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Abstract. The aim of this paper is to construct (p, q)-calculus on finite in-
tervals. The (pk, qk)−derivative and (pk, qk)−integral are defined and some
basic properties are given. Also, (pk, qk)−analogue of Hölder, Minkowski and
Hermite-Hadamard inequality are proved.

1. INTRODUCTION

All of the scientific works deal with the ambition for giving the meaning of the
universe in which we live. Every new discovery we made come up looking, feeling,
living and transmitting in a different perspective. For understanding and transmit-
ting these happenings, we all need different type of methods. As mathematicians,
the main purpose of our studies is to analyze the nature and express in mathemat-
ical ways. In this sense, calculus which is the main well-known way become our
alphabet while we are translating the universe into some notions.
Quantum calculus is a field that searches mathematical formulas which turn the

original version when q tends to 1. The history of quantum analysis goes back
to eighteenth century to when Euler introduced q in ’Introductio’in the tracks of
Newton’s infinite series. In nineteenth century, Jackson defined an integral which
is called q-Jackson integral in 1910 and q-analysis has gone through a period of
rapidly development. For more details, see [4, 5, 7, 10] and the refrences therein.
In recent years, as being one of the most desirable area, many authors are inter-

ested in quantum calculus. One can easily see new contributions to the field almost
every day. This is due to the fact that quantum calculus has not also important ap-
plications in mathematics but also in particle physics, theoretical physics, analytic
number theory, and computer science. In mathematics, q- analysis is closely linked
with theory of ordinary fractional calculus, optimal control problems, q-difference
and q-integral equations. In [17] and [18] Tariboon et al. define quantum calculus
on finite intervals namely qk-calculus, prove some of its properties and extend some
of the important integral inequalities to quantum calculus.
In this paper, we give a generalization for the (p, q)-calculus which was first taken

in [1] as (p, q)-integers for generalizing q-oscillator algebras which is well known
in the earlier pyhsics. Until then today, (p, q)-calculus become an appropriate
workspace for both mathematicians and pyhsicist, see [1, 2, 3, 6, 8, 9] and [11]-[15].
Our main goal is to open a new door for enlarging the field in which the studies
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gain importance. The (p, q)−integers [n]p,q are defined by

(1.1) [n]p,q =
pn − qn
p− q

where 0 < q < p ≤ 1. For each k, n ∈ N, n ≥ k ≥ 0, the (p, q)−factorial and
(p, q)−binomial are defined by

[n]p,q! =
n∏
k=1

[k]p,q , n ≥ 1, [0]p,q! = 1[
n
k

]
p,q

=
[n]p,q!

[n− k]p,q! [k]p,q!
.

Let f : R→ R. The (p, q)−derivative of the function f is defined as

(1.2) Dp,qf (x) =
f (px)− f (qx)
(p− q)x , x 6= 0

provided that Dp,qf (0) = f ′ (0).
Let f : C [0, a]→ R (a > 0) then the (p, q)-integration of f defined by∫ a

0

f (t) dp,qt = (q − p) a
∞∑
n=0

pn

qn+1
f

(
pn

qn+1
a

)
if

∣∣∣∣pq
∣∣∣∣ < 1(1.3)

∫ a

0

f (t) dp,qt = (p− q) a
∞∑
n=0

qn

pn+1
f

(
qn

pn+1
a

)
if

∣∣∣∣pq
∣∣∣∣ > 1.

The formula of (p, q)−integration by parts is given by

(1.4)
∫ b

a

f (px)Dp,qg (x) dp,qt = f (x) g (x)|ba −
∫ b

a

g (qx)Dp,qf (x) dp,qt.

All notions written above reduce to the q−analogs when p = 1. For more details,see
the refrences mentioned in above.

2. (p, q)-CALCULUS ON FINITE INTERVALS

In this section, we define (pk, qk)-derivative and (pk, qk)-integral on finite inter-
vals. Let Ik := [uk, uk+1] be an interval and 0 < qk < pk ≤ 1 be constants.

Definition 1. Let f : Ik → R be a continuous function and assume that u ∈ Ik.
Then the following equality

Dpk,qkf (u) =
f (pku+ (1− pk)uk)− f (qku+ (1− qk)uk)

(pk − qk) (u− uk)
, u 6= uk(2.1)

Dpk,qkf (uk) = lim
u→uk

Dpk,qkf (u)

is called the (pk, qk)-derivative of a function f at u.

Obviously, f is (pk, qk)-differentiable on Ik provided Dpk,qkf (u) exists for all
u ∈ Ik. In (2.1), if pk = 1, then Dpk,qkf = Dqkf which is the qk-derivative of the
function f and also if qk → 1, uk = 0, (2.1) reduces to q-derivative of the function
f , see [10, 18].
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Example 1. For u ∈ Ik, if f (u) = (u− uk)n, then

Dpk,qkf (u) =
(pku+ (1− pk)uk − uk)n − (qku+ (1− qk)uk − uk)n

(pk − qk) (u− uk)

=
pnk (u− uk)

n − qnk (u− uk)
n

(pk − qk) (u− uk)
= [n]p,k (u− uk)n−1(2.2)

where [n]pk,qk =
pnk−q

n
k

pk−qk . If pk = 1 in (2.2), then (2.2) reduces

Dqkf (u) = [n]qk (u− uk)
n−1

which is given in [18]. Also if qk → 1, uk = 0, it reduces q-derivative of the given
function, see [10].

Theorem 1. Suppose that f, g : Ik → R is (pk, qk)-differentiable on Ik. Then:
(a) If f + g : Ik → R is (pk, qk)-differentiable on Ik, then

(2.3) Dpk,qk (f (u) + g (u)) = Dpk,qkf (u) +Dpk,qkg (u) .

(b) If λf : Ik → R is (pk, qk)-differentiable on Ik for any constant λ, then

(2.4) Dpk,qkf (u) = λDpk,qkf (u) .

(c) If fg : Ik → R is (pk, qk)-differentiable on Ik, then

Dpk,qk (fg) (u)(2.5)

= g (pku+ (1− pk)uk)Dpk,qkf (u) + f (qku+ (1− qk)uk)Dpk,qkg (u)

= f (pku+ (1− pk)uk)Dpk,qkg (u) + g (qku+ (1− qk)uk)Dpk,qkf (u)

(d) If g (pku) g
(
qku+

(
1− qk

pk

)
uk

)
6= 0, then f

g is (pk, qk)-differentiable on Ik
with
(2.6)

Dpk,qk

(
f

g

)
(u) =

g (pku+ (1− pk)uk)Dpk,qkf (u)− f (pku+ (1− pk)uk)Dpk,qkg (u)

g (pku+ (1− pk)uk) g (qku+ (1− qk)uk)
.

Proof. The proofs of (a) and (b) are obvious.
(c) From Definition 1, we have

Dpk,qk (fg) (u)

=
f (pku+ (1− pk)uk) g (pku+ (1− pk)uk)− f (qku+ (1− qk)uk) g (pku+ (1− pk)uk)

(pk − qk) (u− uk)

+
f (qku+ (1− qk)uk) g (pku+ (1− pk)uk)− f (qku+ (1− qk)uk) g (qku+ (1− qk)uk)

(pk − qk) (u− uk)
= g (pku+ (1− pk)uk)Dpk,qkf (u) + f (qku+ (1− qk)uk)Dpk,qkg (u)

The second equation can be proved in similar way by interchanging the functions
f and g.
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(d) From Definition 1, we have

Dpk,qk

(
f

g

)
(u)

=

(
f
g

)
(pku+ (1− pk)uk)−

(
f
g

)
(qku+ (1− qk)uk)

(pk − qk) (u− uk)

=
f (pku+ (1− pk)uk) g (qku+ (1− qk)uk)− g (pku+ (1− pk)uk) f (qku+ (1− qk)uk)

g (pku+ (1− pk)uk) g (qku+ (1− qk)uk) (pk − qk) (u− uk)

=
g (pku+ (1− pk)uk)Dpk,qkf (u)− f (pku+ (1− pk)uk)Dpk,qkg (u)

g (pku+ (1− pk)uk) g (qku+ (1− qk)uk)

�

Definition 2. Let f : Ik → R be a continuous function. If Dpk,qkf is (pk, qk)-
differentiable on Ik, the second-order derivative is defines as D2

pk,qk
f with Dpk,qk (Dpk,qkf) :

Ik → R. By this way, we obtain n-th order (pk, qk)-derivative Dn
pk,qk

f : Ik → R.

For instance, if f : Ik → R, then we have

D2
pk,qk

f (u) = Dpk,qk (Dpk,qkf) (u)

=
Dpk,qkf (pku+ (1− pk)uk)−Dpk,qkf (qku+ (1− qk)uk)

(pk − qk) (u− uk)

=

f(pk(pku+(1−pk)uk)+(1−pk)uk)−f(qk(pku+(1−pk)uk)+(1−qk)uk)
(pk−qk)(pku+(1−pk)uk−uk)

(pk − qk) (u− uk)

−
f(pk(qku+(1−qk)uk)+(1−pk)uk)−f(qk(qku+(1−qk)uk)+(1−qk)uk)

(pk−qk)(qku+(1−qk)uk−uk)

(pk − qk) (u− uk)

=
f (pk (pku+ (1− pk)uk) + (1− pk)uk)− f (qk (pku+ (1− pk)uk) + (1− qk)uk)

pk (pk − qk)2 (u− uk)2

−f (pk (qku+ (1− qk)uk) + (1− pk)uk)− f (qk (qku+ (1− qk)uk) + (1− qk)uk)
qk (pk − qk)2 (u− uk)2

=
f
(
p2ku+

(
1− p2k

)
uk
)
− f (qkpku+ (1− qkpk)uk)

pk (pk − qk)2 (u− uk)2

−
f (pkqku+ (1− pkqk)uk)− f

(
q2ku+

(
1− q2k

)
uk
)

qk (pk − qk)2 (u− uk)2

=
qkf

(
p2ku+

(
1− p2k

)
uk
)
− (pk + qk) f (pkqku+ (1− pkqk)uk) + pkf

(
q2ku+

(
1− q2k

)
uk
)

pkqk (pk − qk)2 (u− uk)2

and D2
pk,qk

f (uk) = limu→uk D
2
pk,qk

f (u).
We define the (pk, qk)-integration as the inverse (pk, qk)-differention. Assume

that Tpk,qk is a shifting operator defined by

(2.7) Tpk,qkF (u) = F

(
qk
pk
u+

(
1− qk

pk

)
uk

)
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where F (u) is the (pk, qk)-antiderivative of f . Applying mathematical induction to
(2.7), we see

(2.8) Tnpk,qkF (u) = F

(
qnk
pnk
u+

(
1− qnk

pnk

)
uk

)
where n = 1, 2, . . . and T 0pk,qkF (u) = F (u). From Definition 1, we have

f (u) =
F (pku+ (1− pk)uk)− F (qku+ (1− qk)uk)

(pk − qk) (u− uk)
.

Making a change of variable, (pku+ (1− pk)uk) = t, we have

f

(
t− (1− pk)uk

pk

)
=

F (t)− F
(
qk
pk
t+
(
1− qk

pk

)
uk

)
(
pk−qk
pk

)
(t− uk)

=
1− Tpk,qk(

pk−qk
pk

)
(u− uk)

F (t) .

Thus, we obtain

F (t) =
1

1− Tpk,qk

(
1− qk

pk

)
(t− uk) f

(
t− (1− pk)uk

pk

)
.

Therefore, applying the formula of expansion of geometric series to (2.8), we have
the following formula

F (t) =

(
1− qk

pk

) ∞∑
n=0

Tnpk,qk (t− uk) f
(
t− (1− pk)uk

pk

)

=

(
1− qk

pk

) ∞∑
n=0

(
qnk
pnk
t+

(
1− qnk

pnk

)
uk − uk

)
f

(
1

pk

(
qnk
pnk
t+

(
1− qnk

pnk

)
uk

)
+

(
1− 1

pk

)
uk

)

= (pk − qk) (t− uk)
∞∑
n=0

qnk
pn+1k

f

(
qnk
pn+1k

t+

(
1− qnk

pn+1k

)
uk

)
.

Thus, we get

F (u) = (pk − qk) (u− uk)
∞∑
n=0

qnk
pnk + 1

f

(
qnk
pn+1k

u+

(
1− qnk

pn+1k

)
uk

)
Now, we define the (pk, qk)-integral of f on a finite interval as follows:

Definition 3. Let f : Ik → R is a continuous function. Then for 0 < qk < pk ≤ 1,
(2.9)∫ u

uk

f (s) dpk,qks = (pk − qk) (u− uk)
∞∑
n=0

qnk
pn+1k

f

(
qnk
pn+1k

u+

(
1− qnk

pn+1k

)
uk

)
is called (pk, qk)-integral of f for u ∈ Ik.
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Moreover, if a ∈ (uk, u), then (pk, qk)-integral is defined by

∫ u

a

f (s) dpk,qks(2.10)

=

∫ u

uk

f (s) dpk,qks

∫ a

uk

f (s) dpk,qks

= (pk − qk) (u− uk)
∞∑
n=0

qnk
pn+1k

f

(
qnk
pn+1k

u+

(
1− qnk

pn+1k

)
uk

)

− (pk − qk) (a− uk)
∞∑
n=0

qnk
pn+1k

f

(
qnk
pn+1k

a+

(
1− qnk

pn+1k

)
uk

)
.

Note that if uk = 0 and p = 1, then (2.10) reduces to qk−integral of the function.
See, [18].

Remark 1. We assume 0 < qk < pk ≤ 1 for all of the above results. We shall
mention that 0 < qk < 1, 0 < pk ≤ 1 for interchanging pk and qk in the formulas.
So, we have

(2.11)∫ u

uk

f (s) dpk,qks = (pk − qk) (u− uk)
∞∑
n=0

qnk
pn+1k

f

(
qnk
pn+1k

u+

(
1− qnk

pn+1k

)
uk

)
,

∣∣∣∣pq
∣∣∣∣ > 1∫ u

uk

f (s) dpk,qks = (qk − pk) (u− uk)
∞∑
n=0

pnk
qn+1k

f

(
pnk
qn+1k

u+

(
1− pnk

qn+1k

)
uk

)
,

∣∣∣∣pq
∣∣∣∣ < 1.

where 0 < qk < 1, 0 < pk ≤ 1.

Remark 2. Note that, if we take uk = 0 in (2.11), then (2.11) reduces to (1.3),
[14, Definition 5.] . Also, if pk = 1 in (2.9), then (2.9) reduces to qk−integral of a
function f defined by

∫ u

uk

f (s) dqks = (1− qk) (u− uk)
∞∑
n=0

qnk f (q
n
ku+ (1− qnk )uk) .

For more details, see [18].

Theorem 2. The following formulas hold for u ∈ Ik :
(a) Dpk,qk

∫ u
uk
f (s) dpk,qks = f (u)

(b)
∫ u
uk
Dpk,qkf (s) dpk,qks = f (u)

(c)
∫ u
a
Dpk,qkf (s) dpk,qks = f (u)− f (a) , for a ∈ (uk, u).
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Proof. (a) From Definition 1 and Definition 3, we obtain

Dpk,qk

∫ u

uk

f (s) dpk,qks

= Dpk,qk

[
(pk − qk) (u− uk)

∞∑
n=0

qnk
pn+1k

f

(
qnk
pn+1k

u+

(
1− qnk

pn+1k

)
uk

)]

= (pk − qk)


(pku+ (1− pk)uk − uk)

∑∞
n=0

qnk
pn+1k

f
(

qnk
pn+1k

(pku+ (1− pk)uk) +
(
1− qnk

pn+1k

)
uk

)
(pk − qk) (u− uk)

−
(qku+ (1− qk)uk − uk)

∑∞
n=0

qnk
pn+1k

f
(

qnk
pn+1k

(qku+ (1− qk)uk) +
(
1− qnk

pnk

)
uk

)
(pk − qk) (u− uk)


=

[ ∞∑
n=0

qnk
pnk
f

(
qnk
pnk
u+

(
1− qnk

pnk

)
uk

)
−
∞∑
n=0

qn+1k

pn+1k

f

(
qn+1k

pn+1k

u+

(
1− qn+1k

pn+1k

)
uk

)]
= f (u) .

(b)From Definition 1 and Definition 3, we get∫ u

uk

Dpk,qkf (s) dpk,qks

=

∫ u

uk

f (pks+ (1− pk)uk)− f
(
qks+

(
1− qk

pk

)
uk

)
(pk − qk) (s− uk)

dpk,qks

= (pk − qk) (u− uk)
∞∑
n=0

qnk
pn+1k

f
(

qnk
pn+1k

(pku+ (1− pk)uk) +
(
1− qnk

pn+1k

)
uk

)
(pk − qk) (u− uk)

−
f
(

qnk
pn+1k

(qku+ (1− qk)uk) +
(
1− qnk

pn+1k

)
uk

)
(pk − qk) (u− uk)


= (u− uk)

∞∑
n=0

qnk
pn+1k

f
(
qnk
pnk
u+

(
1− qnk

pnk

)
uk

)
(u− uk)

−
f
(
qn+1k

pn+1k

u+
(
1− qn+1k

pn+1k

)
uk

)
(u− uk)


=

∞∑
n=0

f

(
qnk
pnk
pku+

(
1− qnk

pnk

)
uk

)
− f

(
qn+1k

pn+1k

pku+

(
1− qn+1k

pn+1k

)
uk

)
f (u) .

(c) The proof is carried on from the part of (b). �

Theorem 3. Let f, g : Ik → R are continuous functions. The following formulas
hold:
(a)

∫ u
uk
[f (s) + g (s)] dpk,qks =

∫ u
uk
f (s) dpk,qks+

∫ u
uk
g (s) dpk,qk ;
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(b)
∫ u
uk
λf (s) dpk,qks = λ

∫ u
uk
f (s) dpk,qks;

(c)
∫ u
uk
f (qks+ (1− qk)uk)Dpk,qkg (pks) dpk,qks = (fg) (s)

u
uk
−
∫ u
uk
g (pks+ (1− pk)uk)Dpk,qkf (s) dpk,qks

or∫ u
uk
f (pks+ (1− pk)uk)Dpk,qkg (qks) dpk,qks = (fg) (s)

u
uk
−
∫ u
uk
g (qks+ (1− qk)uk)Dpk,qkf (s) dpk,qks

Theorem 4. where u ∈ Ik, λ ∈ R.

Proof. The proofs of (a)-(b) are derived from Definition 3.
(c) From (2.5), we write

f (qku+ (1− qk)uk)Dpk,qkg (u) = Dpk,qk (fg) (u)−g (pku+ (1− pk)uk)Dpk,qkf (u) .

By integrating over [uk, u] and using Theorem 3 part (b), we get∫ u

uk

f (qku+ (1− qk)uk)Dpk,qkg (pks) dpk,qks

= (fg) (u)−
∫ u

uk

g (pku+ (1− pk)uk)Dpk,qkf (s) dpk,qks.

�

3. Integral Inequalities On Finite Intervals

Lets start with (p, q)-Hölder integral ineqality on I = [a, b] :

Theorem 5. Let f and g be two functions defined on I, 0 < q < p ≤ 1 and

s1, s2 > 1 with
1

s1
+
1

s2
= 1. Then

(3.1)
∫ b

a

|f (t) g (t)| adp,qt ≤
(∫ b

a

|f (t)|s1 adp,qt
) 1
s1
(∫ b

a

|g (t)|s2 adp,qt
) 1
s2

.

Proof. From Definition 3 and discrete Hölder inequality, we get∫ b

a

|f (t) g (t)| adp,qt = (p− q) (b− a)
∞∑
n=0

qn

pn+1

∣∣∣∣f ( qn

pn+1
b+

(
1− qn

pn+1

)
a

)
g
qn

pn+1
b+

(
1− qn

pn+1

)
a

∣∣∣∣
= (p− q) (b− a)

∞∑
n=0

∣∣∣∣∣f
(

qn

pn+1
b+

(
1− qn

pn+1

)
a

)(
qn

pn+1

) 1
s1

∣∣∣∣∣
×
∣∣∣∣∣g
(

qn

pn+1
b+

(
1− qn

pn+1

)
a

)(
qn

pn+1

) 1
s2

∣∣∣∣∣
≤

(
(p− q) (b− a)

∞∑
n=0

∣∣∣∣f ( qn

pn+1
b+

(
1− qn

pn+1

)
a

)∣∣∣∣s1 ( qn

pn+1

)) 1
s1

×
(
(p− q) (b− a)

∞∑
n=0

∣∣∣∣g( qn

pn+1
b+

(
1− qn

pn+1

)
a

)∣∣∣∣s2 ( qn

pn+1

)) 1
s2

=

(∫ b

a

|f (t)|s1 adp,qt
) 1
s1
(∫ b

a

|g (t)|s2 adp,qt
) 1
s2

.

Thus, the proof is complete. �
It easy to show that we obtain the same result in the statement p < q.
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Corollary 1. Under the assumptions of Theorem 5, if we take s1 = s2 = 2, then
we have the following formula,

(3.2)
∫ b

a

|f (t) g (t)| adp,qt ≤
(∫ b

a

|f (t)|2 adp,qt
) 1

2
(∫ b

a

|g (t)|2 adp,qt
) 1

2

which we call (p, q)-Cauchy-Schwarz integral inequality.

Remark 3. If p = 1, (3.1) and (3.2) reduces to q-Hölder integral inequality and
q-Cauchy-Schwarz integral inequality respectively.

Theorem 6. Let f and g real-valued functions on [a, b] such that |f |s1 , |g|s1 and
|f + g|s1 are (p, q)-integrable functions on [a, b], 0 < q < p ≤ 1 and s1 > 1. Then
(3.3)(∫ b

a

|f (t) + g (t)|s1 adp,qt
) 1
s1

≤
(∫ b

a

|f (t)|s1 adp,qt
) 1
s1

+

(∫ b

a

|g (t)|s1 adp,qt
) 1
s1

.

Equality holds if and only if f (t) = 0 almost everwhere or g (t) = µf (t) almost
everywhere with a constant µ ≥ 0.

Proof. Since |f |s1 , |g|s1 and |f + g|s1 are (p, q)-integrable on [a, b], by using the
triangle inequality, we can write∫ b

a

|f (t) + g (t)|s1 adp,qt =

∫ b

a

|f (t) + g (t)| |f (t) + g (t)| adp,qt

≤
∫ b

a

|f (t)| |f (t) + g (t)|s1−1 adp,qt +
∫ b

a

|g (t)| |f (t) + g (t)|s1−1 adp,qt .

Taking s1, s2 > 1 with
1

s1
+
1

s2
= 1 and using (p, q)−Hölder integral inequality, we

have
(3.4)∫ b

a

|f (t)| |f (t) + g (t)|s1−1 adp,qt ≤
(∫ b

a

|f (t)|s1 adp,qt
) 1
s1
(∫ b

a

|f (t) + g (t)|(s1−1)s2 adp,qt
) 1
s2

and
(3.5)∫
I

|g (t)| |f (t) + g (t)|s1−1 adp,qt ≤
(∫

I

|g (t)|s1 adp,qt
) 1
s1
(∫

I

|f (t) + g (t)|(s1−1)s2 adp,qt
) 1
s2

.

Since (s1 − 1) s2 = s1, from (3.4) and (3.5), it easy to see that(∫ b

a

|f (t) + g (t)|s1 adp,qt
)1− 1

s2

≤
(∫ b

a

|f (t)|s1 adp,qt
) 1
s1

+

(∫ b

a

|g (t)|s1 adp,qt
) 1
s1

from which we obtain the required inequality. �

Remark 4. If p = 1, (3.3) reduces to(∫ b

a

|f (t) + g (t)|s1 dqt
) 1
s1

≤
(∫ b

a

|f (t)|s1 dqt
) 1
s1

+

(∫ b

a

|g (t)|s1 dqt
) 1
s1

which can be called q-Minkowski integral inequality.
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Next, we present the (p, q)−Hermite-Hadamard integral inequality on [a, b].

Theorem 7. Let f : [a, b]→ R be a convex function. Then

(3.6) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) adp,qx ≤
(p+ q − 1) f (a) + f (b)

p+ q

Proof. Since f is convex on [a, b], we know that

(3.7) f ((1− t) a+ tb) ≤ (1− t) f (a) + tf (b)

for all t ∈ [0, 1]. By taking (p, q)−integration for (3.7) over t on [0, 1] for p/q > 1,
we get∫ 1

0

f ((1− t) a+ tb) 0dp,qt ≤
∫ 1

0

(1− t) f (a) 0dp,qt +
∫ 1

0

tf (b) 0dp,qt

= f (a) (p− q)
∞∑
n=0

qn

pn+1
− f (a) (p− q)

∞∑
n=0

qn

pn+1
qn

pn+1

+f (b) (p− q)
∞∑
n=0

qn

pn+1
qn

pn+1

= f (a)− f (a)

p+ q
+
f (b)

p+ q

=
(p+ q − 1) f (a) + f (b)

p+ q
.

For p/q < 1; we get∫ 1

0

f ((1− t) a+ tb) 0dp,qt ≤
∫ 1

0

(1− t) f (a) 0dp,qt +
∫ 1

0

tf (b) 0dp,qt

= f (a) (q − p)
∞∑
n=0

pn

qn+1
− f (a) (q − p)

∞∑
n=0

pn

qn+1
pn

qn+1

+f (b) (q − p)
∞∑
n=0

pn

qn+1
pn

qn+1

= f (a)− f (a)

p+ q
+
f (b)

p+ q

=
(p+ q − 1) f (a) + f (b)

p+ q

which gives the right hand side of (3.6). Also∫ 1

0

f ((1− t) a+ tb) dp,qt = (p− q)
∞∑
n=0

qn

pn+1
f

((
1− qn

pn+1

)
a+

qn

pn+1
b

)

=
(p− q) (b− a)

b− a

∞∑
n=0

qn

pn+1
f

(
qn

pn+1
b+

(
1− qn

pn+1

)
a

)

=
1

b− a

∫ b

a

f (x) adp,qx .
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To prove the left hand side, we write

f

(
a+ b

2

)
≤ f

(
(1− t) a+ tb

2
+
ta+ (1− t) b

2

)
≤ 1

2
[f ((1− t) a+ tb) + f (ta+ (1− t) b)]

and by integrating both side over [0, 1] and making the change of variable, we get

f

(
a+ b

2

)
≤ 1

2

[∫ 1

0

f ((1− t) a+ tb) 0dp,qt +
∫ 1

0

f (ta+ (1− t) b) 0dp,qt
]

=
1

b− a

∫ b

a

f (x) adp,qx .

�

Remark 5. If p = 1, (3.6) reduces to

(3.8) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) adqx ≤
qf (a) + f (b)

1 + q

which is given in [17, Theorem 3.2]. One can easliy see that when q → 1 in (3.8),
the inequality turns classical Hermite-Hadamard integral inequality.

References

[1] R. Chakrabarti, R. Jagannathan, A (p, q)−oscillator realization of two-parameter quantum
algebras, J. Phys. A: Math. Gen. 24 (1991), L711-L718.

[2] I. Burban, Two-parameter deformation of the oscillator algebra and (p, q) analog of two
dimensional conformal field theory. J. Nonlinear Math. Phys. 2(3-4), 384-391 (1995).

[3] I. M. Burban and A. U. Klimyk, P,Q−differentiation, P,Q−integration and
P,Q−hypergeometric functions related to quantum groups, Integral Transforms and
Special Functions 2 (1994), 15-36.

[4] T. Ernst, A Comprehensive Treatment of q-Calculus, Springer Basel, 2012.
[5] T. Ernst, A method for q−calculus, J. Nonlinear Math. Phys. 10 (4) (2003) 487525.
[6] R. Floreanini, L. Lapointe and L. Vinet, A note on (p, q)−oscillators and bibasic hypergeo-

metric functions, J. Phys. A: Math. Gen. 26 (1993), L611-L614.
[7] H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl. 47 (2004) 281—300.
[8] M.N. Hounkonnou, J. Désiré, B. Kyemba, R(p, q)−calculus: differentiation and integration,

SUT Journal of Mathematics, Vol. 49, No. 2 (2013), 145-167.
[9] R. Jagannathan, K.S. Rao, Two-parameter quantum algebras, twin-basic numbers, and as-

sociated generalized hypergeometric series. In: Proceedings of the International Conference
on Number Theory and Mathematical Physics, pp. 20-21 (2005).

[10] V. Kac, P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.
[11] M. Mursaleen, K. J. Ansari and A. Khan, On (p, q)−analogue of Bernstein Operators, Appl.

Math. Comput., 266(2015) 874-882.
[12] M. Mursaleen, K. J. Ansari and A. Khan„Some Approximation Results by (p, q)−analogue of

Bernstein-Stancu operators, Appl. Math. Comput., 264 (2015) 392-402 [Corrigendum: Appl.
Math. Comput, 269 (2015) 744—746].

[13] M. Mursaleen, Md. Nasiuzzaman and A. Nurgali, Some approximation results on Bernstein-
Schurer operators defined by (p, q)−integers, J. Ineq. Appl., 2015 (2015): 249.

[14] P.N. Sadjang, On the fundamental theorem of (p, q)−calculus and some (p, q)−Taylor formu-
las, arXiv:1309.3934v1 [math.QA], 2013.

[15] V. Sahai and S. Yadav, Representations of two parameter quantum algebras and p, q−special
functions, J. Math. Anal. Appl. 335(2007), 268-279.

[16] W. Sudsutad, S.K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions,
J. Math. Inequal., 9 (2015), No. 3, 781—793.



12 MEVLÜT TUNÇα AND ESRA GÖVβ

[17] J. Tariboon, S.K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl.
2014 (2014) 121.

[18] J. Tariboon, S.K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive
difference equations, Adv. Differ. Equ. 2013 (2013) 282.

E-mail address : αmevluttttunc@gmail.com

E-mail address : βesordulu@gmail.com

α,βMustafa Kemal University, Faculty of Science and Arts, Department of Mathe-
matics, 31000, Hatay, Turkey




