (1.5) is also called as �-weighted
arithmetic-geometric mean inequality.
Kittaneh and Manasrah [9], [10] provided a re�nement and a reverse for Young

inequality as follows:

(1.2) r
�p
a�

p
b
�2
� (1� �) a+ �b� a1��b� � R

�p
a�

p
b
�2

where a; b > 0, � 2 [0; 1]; r = min f1� �; �g and R = max f1� �; �g : The case
� = 1

2 reduces (1.2) to an identity and is of no interest.

We observe that, if a; b 2 [m;M ] � (0;1) ; then
���pa�pb��� � pM �

p
m and

by (1.2) we obtain the following simple reverse of Young inequality

(1.3) (1� �) a+ �b� a1��b� � R
�p
M �

p
m
�2
:

Let H be a complex Hilbert space and B (H) ; the Banach algebra of bounded
linear operators acting on H: We denote by B+ (H) the convex cone of all positive
operators on H and by B++ (H) the convex cone of all positive de�nite operators
on H:
Let H, K be complex Hilbert spaces. Following [2] (see also [16, p. 18]) we can

introduce:

De�nition 1. A map � : B (H)! B (K) is linear if it is additive and homogeneous,
namely

� (�A+ �B) = �� (A) + �� (B)
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2 S. S. DRAGOMIR1;2

for any �; � 2 C and A; B 2 B (H) : The linear map � : B (H)! B (K) is positive
if it preserves the operator order, i.e. if A 2 B+ (H) then � (A) 2 B+ (K) : We
write � 2 P [B (H) ;B (K)] : The linear map � : B (H)! B (K) is normalised if it
preserves the identity operator, i.e. � (1H) = 1K :We write � 2 PN [B (H) ;B (K)] :

We observe that a positive linear map � preserves the order relation, namely

A � B implies � (A) � � (B)
and preserves the adjoint operation � (A�) = � (A)

�
: If � 2 PN [B (H) ;B (K)]

and �1H � A � �1H ; then �1K � � (A) � �1K :
If the map 	 : B (H)! B (K) is linear, positive and 	(1H) 2 B++ (K) then by

putting � = 	�1=2 (1H)		�1=2 (1H) we get that � 2 PN [B (H) ;B (K)] ; namely
it is also normalised.
The following re�nement of Cauchy-Bunyakowsky-Schwarz inequality for n-tuples

of nonnegative real numbers (a1; :::; an) ; (b1; :::; bn) was established by Callebaut
in 1965 [1] and can be stated as follows:

(1.4)

 
nX
i=1

aibi

!2
�

nX
i=1

a
2(1��)
i b2�i

nX
i=1

a2�i b
2(1��)
i �

nX
i=1

a2i

nX
i=1

b2i ;

for any � 2 [0; 1] :
In [8], by the use of (1.2), we obtained the following re�nement and reverse of

the second part of Callebaut inequality (1.4) in the case of positive maps:

0 � 2r
�

�
�
g2 (A)

�
x; x

� 

�
�
f2 (A)

�
x; x

�
� h� (f (A) g (A))x; xi2

�
(1.5)

�


�
�
g2 (A)

�
x; x

� 

�
�
f2 (A)

�
x; x

�
�
D
�
�
f2� (A) g2(1��) (A)

�
x; x

ED
�
�
f2(1��) (A) g2� (A)

�
x; x

E

� R
�

�
�
g2 (A)

�
x; x

� 

�
�
f2 (A)

�
x; x

�
� h� (f (A) g (A))x; xi2

�
;

for any x 2 K; where f; g : I ! R are continuous functions on the interval
I, A is a selfadjoint operator with Sp (A) � I, � 2 [0; 1]; r = min f1� �; �g,
R = max f1� �; �g and � 2 P [B (H) ;B (K)] :
In [8] we have proved the following reverse of Hölder�s inequality as well:
Let f; g : I ! R be continuous functions on the interval I such that

(1.6) 0 < m1 � f �M1 <1; 0 < m2 � g �M2 <1;
for some constants m1; m2; M1 and M2; A; B be two selfadjoint operators with
Sp (A) ; Sp (B) � I and p; q > 1 with 1

p +
1
q = 1: If � 2 PN [B (H) ;B (K)] ; then

0 � 1� h� (f (A) g (A))x; xi
h� (fp (A))x; xi1=p h� (gq (A))x; xi1=q

(1.7)

� S
 
max

(�
M1

m1

� p
2

;

�
M2

m2

� q
2

)
�min

(�
m1

M1

� p
2

;

�
m2

M2

� q
2

)!2
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for any x 2 K; x 6= 0; where s = min
n
1
p ;

1
q

o
and S = max

n
1
p ;

1
q

o
:

For some recent inequalities for positive maps of Hilbert space operators see
[4]-[7], [11]-[15], [17]-[19] and the references therein.
In this paper, by the use of Kittaneh-Manasrah inequality (1.2) we establish some

other inequalities for positive linear maps of positive selfadjoint linear operators in
Hilbert spaces. Operator and vector inequalities involving the weighted operator
geometric mean are also provided. Reverses of the celebrated Ando�s inequality are
given.

2. Inequalities for Operator Geometric Mean

Throughout this section A; B are positive invertible operators on a complex
Hilbert space (H; h�; �i) : We use the following notations for operators

Ar�B := (1� �)A+ �B;

the weighted operator arithmetic mean and

A]�B := A
1=2
�
A�1=2BA�1=2

��
A1=2; � 2 [0; 1]

the weighted operator geometric mean. When � = 1
2 we write ArB and A]B for

brevity, respectively.
Ando�s inequality says that if A; B are positive operators on a complex Hilbert

space (H; h�; �i) and � 2 P [B (H) ;B (K)] ; then

(2.1) � (A]�B) � � (A) ]�� (B)

for any � 2 [0; 1] :
We have the following reverse of Ando�s inequality:

Theorem 1. Let A; B be positive invertible operators on a complex Hilbert space
(H; h�; �i) and � 2 P [B (H) ;B (K)] ; then we have the following reverse of (2.1)

0 � � (A) ]�� (B)� � (A]�B)(2.2)

� 4
����� � 12

����� (A)r� (B) + 2r� (A) ]� (B)� 2R� (A]B)
� 2R (� (A)r� (B)� � (A]B)) ;

where � 2 [0; 1]; r = min f1� �; �g and R = max f1� �; �g :

Proof. From a = 1 and b = x > 0 in (1.2) we have

2r

�
x+ 1

2
�
p
x

�
� (1� �) + �x� x� � R

�
x+ 1

2
�
p
x

�
;

where � 2 [0; 1]; r = min f1� �; �g, R = max f1� �; �g :
If we use the functional calculus for the positive operator X; then we obtain

(2.3) 2r

�
X + 1H
2

�X1=2

�
� (1� �) + �X �X� � R

�
X + 1H
2

�X1=2

�
;
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which by taking X = C�1=2DC�1=2 produces

2r

�
C�1=2DC�1=2 + 1H

2
�
�
C�1=2DC�1=2

�1=2�
(2.4)

� (1� �) + �C�1=2DC�1=2 �
�
C�1=2DC�1=2

��
� R

�
C�1=2DC�1=2 + 1H

2
�
�
C�1=2DC�1=2

�1=2�
;

provided C; D are positive invertible operators.
Now, if we multiply both sides of (2.4) by C1=2; then we get

(2.5) 2r (CrD � C]D) � Cr�D � C]�D � 2R (CrD � C]D) ;
where C; D are positive invertible operators and � 2 [0; 1]; r = min f1� �; �g,

R = max f1� �; �g :
Further, if we take in (2.5) C = A and D = B and then apply the positive map

�; then we get

2r (� (A)r� (B)� � (A]B)) + � (A]�B)(2.6)

� � (A)r�� (B)
� 2R (� (A)r� (B)� � (A]B)) + � (A]�B) ;

where A; B are positive invertible operators and � 2 [0; 1]:
If we write the inequality (2.5) for C = �(A) and D = �(B) ; then we also have

2r (� (A)r� (B)� � (A) ]� (B)) + � (A) ]�� (B)(2.7)

� � (A)r�� (B)
� 2R (� (A)r� (B)� � (A) ]� (B)) + � (A) ]�� (B) ;

where A; B are positive invertible operators and � 2 [0; 1]:
Now, if we use the �rst inequality in (2.7) and the second inequality in (2.6),

then we conclude that

2r (� (A)r� (B)� � (A) ]� (B)) + � (A) ]�� (B)
� � (A)r�� (B)
� 2R (� (A)r� (B)� � (A]B)) + � (A]�B) ;

which implies that

2r (� (A)r� (B)� � (A) ]� (B)) + � (A) ]�� (B)
� 2R (� (A)r� (B)� � (A]B)) + � (A]�B) ;

namely

� (A) ]�� (B)� � (A]�B)(2.8)

� 2R (� (A)r� (B)� � (A]B))� 2r (� (A)r� (B)� � (A) ]� (B))
� 2R (� (A)r� (B)� � (A]B))

since
� (A)r� (B)� � (A) ]� (B) � 0:

Observe that

2 (R� r) = 4
����� � 12

���� ; � 2 [0; 1];
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then by (2.8) we get the desired inequality (2.2). �

Corollary 1. Let A; B be positive operators such that there exist the positive
numbers 0 < m < M with the property

mA � B �MA:
Then for any � 2 P [B (H) ;B (K)] ; we have
(2.9) 0 � � (A) ]�� (B)� � (A]�B) � RC (m;M)� (A) ;
where � 2 [0; 1]; R = max f1� �; �g and

C (m;M) :=

8>>><>>>:
(1�

p
m)

2 if M < 1

max

�
(1�

p
m)

2
;
�p
M � 1

�2�
if m � 1 �M�p

M � 1
�2

if 1 < m:

Proof. It is clear that if x 2 [m;M ] � (0;1) ; then

max
x2[m;M ]

�p
x� 1

�2
= C (m;M) :

This implies that

(2.10)
x+ 1

2
�
p
x � 1

2
C (m;M)

if x 2 [m;M ] :
Now, since mA � B � MA; then by multiplying both sides with A�1=2 we get

m1H � A�1=2BA�1=2 �M1H ; which implies, by (2.10), that
A�1=2BA�1=2 + 1H

2
�
�
A�1=2BA�1=2

�1=2
� 1

2
C (m;M) 1H :

If we multiply this inequality both sides by A1=2 we get

ArB �A]B � 1

2
C (m;M)A

and by taking the positive map �; we deduce

� (A)r� (B)� � (A]B) � 1

2
C (m;M) � (A) ;

which, by (2.2), produces the desired result (2.9). �

3. Vector Inequalities

In this section we establish some vector inequalities for positive invertible self-
adjoint operators as follows:

Theorem 2. Let A; B be positive invertible operators on a complex Hilbert space
(H; h�; �i) : If �; 	 2 PN [B (H) ;B (K)] ; then we have

2r
�
h(� (A)r	(B))x; xi �

D
�
�
A1=2

�
x; x

ED
	
�
B1=2

�
x; x

E�
(3.1)

� h(� (A)r�	(B))x; xi �


�
�
A1��

�
x; x

�
h	(B�)x; xi

� 2R
�
h(� (A)r	(B))x; xi �

D
�
�
A1=2

�
x; x

ED
	
�
B1=2

�
x; x

E�
for any x 2 K; kxk = 1; where � 2 [0; 1]; r = min f1� �; �g and R = max f1� �; �g :
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Proof. From (1.2) we have for any t; s 2 R+ that

(3.2) r
�
t+ s� 2

p
ts
�
� (1� �) t+ �s� t1��s� � R

�
t+ s� 2

p
ts
�
;

where � 2 [0; 1]; r = min f1� �; �g and R = max f1� �; �g :
Fix s 2 R+; then by the functional calculus for the operator A we have

r
�
A+ s1H � 2

p
sA1=2

�
� (1� �)A+ �s1H � s�A1��

� R
�
A+ s1H � 2

p
sA1=2

�
and by taking the normalised positive map � and the inner product for x 2 K;
kxk = 1; we have

r
�
h� (A)x; xi+ s� 2

p
s
D
�
�
A1=2

�
x; x

E�
� (1� �) h� (A)x; xi+ �s� s�



�
�
A1��

�
x; x

�
� R

�
h� (A)x; xi+ s� 2

p
s
D
�
�
A1=2

�
x; x

E�
for any s 2 R+:
Using the functional calculus for the operator B we have

r
�
h� (A)x; xi 1H +B � 2

D
�
�
A1=2

�
x; x

E
B1=2

�
� (1� �) h� (A)x; xi 1H + �B �



�
�
A1��

�
x; x

�
B�

� R
�
h� (A)x; xi 1H +B � 2

D
�
�
A1=2

�
x; x

E
B1=2

�
for any x 2 K; kxk = 1:
If we take the normalised positive map 	 and the inner product for y 2 K;

kyk = 1; then we have

r
�
h� (A)x; xi+ h	(B) y; yi � 2

D
�
�
A1=2

�
x; x

ED
	
�
B1=2

�
y; y
E�

� (1� �) h� (A)x; xi+ � h	(B) y; yi � h	(B�) y; yi


�
�
A1��

�
x; x

�
� R

�
h� (A)x; xi+ h	(B) y; yi � 2

D
�
�
A1=2

�
x; x

ED
	
�
B1=2

�
y; y
E�

for any x; y 2 K; kxk = kyk = 1:
Finally, if we put y = x above, then we get the desired result (3.1). �

Remark 1. If we take in (3.1) � = 	; then we get

2r
�
h(� (A)r� (B))x; xi �

D
�
�
A1=2

�
x; x

ED
�
�
B1=2

�
x; x

E�
(3.3)

� h(� (A)r�� (B))x; xi �


�
�
A1��

�
x; x

�
h� (B�)x; xi

� 2R
�
h(� (A)r� (B))x; xi �

D
�
�
A1=2

�
x; x

ED
�
�
B1=2

�
x; x

E�
for any x 2 K; kxk = 1:
If we choose in (3.1) B = A; then we get

2r
�
h(� (A)r	(A))x; xi �

D
�
�
A1=2

�
x; x

ED
	
�
A1=2

�
x; x

E�
(3.4)

� h(� (A)r�	(A))x; xi �


�
�
A1��

�
x; x

�
h	(A�)x; xi

� 2R
�
h(� (A)r	(A))x; xi �

D
�
�
A1=2

�
x; x

ED
	
�
A1=2

�
x; x

E�
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for any x 2 K; kxk = 1:
Moreover, if we put in (3.4) � = 	; then we have the interesting result

2r

�
h� (A)x; xi �

D
�
�
A1=2

�
x; x

E2�
(3.5)

� h� (A)x; xi �


�
�
A1��

�
x; x

�
h� (A�)x; xi

� 2R
�
h� (A)x; xi �

D
�
�
A1=2

�
x; x

E2�
for any x 2 K; kxk = 1:
If we take in (3.5) A = jT j2 where T 2 B (H) ; then we have

2r
�D
�
�
jT j2

�
x; x

E
� h� (jT j)x; xi2

�
(3.6)

�
D
�
�
jT j2

�
x; x

E
�
D
�
�
jT j2(1��)

�
x; x

ED
�
�
jT j2�

�
x; x

E
� 2R

�D
�
�
jT j2

�
x; x

E
� h� (jT j)x; xi2

�
for any x 2 K; kxk = 1; where � 2 [0; 1]; r = min f1� �; �g and R = max f1� �; �g :

We also have the complementary result:

Theorem 3. Let A; B be positive invertible operators on a complex Hilbert space
(H; h�; �i) : If �; 	 2 PN [B (H) ;B (K)] ; then we have

2r
�
h(� (A)r	(B))x; xi � h	(B)x; xi1=2

D
�
�
A1=2

�
x; x

E�
(3.7)

� h(� (A)r�	(g (A)))x; xi � h	(B)x; xi�


�
�
A1��

�
x; x

�
� 2R

�
h(� (A)r	(B))x; xi � h	(B)x; xi1=2

D
�
�
A1=2

�
x; x

E�
;

for any x 2 K; kxk = 1; where � 2 [0; 1]; r = min f1� �; �g and R = max f1� �; �g :

Proof. From (1.2) we have for any t 2 R+

r
�
t+ h	(B) y; yi � 2

p
t h	(B) y; yi1=2

�
(3.8)

� (1� �) t+ � h	(B) y; yi � t1�� h	(B) y; yi�

� R
�
t+ h	(B) y; yi � 2

p
t h	(B) y; yi1=2

�
where y 2 K; kyk = 1; � 2 [0; 1]; r = min f1� �; �g and R = max f1� �; �g :
If we use the functional calculus for the operator A then we have by (3.8) that

r
�
A+ h	(B) y; yi 1H � 2 h	(B) y; yi1=2A1=2

�
(3.9)

� (1� �)A+ � h	(B) y; yi 1H � h	(B) y; yi� A1��

� R
�
A+ h	(B) y; yi 1H � 2 h	(B) y; yi1=2A1=2

�
where y 2 K; kyk = 1:
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If we apply to the inequality (3.9) the normalised positive map �; then we get

r
�
� (A) + h	(B) y; yi 1K � 2 h	(B) y; yi1=2 �

�
A1=2

��
� (1� �) � (A) + � h	(B) y; yi 1K � h	(B) y; yi� �

�
A1��

�
� R

�
� (A) + h	(B) y; yi 1K � 2 h	(B) y; yi1=2 �

�
A1=2

��
where y 2 K; kyk = 1:
If in this inequality we take the inner product for x 2 K; kxk = 1; we get

r
�
h� (A)x; xi+ h	(B) y; yi � 2 h	(B) y; yi1=2

D
�
�
A1=2

�
x; x

E�
� (1� �) h� (A)x; xi+ � h	(B) y; yi � h	(B) y; yi�



�
�
A1��

�
x; x

�
� R

�
h� (A)x; xi+ h	(B) y; yi � 2 h	(B) y; yi1=2

D
�
�
A1=2

�
x; x

E�
;

which, for y = x; generates the desired inequality (3.7). �

Remark 2. If we take in (3.7) � = 	; then we get

2r
�
h(� (A)r� (B))x; xi � h� (B)x; xi1=2

D
�
�
A1=2

�
x; x

E�
(3.10)

� h(� (A)r�� (A))x; xi � h� (B)x; xi�


�
�
A1��

�
x; x

�
� 2R

�
h(� (A)r� (B))x; xi � h� (B)x; xi1=2

D
�
�
A1=2

�
x; x

E�
;

for any x 2 K; kxk = 1:
If we put in (3.7) B = A; then we get

2r
�
h(� (A)r	(A))x; xi � h	(A)x; xi1=2

D
�
�
A1=2

�
x; x

E�
(3.11)

� h(� (A)r�	(A))x; xi � h	(A)x; xi�


�
�
A1��

�
x; x

�
� 2R

�
h(� (A)r	(A))x; xi � h	(A)x; xi1=2

D
�
�
A1=2

�
x; x

E�
;

for any x 2 K; kxk = 1:
Moreover, if we choose in (3.11) � = 	 and assume that A 2 B++ (H), then by

replacing � with 1� � we get the interesting result

2r h� (A)x; xi��1=2
�
h� (A)x; xi1=2 �

D
�
�
A1=2

�
x; x

E�
(3.12)

� h� (A)x; xi� � h� (A�)x; xi

� 2R h� (A)x; xi��1=2
�
h� (A)x; xi1=2 �

D
�
�
A1=2

�
x; x

E�
;

for any x 2 K; kxk = 1; where � 2 [0; 1]; r = min f1� �; �g and R = max f1� �; �g :
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