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Abstract. In this paper, we �rst obtain a new identity for twice di¤erentiable
mappings. Then, we establish generalized and improved perturbed version of
Ostrowski type inequalities for functions whose derivatives are of bounded
variation or second derivatives are either bounded or Lipschitzian.

1. Introduction

In 1938, Ostrowski �rst declared his inequality for di¤erent di¤erentiable map-
pings. Ostrowski inequalities appear in most of the domains of Mathematics. Its im-
portance has increased remarkable during the past few years and it is now cosidered
as an independent branch of Mathematics. The development of the theory of Os-
trowski inequality was initiated by Dragomir. In [6], Dragomir et. al obtained
Ostrowski type inequalities for functions whose second derivatives are bounded.
During the time, the growing interest for the ostrowski inequalities led to the ap-
parition of several research papers in the area. In this sense, we mention ([6], [8],
[16], [17], [19]-[21]). In recent years, modern theory of inequalities is used at large
and many e¤orts devoted to establish several generalizations of the Ostrowski�s
inequalities for mappings of bounded variation ([1]-[5], [7], [9]-[13], [15], [18]). In
this study, we establish some perturbed version of Ostrowski type inequalities for
twice di¤erentiable functions whose derivatives are of bounded variation or second
derivatives are either bounded or Lipschitzian.

Theorem 1. [14] Let f : [a; b] ! R be a di¤erentiable mapping on (a; b) whose
derivative f 0 : (a; b) ! R is bounded on (a; b) ; i.e. kf 0k1 := sup

t2(a;b)
jf 0(t)j < 1:

Then, we have the inequality

(1.1)

������f(x)� 1

b� a

bZ
a

f(t)dt

������ �
"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a) kf 0k1 ;

for all x 2 [a; b].

The constant 14 is the best possible.
In [9], Dragomir proved the following Ostrowski type inequalitiesfor functions of

bounded variation:
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Theorem 2. Let f : [a; b]! R be a mapping of bounded variation on [a; b] : Then

(1.2)

������
bZ
a

f(t)dt� (b� a) f(x)

������ �
�
1

2
(b� a) +

����x� a+ b2
����� b_

a

(f)

holds for all x 2 [a; b] : The constant 12 is the best possible.

The following lemma is required to prove the main theorem.

Lemma 1. Let f : [a; b]! C be a twice di¤erantiable function on (a; b) : Then for
any �i(x); i = 1; 2; ::5 complex number the following identity holds

(1.3)

1

2 (b� a)

8><>:
a+x
2Z
a

(t� a)2 [f 00 (t)� �1(x)] dt+
xZ

a+x
2

�
t� 3a+ b

4

�2
[f 00 (t)� �2(x)] dt

+

a+b�xZ
x

�
t� a+ b

2

�2
[f 00 (t)� �3(x)] dt

+

a+2b�x
2Z

a+b�x

�
t� a+ 3b

4

�2
[f 00 (t)� �4(x)] dt+

bZ
a+2b�x

2

(t� b)2 [f 00 (t)� �5(x)] dt

9>=>;
= A+

1

48 (b� a)

(�
x� a+ b

2

�3
[�2(x) + 16�3(x) + �4(x)]

� (x� a)3 [�1(x) + �5(x)]� 8
�
x� 3a+ b

4

�3
[�2(x) + �4(x)]

)
;

for all x 2
�
a; a+b2

�
; where A is de�ned by

A(1.4)

=
1

b� a

bZ
a

f (t) dt� 1
4

�
f (x) + f (a+ b� x) + f

�
a+ x

2

�
+ f

�
a+ 2b� x

2

�

+

�
x� 5a+ 3b

8

�
ff 0 (a+ b� x)� f 0 (x)g

+
1

2

�
x� 3a+ b

4

��
f 0
�
a+ 2b� x

2

�
� f 0

�
a+ x

2

���
:

Proof. Integrating the by parts for each integral, we can easily obtain the required
result (1.3). �

Now with the help of above Lemma, we will prove the following inequalities.
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2. Inequalities for Functions Whose Second Derivatives are Bounded

Recall the sets of complex-valued functions:

U [a;b] (;�)

: =
n
f : [a; b]! CjRe

h
(�� f(t))

�
f(t)

�
� 

i
� 0 for almost every t 2 [a; b]

o
and

�[a;b] (;�) :=

�
f : [a; b]! Cj

����f(t)�  + �2
���� � 1

2
j�� j for a.e. t 2 [a; b]

�
:

Proposition 1. For any ;� 2 C;  6= �; we have that U [a;b] (;�) and �[a;b] (;�)
are nonempty and closed sets and

U [a;b] (;�) = �[a;b] (;�) :

Let I1 =
�
a; a+x2

�
; I2 =

�
a+x
2 ; x

�
I3 = [x; a+ b� x] I4 =

�
a+ b� x; a+2b�x2

�
and

I5 =
�
a+2b�x

2 ; b
�
:

Theorem 3. Let f : [a; b] ! C be a twice di¤erantiable function on (a; b) and
x 2 (a; b) : Suppose that i(x);�i(x) 2 C; i(x) 6= �i(x); i = 1; 2; 3; 4; 5 and

f 00 2
5\
i=1

U Ii (i;�i)

then we have the inequality�����A+ 1

96 (b� a)

"�
x� a+ b

2

�3
� [2(x) + �2(x) + 16 (3(x) + �3(x)) + 4(x) + �4(x)]

� (x� a)3 [1(x) + �1(x) + 5(x) + �5(x)]

�8
�
x� 3a+ b

4

�3
[2(x) + �2(x) + 4(x) + �4(x)]

#�����
� 1

96 (b� a)

n
(x� a)3 j�1(x)� 1(x)j

+

"
8

�
x� 3a+ b

4

�3
�
�
x� a+ b

2

�3#
j�2(x)� 2(x)j

+16

�
a+ b

2
� x

�3
j�3(x)� 3(x)j

+

"
8

�
x� 3a+ b

4

�3
�
�
x� a+ b

2

�3#
j�4(x)� 4(x)j

+(x� a)3 j�5(x)� 5(x)j
o
;

where A is de�ned as in (1.4).
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Proof. Taking the modulus identity (1.3) for �i(x) =
i(x)+�i(x)

2 ; i = 1; 2; :::; 5;

since f 00 2
5\
i=1

U Ii (i;�i), we have

�����A+ 1

96 (b� a)

"�
x� a+ b

2

�3
� [2(x) + �2(x) + 16 (3(x) + �3(x)) + 4(x) + �4(x)]

� (x� a)3 [1(x) + �1(x) + 5(x) + �5(x)]

�8
�
x� 3a+ b

4

�3
[2(x) + �2(x) + 4(x) + �4(x)]

#�����
� 1

2 (b� a)

8><>:
a+x
2Z
a

(t� a)2
����f 00 (t)� 1(x) + �1(x)

2

���� dt
+

xZ
a+x
2

�
t� 3a+ b

4

�2 ����f 00 (t)� 2(x) + �2(x)
2

���� dt
+

a+b�xZ
x

�
t� a+ b

2

�2 ����f 00 (t)� 3(x) + �3(x)
2

���� dt
+

a+2b�x
2Z

a+b�x

�
t� a+ 3b

4

�2 ����f 00 (t)� 4(x) + �4(x)
2

���� dt
+

bZ
a+2b�x

2

(t� b)2
����f 00 (t)� 5(x) + �5(x)

2

���� dt
9>=>;

� 1

96 (b� a)

n
(x� a)3 j�1(x)� 1(x)j

+

"
8

�
x� 3a+ b

4

�3
�
�
x� a+ b

2

�3#
j�2(x)� 2(x)j

+16

�
a+ b

2
� x

�2
j�3(x)� 3(x)j"

8

�
x� 3a+ b

4

�3
�
�
x� a+ b

2

�3#
j�4(x)� 4(x)j

+(x� a)3 j�5(x)� 5(x)j
o
:

This completes the proof. �
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Remark 1. If we choose x = a in Theorem 3, we obtain the inequality������ 1

b� a

bZ
a

f (t) dt� f (a) + f (b)
2

� (b� a) f
0 (b)� f 0 (a)

8
� (b� a)

2

48
(3(x) + �3(x))

�����
� (b� a)

48
j�3(x)� 3(x)j

which was given by Sarikaya et al. in [15].

Corollary 1. Under assumption of Theorem 3 with x = a+b
2 , we have������ 1

b� a

bZ
a

f (t) dt� 1
4

�
f

�
3a+ b

4

�
+ 2f

�
a+ b

2

�
+ f

�
a+ 3b

4

�

+
1

8
(b� a)

�
f 0
�
a+ 3b

4

�
� f 0

�
3a+ b

4

���

� (b� a)
2

768
[1(x) + �1(x) + 2(x) + �2(x)

+4(x) + �4(x) + 5(x) + �5(x)]j

� (b� a)2

768
[j�1(x)� 1(x)j+ j�2(x)� 2(x)j

+ j�4(x)� 4(x)j+ j�5(x)� 5(x)j] :

Corollary 2. Under assumption of Theorem 3 with x = 3a+b
4 , we have������ 1

b� a

bZ
a

f (t) dt� 1
4

�
f

�
3a+ b

4

�
+ f

�
a+ 3b

4

�

+f

�
7a+ b

8

�
+ f

�
a+ 7b

8

�
�1
8
(b� a)

�
f 0
�
a+ 3b

4

�
� f 0

�
3a+ b

4

���

+
(b� a)2

6144
[1(x) + �1(x) + 2(x) + �2(x)

+16 (3(x) + �3(x)) + 4(x) + �4(x) + 5(x) + �5(x)]j

� (b� a)2

6144
[j�1(x)� 1(x)j+ 8 j�2(x)� 2(x)j+ 16 j�4(x)� 4(x)j

+8 j�4(x)� 4(x)j+ j�5(x)� 5(x)j] :
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3. Inequalities for Mappings of Bounded Variation

In this section, we establish some inequalities for function whose second deriva-
tives are of bounded variation.
Let f :[a; b] ! C be a twice di¤erentiable function on I�(I� is the interior of

I) and [a; b] � I�:Then, from (1.3), we have for

�1(x) = f
00 (a) ;

�2(x) =
f 00 �a+x

2

�
+ f 00 (x)

2
;

�3(x) =
f 00 (x) + f 00 (a+ b� x)

2
;

�4(x) =
f 00 (a+ b� x) + f 00 �a+2b�x

2

�
2

;

�5(x) = f
00 (b) ;

1

2 (b� a)

8><>:
a+x
2Z
a

(t� a)2 [f 00 (t)� f 00 (a)] dt+

xZ
a+x
2

�
t� 3a+ b

4

�2
(3.1)

�
"
f 00 (t)�

f 00 �a+x
2

�
+ f 00 (x)

2

#
dt

+

a+b�xZ
x

�
t� a+ b

2

�2 �
f 00 (t)� f

00 (x) + f 00 (a+ b� x)
2

�
dt

+

a+2b�x
2Z

a+b�x

�
t� a+ 3b

4

�2 "
f 00 (t)�

f 00 (a+ b� x) + f 00 �a+2b�x
2

�
2

#
dt

+

bZ
a+2b�x

2

(t� b)2 [f 00 (t)� f 00 (b)] dt

9>=>;
= A+

1

48 (b� a)

"
1

2

�
x� a+ b

2

�3
�
�
f 00

�
a+ x

2

�
+ 17 (f 00 (x) + f 00 (a+ b� x)) + f 00

�
a+ 2b� x

2

��
� (x� a)3 [f 00 (a) + f 00 (b)]� 4

�
x� 3a+ b

4

�3
�
�
f 00

�
a+ x

2

�
+ f 00 (x) + f 00 (a+ b� x) + f 00

�
a+ 2b� x

2

���
for any x 2

�
a; a+b2

�
; where A is de�ned as in (1.4).

Theorem 4. Let f : [a; b] ! C be a twice di¤erentiable function on I�(I� is the
interior of I) and [a; b] � I�: If the second derivative f 00 is of bounded variation
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on [a; b] ; then we have

�����A+ 1

48 (b� a)

"
1

2

�
x� a+ b

2

�3
(3.2)

�
�
f 00

�
a+ x

2

�
+ 17 (f 00 (x) + f 00 (a+ b� x)) + f 00

�
a+ 2b� x

2

��
� (x� a)3 [f 00 (a) + f 00 (b)]� 4

�
x� 3a+ b

4

�3
�
�
f 00

�
a+ x

2

�
+ f 00 (x) + f 00 (a+ b� x) + f 00

�
a+ 2b� x

2

�������
� 1

48 (b� a)

8<:(x� a)3
a+x
2_
a

(f 00)

+

"
8

�
x� 3a+ b

4

�3
�
�
x� a+ b

2

�3# x_
a+x
2

(f 00)

+8

�
a+ b

2
� x

�3 a+b�x_
x

(f 00)

+

"
8

�
x� 3a+ b

4

�3
�
�
x� a+ b

2

�3# a+2b�x
2_

a+b�x
(f 00)

+ (x� a)3
b_

a+2b�x
2

(f 00)

9=; ;

for all x 2
�
a; a+b2

�
; where A is de�ned as in (1.4).

Proof. From (3.1), we �nd that

�����A+ 1

48 (b� a)

"
1

2

�
x� a+ b

2

�3
�
�
f 00

�
a+ x

2

�
+ 17 (f 00 (x) + f 00 (a+ b� x)) + f 00

�
a+ 2b� x

2

��
� (x� a)3 [f 00 (a) + f 00 (b)]� 4

�
x� 3a+ b

4

�3
�
�
f 00

�
a+ x

2

�
+ f 00 (x) + f 00 (a+ b� x) + f 00

�
a+ 2b� x

2

�������
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� 1

2 (b� a)

8><>:
a+x
2Z
a

(t� a)2 jf 00 (t)� f 00 (a)j dt

+

xZ
a+x
2

�
t� 3a+ b

4

�2 "
f 00 (t)�

f 00 �a+x
2

�
+ f 00 (x)

2

#
dt

+

a+b�xZ
x

�
t� a+ b

2

�2 �����f 00 (t)� f
00 (x) + f 00 (a+ b� x)

2

����� dt
+

a+2b�x
2Z

a+b�x

�
t� a+ 3b

4

�2 �����f 00 (t)�
f 00 (a+ b� x) + f 00 �a+2b�x

2

�
2

����� dt
+

bZ
a+2b�x

2

(t� b)2 jf 00 (t)� f 00 (b)j dt

9>=>; :
Since f 00 is of bounded variation on [a; b] ; we get

jf 00 (t)� f 00 (a)j �
t_
a

(f 00)

for t 2
�
a; a+x2

�
�����f 00 (t)�

f 00 �a+x
2

�
+ f 00 (x)

2

����� � 1

2

x_
a+x
2

(f 00) <
x_

a+x
2

(f 00)

for t 2
�
a+x
2 ; x

�
����f 00 (t)� f

00 (x) + f 00 (a+ b� x)
2

���� � 1

2

a+b�x_
x

(f 00)

for t 2 [x; a+ b� x]�����f 00 (t)�
f 00 (a+ b� x) + f 00 �a+2b�x

2

�
2

����� � 1

2

a+2b�x
2_

a+b�x
(f 00) <

a+2b�x
2_

a+b�x
(f 00)

for t 2
�
a+ b� x; a+2b�x2

�
jf 00 (t)� f 00 (b)j �

b_
t

(f 00)

for t 2
�
a+2b�x

2 ; b
�
:

Thus, using the elementary analysis operations, we deduce desired inequality
(3.2) which completes the proof. �

Remark 2. If we choose x = a in (3.2), then we get the result proved by Sarikaya
et al. [15].
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Corollary 3. Under assumption of Theorem 4 with x = a+b
2 ; we have the inequality������ 1

b� a

bZ
a

f (t) dt� 1
4

�
f

�
3a+ b

4

�
+ 2f

�
a+ b

2

�
+ f

�
a+ 3b

4

�

+
1

8
(b� a)

�
f 0
�
a+ 3b

4

�
� f 0

�
3a+ b

4

���
� (b� a)

384

�
f 00(a) + f 00(b) + f 00

�
a+ b

2

�
+
1

2

�
f 00
�
a+ 3b

4

�
+ f 00

�
3a+ b

4

�������
� 1

384

b_
a

(f 00) :

4. Inequalities for Lipschitzian Mappings

In this section we obtain some inequalities for function whose second derivatives
are Lipschitzian.
We say that the function g : [a; b]! C is Lipschitzian with the constant L > 0 if

jg(t)� g(s)j � L jt� sj

for any t; s 2 [a; b] :

Theorem 5. Let f : [a; b] ! C be a twice di¤erantiable function on (a; b) : If the
second derivative f 00 is a Lipschitzian mapping with the constant L > 0;then we
have the inequality�����A+ 1

48 (b� a)

"�
x� a+ b

2

�3
(4.1)

�
�
f 00

�
3a+ b

4

�
+ 16f 00

�
a+ b

2

�
+ f 00

�
a+ 3b

4

��
� (x� a)3 [f 00 (a) + f 00 (b)]

�8
�
x� 3a+ b

4

�3 �
f 00

�
3a+ b

4

�
+ f 00

�
a+ 3b

4

��#�����
� L

128 (b� a)

�
2 (x� a)4 + sgn

�
3a+ b

4
� x

�
�
"
16

�
x� 3a+ b

4

�4
�
�
x� a+ b

2

�4#

+31

�
x� a+ b

2

�4
+ 16

�
x� 3a+ b

4

�4#
;

for all x 2
�
a; a+b2

�
; where A is de�ned as in (1.4).
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Proof. If we take the �1 = f 00 (a) ; �2 = f 00 � 3a+b
4

�
; �3 = f 00 �a+b

2

�
; �4 =

f 00 �a+3b
4

�
and �5 = f 00 (b) in equality (1.3), we have

1

2 (b� a)

8><>:
a+x
2Z
a

(t� a)2 [f 00 (t)� f 00 (a)] dt+(4.2)

xZ
a+x
2

�
t� 3a+ b

4

�2 �
f 00 (t)� f 00

�
3a+ b

4

��
dt

+

a+b�xZ
x

�
t� a+ b

2

�2 �
f 00 (t)� f 00

�
a+ b

2

��
dt

+

a+2b�x
2Z

a+b�x

�
t� a+ 3b

4

�2 �
f 00 (t)� f 00

�
a+ 3b

4

��
dt

+

bZ
a+2b�x

2

(t� b)2 [f 00 (t)� f 00 (b)] dt

9>=>;
=

1

b� a

bZ
a

f (t) dt� 1
4

�
f (x) + f (a+ b� x) + f

�
a+ x

2

�
+ f

�
a+ 2b� x

2

�

+

�
x� 5a+ 3b

8

�
ff 0 (a+ b� x)� f 0 (x)g

+
1

2

�
x� 3a+ b

4

��
f 0
�
a+ 2b� x

2

�
� f 0

�
a+ x

2

���
+

1

48 (b� a)

"�
x� a+ b

2

�3
�
�
f 00

�
3a+ b

4

�
+ 16f 00

�
a+ b

2

�
+ f 00

�
a+ 3b

4

��
� (x� a)3 [f 00 (a) + f 00 (b)]

�8
�
x� 3a+ b

4

�3 �
f 00

�
3a+ b

4

�
+ f 00

�
a+ 3b

4

��#

for all x 2
�
a; a+b2

�
:

Since f 00 is Lipschitzian, taking the madulus in (4.2), we have�����A+ 1

48 (b� a)

"�
x� a+ b

2

�3
�
�
f 00

�
3a+ b

4

�
+ 16f 00

�
a+ b

2

�
+ f 00

�
a+ 3b

4

��
� (x� a)3 [f 00 (a) + f 00 (b)]
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�8
�
x� 3a+ b

4

�3 �
f 00

�
3a+ b

4

�
+ f 00

�
a+ 3b

4

��#�����
� L

128 (b� a)

�
2 (x� a)4 + sgn

�
3a+ b

4
� x

�
�
"
16

�
x� 3a+ b

4

�4
�
�
x� a+ b

2

�4#

+31

�
x� a+ b

2

�4
+ 16

�
x� 3a+ b

4

�4#

� L

2 (b� a)

8><>:
a+x
2Z
a

(t� a)3 dt+
xZ

a+x
2

����t� 3a+ b4

����3 dt+
a+b�xZ
x

����a+ b2 � t
����3 dt

+

a+2b�x
2Z

a+b�x

�
a+ 3b

4
� t
�3
dt+

bZ
a+2b�x

2

(b� t)3 dt

9>=>; :

If we calculate the above �ve integrals, then we obtain the inequality (4.1). Thus
proof is completed. �

Corollary 4. Under assumption of Theorem 5 with x = a; we get the inequality

������ 1

b� a

bZ
a

f (t) dt� f (a) + f (b)
2

� (b� a) f
0 (b)� f 0 (a)

8
� (b� a)

2

24
f 00

�
a+ b

2

������
� 1

64
(b� a)3 L:

Corollary 5. Under assumption of Theorem 5 with x = a+b
2 ; we get the inequality

������ 1

b� a

bZ
a

f (t) dt� 1
4

�
f

�
3a+ b

4

�
+ 2f

�
a+ b

2

�
+ f

�
a+ 3b

4

�

+
1

8
(b� a)

�
f 0
�
a+ 3b

4

�
� f 0

�
3a+ b

4

���
+
(b� a)2

384

�
f 00 (a) + f 00 (b) + f 00

�
3a+ b

4

�
+ f 00

�
a+ 3b

4

��
� 1

512
(b� a)3 L
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Corollary 6. Under assumption of Theorem 5 with x = 3a+b
4 ; we get the inequality������ 1

b� a

bZ
a

f (t) dt� 1
4

�
f

�
3a+ b

4

�
+ f

�
a+ 3b

4

�
+ f

�
7a+ b

8

�
+ f

�
a+ 7b

8

�

�1
8
(b� a)

�
f 0
�
a+ 3b

4

�
� f 0

�
3a+ b

4

���
� 1

3072
(b� a)2

�
f 00 (a) + f 00

�
3a+ b

4

�
+ 16f 00

�
a+ b

2

�
+f 00

�
a+ 3b

4

�
+ f 00 (b)

�����
� 17

214
(b� a)3 L:
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