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(p,q) - INTEGRAL INEQUALITIES ON FINITE INTERVALS

MEVLUT TUNC® AND ESRA GOV#A

ABSTRACT. In this paper, we obtain (p, ¢)-analogues of some of the well known
basic inequalities in restricted forms. Holder, Minkowski, Cauchy, Hermite-
Hadamard, Trapezoid and Ostrowski (p, ¢)-integral inequalities are proved.

1. INTRODUCTION

Mathematical inequalities play an important role on many branches of mathe-
matics as analysis, differential equations, geometry etc. In recent years g—integral
inequalities and some of generalization forms of quantum type inequalities have
been studied by many authors, see [4, 5, 6, 9, 15, 16, 14]. One of the generalization
of g—calculus is (p, q) —calculus, see [7, 8, 13].

The aim of this paper is to establish (p, ¢) —analogues of some well known integral
inequalities. Holder, Minkowski, Hermite-Hadamard, Trapezoid, Ostrowski integral
inequalities are considered. The results are compared with the g—analogs of these
inequalities and also the with the classical forms.

Now, we give some definitions and results via (p, ¢) —calculus which will be used
in the sequel [7, 8, 13]. Let 0 < ¢ < p < 1. The (p, q) —integers [n]p’q are defined by

P —q"
1.1 n = .
( ) [ ]p,q p—q
For each k,n € N, n > k > 0, the (p, ¢) —factorial and (p, ¢) —binomial are defined
by

n], ! = 1}:[1 k], ., n=>1, [0], =1
|: n :| _ [n]pg!
k P,q [~ k]p,q! [k]p,q!
Definition 1. Let f : R — R. The (p,q) —derivative of the function f is defined
as
x) — x
(12) Dpyqf(x):f(p) f(q)ym#o

(P—qa
provided that D, ,f (0) = f'(0).

(p, q) —derivative of a function is a linear operator. For any constants a and b,

Dyqlaf (x) +bg ()] = aDypqf (x) + 0Dy o f ().
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2 MEVLUT TUNG® AND ESRA GOV?

The (p, q¢) —derivative of a product is given as

(1.3) Dpqlf(x)g(x)] = f(pr)Dpqg(x)+g(qz) Dpgf (),
= g(pz) Dpof () + f(qx) Dpqg (z).
The (p, ¢) —derivative fulfills the following product rules
|:f (x)} _ g (q$> Dy o f (m) —f (qa:) Dy, 9 (m)
" g (2) 9 (pz) g (qz)
g (px) Dy of (x) — f (pr) Dp g9 (7)
g (pz) g (qz) '

The (p, q) —power basis is defined by

(z@a), = (z®a)(pr®qa) (p°z & ¢%a) - (p" 'z ®¢" 'a)
and

(zo a)z’q =(xSa)(pzr o qa) (pQ:L' o q2a) . (p"_lat o qn—la)
The following statements hold true:

n n—1
Dp’q (.’L' © a‘)p’q = [n]p,q (pZC S a’)p,q
Dypy(ax©a),, = aln],, (apzo a)z’;1 ,aeC
Dyg(aca),, = -], (acq) "
Definition 2. Let f : C'[0,a] — R (a > 0) then the (p,q) —integration of f defined
by
‘ — " p" p
(1.4) / f@)dpqt = (q—p)az n+1f< nHa) z'fH<1
0 —yq q q
‘ _ — " q" L |p
/0 FW)dpgt = (p— q>a;pn+l f <pn+1a> if q‘ > 1.

The (p, ¢) —integral on an interval defined as

b b a
/a f(t) dp,qt:/o f(t) dzuqt*/o f(t) dp,qt-

If F is an antiderivative of the function f and f is continuous at ¢t =0

b
[ F0dat=F®) -F@
and for any function of f, we have
Dy [ 1Oyt =1 (@),
We denote the following set by I
k
I—[a,b]pq—{bqk:OSkSn}
’ p

where b > 0, a = bg—: and n € N and we display the integral on I as [, f () dp qt.
So it easy to show that

b n—1 L k
(1.5) / () dpgt = (- )b pgﬂ f (pgﬂ b) .
a k=0
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The formula of (p, ¢) —integration by parts is given by

(1.6)

b
/ f (p) Dy 49 (:L') dp gt = f(x)g (:L')‘

b
a

b
—/ 9(qx) Do f (%) dp,qt.

All notions written above reduce to the g—analogs when p = 1. For more details,

see [7, 13].

2. PRELIMINARIES

Lemma 1. The following formula holds:

(2.1)

@ a’n
m—nt)d,,t = ma-—
/0 ( ) P,q ptg
e a’n
(nt —m)d, ¢t = -
A P p+q

Proof. From Definition 2, we have

(2.2)

/ t(nt —m)dp gt
0

a > gk ¢
/0 (m—nt)d,t = (p—q)azpl€+1 (m— kﬂna)
k=0
( ) m 1 na 1
= (p-qa|— -
pl-3 P1-%
a’n
= ma-—
p+q
and similarly it is easy to see that,
a < gk ¢
/ (nt —m)dp 4t (p—q)az T ( 1 na m)
0 o P p
( ) (na 1 m 1 )
= b—q)a 2 2 - q
pPP1-d4 pl—y
a’n
= —ma
p+gq
Lemma 2. The following formula holds:
a 3 2
/ t(nt —m) dy gt = 5—— — L
0 p*+pq+q p+q
Proof. From Definition 2, we have
a a
= n/ t2d, ot — m/ td, 4t
0 0
e} qk qk. 2
= np-qa Z k1 ( k+1a> —m(p—qa
K=o P p
nad ma?

P+pe+¢: ptq

[e.°]

>

K=0

k

karl

(

qk

a
pk+1

)
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3. MAIN RESULTS
Lets start with (p, ¢) —Holder integral ineqality:

Theorem 1. Let f and g be two functions defined on I, 0 < ¢ < p < 1 and

1 1
S1,82 > 1 wzth — —|— — =1. Then
52

50 (ool = ( (1100 )" ([0 g) "

Proof. From Definition 2 and discrete Holder inequality, we get

q
/‘f (®)] dp,qt pP—4a bz it < n+1b>g(pn+1b)‘
q'fl ﬁ q7L qn i
oS s (55 )(W) () ()

n=0

k—
< ( Z (n+1 n+1 >
n=0
E—1
(oo o) <m>>
i %
- (/ |f<t>|51dp,q) ([190r"
Thus, the proof is complete. O

It easy to show that we obtain the same result in the statement p < gq.

Corollary 1. Under the assumptions of Theorem 1, if we take s1 = so = 2, then
we have the following formula,

a2 [osla.es([uo |dp,qt)é(/l 90 ot

which we call (p, q) — Cauchy-Schwarz integral inequality.

[SE

Corollary 2. Let f and g be two functions defined on [0,b], 0 < ¢ < p < 1 and

1 1
$1,82 > 1 with — + — = 1. Then
S1 52

1

/\f dmt<(/ i dt)(/ MOT. )
/\f dpqt<</ 1 |dpq>%</0bg<t>2dp,qt>;

Remark 1. Ifp =1, (8.1) and (3.2) reduces to q-Holder integral inequality and
q-Cauchy-Schwarz integral inequality respectively.

and
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Theorem 2. Let f and g real-valued functions on I such that |f|**, |g|** and
|f +g|™ are (p,q) —integrable functions on [a,b], 0 <g<p<1ands; >1. Then

59 ([150 000 dt) " = ([0 dat) " ([190 a0r)”

Fquality holds if and only if f(t) = 0 almost everwhere or g (t) = pf (t) almost
everywhere with a constant p > 0.

Proof. Since |f|**, |g|** and |f + g|** are (p,q) —integrable on [a, b], by using the
triangle inequality, we can write

/ F @)+ g @ dpgt = / F @) +g@1F (1) +9(0)" " dyt

I I

/ FONF @) + 90 dygt + / 911 (1) + g (O dpt.
I I

IN

1 1

Taking s1, s > 1 with — + — =1 and using (p, ¢) —Holder integral inequality, we
S1 52

have

/ OO a0 (Jiror aa) ™ ([150 o0 0)"
5 | 1
JIa@lr®+ a0 dyt < ( [l d,,,qt) B ( JACETIO dp,qt) B

Since (s1 — 1) s = s1, from (3.4) and (3.5), it easy to see that

(/I|f(t)+g(t)|sl dp,qt>1:2 < (/Ilf(t)lsl dp,qt>;1 + (/I lg ()" dp,qt);l

from which we obtain the required inequality. O

Corollary 3. Let f and g real-valued functions on [0,b] such that |f]**, |g|™!
|f +g|™ are integrable functions on [0,0], 0 < g<p<1ands >1. Then

(/ TR0, ) (/ 7@ pq>$+</ob|g<t>|“dp,qt>sﬁ.

Equality holds if and only if f(t) = 0 almost everwhere or g(t) = uf(t) almost
everywhere with a constant p > 0.

Remark 2. If p=1, (3.3) reduces to

([ vwssor ) <([ ror )+ ([ o)

which can be called q-Minkowski integral inequality.

Next, we present the (p, q) —Hermite-Hadamard integral inequality on [a, b].
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Theorem 3. Let f: [a,b] — R be a convex function with a = bg—z. Then
(3.6)

a+b
f<P+Q> : bfa/f It

— (qb(p—i—gq)_ia—kb)f(

IN

>+q(a+b)—a(p+q)f(b))'

bg—a
Proof. From (1.5) we have

b n—1 qk qk
_a/f dpgt = (P—q)b_azpk+1f(pk+1b>

I
3

If we consider

P
pl——p L (p)z
b(1+pn) st

p+a  ptg
and apply Jensen inequality for the convex functions, we have

a+b
=1 (S2) < [ @

On the other hand, by using the theorem via reverse Jensen inequality, cited in
[11], we obtain

1 b b— qn 1 \— 2g
[ 10da < bqnlf( )
a n—1 nl
b_L+b atb _ p,
R O =
)

1 b(p+q)—(a+ pa g(a+b)—alp+q)
(q f(tz)+ bq — pa

p+q bq — pa

r).
(]
Remark 3. Ifp=1, (3.6) reduces to [10, Theorem 5.1].

Theorem 4. Let f : [a,b] — R be a (p,q) —differentiable function and D, f be
continuous with 0 < ¢ < p < 1. Then

' b
p/ f(qt)dp,qt*(bfa)w

2p 2p(p+q)  p+q

—2)(a 2 a 2 a? + b2
§||Dp,qf||<(1 Path)?’  (a+b)” +b>



Proof. By (p,q) —integration by parts, we have
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b r=b b
atb a+b
/ (pt ) ) Dy of (8)dpgt = (t Ty )f(t) _/ f(qt) pdpqt
b—a

= SO+ @ p [ Fa)d

Using the absolute value property, it is easy to see that

b
(3.5 p [ 1@ byt —0- o HOELO
b
< / pt_a+b'|Dp,qf()|dpq
< D pt — a-l—b dp,qt

From Lemma 1, we obtain

b atb
/pt——a+b dygt = /2” a+b pt——aH) dp ot
a 2 ’ a 2 ’
a+b
2 (a+b a+b
= / ( pt) dp q ( 2 — pt) dp7qt
0
a+b a-+b
+ / (pt 5 )dmt (pt—2) dp gt
- 2" ) (a+b>2 @b’ (@16)p
2p p+q 2 p+q
39 () (1o L) e
' 2p p+yq 2 p+q

Combining (3.8) with (3.9), we have
b
p/a f(qt) dpqt — (b—a) M

a+b\> 1 a+b)? a’> +b%)p
< 1Dt (20 (“50) (1= ) - 52 L))
2p p+q 2 p+q

Remark 4. Ifp =1, then (8.7) reduces to

b —a)?
[ s - o-a MO <o,y Fet

and also if ¢ — 1, it turns the classical form

b a _a2
[ r@a-0-o HOTLO) <y Ok

See [3, 12, 15].
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Theorem 5. Let f : [a,b] — R be a twice (p, q) —differentiable function and D f
be continuous with 0 < g < p < 1. Then

’ b — bp—a
2 _(ba—ap p — aq
(310 [ 1@ dyt— (2 g )+ f(qa)>‘
2 D (0* — a®) pg® _ (b—a)gab
: HD”"‘prJrq((p2+pq+q2)(p+q) ptq )

Proof. Applying (p, ¢) —integration by parts, we have

b
[ ot =a) 6= 91 D21 (0t
b
= [ Dua @) Dy (6= ) 6= 1) dy .
From the (p, q) —derivative of the product, we obtain

(311) Dpg((t—a)(b—1)) = (pt—a)Dp,(b—1)+ (b—qt) Dy, (t—a)
= (b—qt) = (pt —a)
= (a+b)—t(p+q).

Applying (p, ¢) —integration by parts again and by using (3.11), we see

b
~ [ Dot (@) Dy (=) (b= ) dy

b
/ (t(p+q) — (a+b)) Dpof (qt) d gt

[(t (1 + Z) o+t b)) f (qt)} z_b _ /abf (%) Dy, (t (1 + Z) (a4 b)) d, ot

07 @)~ af () (1+2) = @0 @) - faa) - (1+2) [ " F () dyt

Therefore,
(3.12)

(1+9) [ " £ (q%1) dyat — (65 (ab) — af (qa)) (142) = @+ (7 @)~ £ G

IN

b
/ (pt — a) (b— pt) D2, f (1) dp gt

IN

b
D2, f] / (pt — a) (b— pt) d 1.
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From Lemma 1 and Lemma 2, we obtain
b b b
/ (pt —a) (b—pt)dpqt = b/ (pt — a)dpqt — p/ t(pt —a)dpqt
b a
= b/ (pt — a)dp 4tb — b/ (pt —a)dp 4t
0 0
b a
—p/ t(pt —a)dpqt + p/ t(pt —a)dpqt
0 0

2 2
e (20
p+q pP+q

3

( pb? ab? )+ ( pa’ a
—p _ » _
P’+pe+q¢> p+q P’+pe+q> p+q

ab (p* + ¢*) — pq (a® + b?)

(3.13) = qe=d) (r+q) (P* +pg+¢?)

Combining (3.12) with (3.13), we get the desired inequality. O
Remark 5. Ifp=1, ¢ — 1, then (8.12) reduces to

WY (GES(Ui

b—a)
< P

See, [3, 12].

Theorem 6. Let f : [a,b] — R be a (p,q) differentiable function and D, ,f be
continuous with 0 < ¢ < p < 1. Then

(a+b)(p+9)
2(p+q—1) [T~ apre-1)
’f(m N T RN A U] AR R
@ttty @ 4 17 ]
16(p+q—1)7°0b-a)’ (@+q(b—a)|

Proof. Using the Lagrange Mean Value Theorem, we obtain

b b
‘f(x)—bla/ F(8) dy gt bia / (F (2) = (1) dygt
S |dp,q
(3.15) < % / & — ¢ d, ot

From Lemma 1, we have

)
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b x b
/ o —tldy,t = / (2= 1) d ot + / (t—a)dy t
a a xr
= / (v —1) dp,qt — / (x—1) dp,qt
0 0

b x
+/ (t —x)dpqt — / (t—x)dpgt
0 0

a? — 2?2 b2 — 22
_ 2(ptq-1) (x_ (aer)(;th))2
14+¢q 4(p+q-1)

(p+q)2 (a—l—b)2 a? 4+ b?
16(p+q—1>  p+a’

Combining (3.15) with (3.16), we get the required inequality. O

Remark 6. Ifp=1, ¢ — 1, then (8.1}) reduces to

T — a+b

I 1
[ rwal< |+ (5=2) [6-alr.

b—a

£ (@)~ ;

See, [3, 12].
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