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ON JENSEN’S MULTIPLICATIVE INEQUALITY FOR POSITIVE
CONVEX FUNCTIONS OF SELFADJOINT OPERATORS IN
HILBERT SPACES

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we obtain some multiplicative refinements and re-
verses of Jensen’s inequality for positive convex/concave functions of selfadjoint
operators in Hilbert spaces. Natural applications for power and exponential
functions are provided.

1. INTRODUCTION
The famous Young inequality for scalars says that if a, b > 0 and v € [0, 1], then
(1.1) a7 < (1—v)a+vb

with equality if and only if @ = b. The inequality (1.1) is also called v-weighted
arithmetic-geometric mean inequality.
We recall that Specht’s ratio is defined by [12]

BTt he (0,1)U (1, 00),
(12) S(h) — eln(hh—1>

lifh=1.
It is well known that lim,_, S (h) =1, S(h) = S(3) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 00) .

The following inequality is due to Tominaga [13] and provides a multiplicative
reverse for Young’s inequality

(1.3) (1-v)a+vb< S (%) al b,

where a, b> 0, v € [0, 1].
We consider the Kantorovich’s constant defined by

(h+1)?
4h

The function K is decreasing on (0,1) and increasing on [1,00), K (h) > 1 for any
h>0and K (h) = K (1) for any h > 0.

(1.4) K (h) =  h> 0.
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The following multiplicative reverse of Young inequality in terms of Kantorovich’s
constant has been obtained by Liao et al. [8]

(1.5) (1-v)a+vb< K~ (%) al=vY,

where a, b > 0, v € [0,1] and R = max {1 —v,v}.
The following result that provides a vector operator version for the Jensen in-
equality is well known, see for instance [10] or [11, p. 5]:

Theorem 1. Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) C [m, M| for some scalars m, M with m < M. If f is a convez function
on [m, M|, then

(1.6) f({Az,z)) < (f (A) 2, z)
for each x € H with ||z|| = 1.

As a special case of Theorem 1 we have the Holder-McCarthy inequality [9]: Let
A be a selfadjoint positive operator on a Hilbert space H, then

(i) (A"z,z) > (Az,z)" for all r > 1 and z € H with [|z] = 1;

(i) (A"z,z) < (Az,z)" forall 0 <r < 1 and z € H with ||z| = 1;

(iii) If A is invertible, then (A"z,z) > (Az,z)" for all r < 0 and € H with
[l = 1.

In [2] (see also [3, p. 16]) we obtained the following additive reverse of (1.6):

Theorem 2. Let I be an interval and f : I — R be a convexr and differentiable
function on I (the interior of I) whose derivative f' is continuous on I. If A is a
selfadjoint operators on the Hilbert space H with Sp (A) C I, then

(L7 0 (f(A)z,z) — [ (Az,2)) < ([ (A) Az, z) — (Az, 2) - ([' (A) 2, 2)
for any x € H with ||z| = 1.

This is a generalization of the scalar discrete inequality obtained in [7]. For other
reverse inequalities of this type see [3, p. 16].

Motivated by the above results, in this paper we obtain some multiplicative
refinements and reverses of Jensen’s inequality for positive convex or concave func-
tions of selfadjoint operators in Hilbert spaces. Natural applications for power and
exponential functions are provided.

2. REFINEMENTS

‘We have:

Theorem 3. Let f : I — [0,00) be continuous on the interval I and assume that
for some v € (0,1) the function f¥ is convex on I, then f is convex on I and we
have the inequality

(2.1) F (Az,2)) < [ ((Az,2)) (7 (A),2) < (f (A),2)
where A is a selfadjoint operator with Sp (A) C I and x € H with ||z|| = 1.
Proof. Let t, s € I and X € [0,1]. Since fV is convex on I, then

PP =N 4+ 2s) < (1= X) (1) + A (5)
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and by taking the power 2 > 1 and using the convexity of power function g (t) = ¢
with exponent r = % > 1 we have

FUL=X)t+2s) S [(1 =) f7 () + Af (s)]*
< (L= (" ()7 + A ()

which proves the convexity of f on I.
Now by Holder-McCarthy inequality we have for any @ € H with ||z| =1

(f"(A)z,z) < (f (A)z, )"
and by Young’s inequality that

(22) 77 ((Az,2)) (7 (A) z,2)

1
v

=1 =M@ +Af(s),

F170 (Az,2)) (f (A) w, z)"
(1 =v) f((Az,z)) + v (f (A) z,z)

<
<

for any « € H with ||z]| = 1.
The last inequality follows now by Jensen’s inequality for the convex function f.
Applying the Jensen’s inequality for the convex function f¥ we also have

" ((Az,z)) < (f¥ (A) z,2),
which implies that
f((Az, ) = f177 (A, 2) f7 ((Az, 2) < F177 ((Az, 2)) (fY (A) 2, 2)
that proves the first inequality in (2.1). O
The case of concave functions is as follows:

Theorem 4. Let f: I — [0,00) be continuous and concave on the interval I. Then
for any v € (0,1) the function f is concave on I and we have the inequality

23)  {PPWaz) < (P (A e) (7 (A)xa)
< 17 Az, 2)) (7 (A) 2, 2) < f (A, @),
where A is a selfadjoint operator with Sp (A) C I and x € H with ||z|| = 1.

Proof. From (2.2) and the concavity of f we have
P77 (A, ) (f7 (A) @,z) < f170 ((Az,2)) (f (A) 2, 2)”
< (1= v) £ ((Az,2)) + v {f (4) 2,2)
< f({(Az, z))
for any v € (0,1) and = € H with ||z|| = 1, that proves the last part of (2.3).
Now, let t, s € [ and A € [0,1]. Since f is concave on I, then
FA=XNt+A) > (1 =N f{@E)+Af(s).
By taking the power v € (0,1) and using the concavity of power function g (¢) = ¢"
for the exponent r = v € (0,1) we have

FAAA=Nt+A8) 2 (=N F () +Af(5)" = (1= X) f7(£) + Af" (5)
that shows that f” is concave on I.
Applying the Jensen’s inequality for the concave function f!=* we have

(@) ey < 177 ((Az, )
for x € H with ||z|| = 1, that proves the second inequality in (2.3).
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Now, by using the Schwarz type inequality for continuous functions of selfadjoint
operators
(g (A h(A)z,2)* < (¢° (A) z,z) (B (A) 2, )

for x € H with ||z|| = 1, then by choosing g = fl_Ty and h = f2 we get the first
inequality in (2.3). O
3. UPPER BOUNDS
The following reverse inequalities also hold:

Theorem 5. Let f: [m, M] — [0,00) be a continuous function and assume that

3.1 O0<~y= i t) < t) =T < 0.
(3.1) o terﬁlni%f() ter{;g%f() 00

Then for any A a selfadjoint operator with
(3.2) mlyp <A< Mly

we have the inequality

3.3)  (L—w)f((Az,2)) +v({f(A)z,z) < S (5) (f" (), ) 177 ((Az,2))

for any x € H with ||z| = 1, where v € [0,1].
Moreover, if f is convex on [m, M], then

(3.4) £ ((Az,x)) < S (5) (7 (A) 2, 2)
while, if f is concave on [m, M|, then
F v 1—v
(3.5) (f (A)z.2) < § (7) (7 (A)r,2) 1 ((Ax, 7))

for any x € H with ||z| = 1.
Proof. By Tominaga’s inequality we have
(1-v)+vs<S(s)s”
for any s > 0 and v € [0,1].
If s € {1 E] , then

'~y
r
(3.6) (I1-v)+vs<S(s)s”" <s” max S(s)=09 <) s”
selmt] v
and since for any ¢ € [m, M| and z € H with ||z|| = 1 we have
) {7 F}
f ((Az, ) '+’

hence by (3.6) we get

(3.7) (1—0) f ((Az,2)) +vf (£) < § (z) £ (0) £ ({Az, )

for any t € [m, M] and x € H with ||z| = 1.
If we use the functional calculus for the operator A we have by (3.7) that

(38)  (1-v)f({Az.2) +vf(A) < S (S) £ (4) F1 ((Az, 2))
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for any x € H with ||z| = 1.
If we take the inner product over y € H with |ly|| = 1 in (3.8), then we get

(1= ) f ({Az,2)) + v (f (A) g, < S (5) (Y (A) g,y I (Aw,a))

that for y = x we get the desired inequality.
If f is convex, then

f((Az,z)) < (f (A)z,z)
for any « € H with ||z| = 1, then by (3.3) we get

f ({Az,2)) < § (1;) (7 (A)2) 1 ((Az, )

for any x € H with ||z|| = 1, which is equivalent to (3.4).
If f is concave, then

(f(A)z,z) < f ((Az, 7))
and by (3.3) we get (3.5). O

Remark 1. If for some v € (0,1) the function f¥ is convex on [m,M], then
according with Theorem 3 f is convexr on I and the inequality (3.4) is trivially

satisfied since S (g) >1.

If f is convex on I and for some v € (0,1) the function f¥ is concave on [m, M],
then from (3.4) we have the meaningful inequality

f (Aaa)) _ (T
39 1< gy <s ()

for any x € H with ||z| = 1.
The inequality (3.5) can be written in equivalent form as

(f(A)z, z) L\ (" (A, z)
10 Fiaen <5 (3) Fiaes
for any x € H with ||z|| = 1.

We also have:

Theorem 6. With the assumptions of Theorem 5 we have the inequality

(3.11) (1—v)f((Az,2)) + v (f (A)z,2) < K" (5) (f" (A z,z) 177 ((Az,2))

for any x € H with ||z|| = 1, where v € [0,1] and R = max {v,1 —v}.
Moreover, if f is convex on [m, M], then

fr ((Az, z)) rR(T
(312 i << ()
while, if f is concave on [m, M|, then
(f(A)z, z) r(T\ (" (4)z, )
(313 ey << (5) Frias

for any x € H with ||z|| = 1.
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Proof. By inequality (1.5) we have
(1—v)+vs < K (s)s"
for any s > 0 and v € [0,1].
If s e {1 E] , then

'y
v v R R r v
(3.14) 1-v)+vs<S(s)s"<s” max K*(s)=K () s
se[%,g] Y
and since, for any ¢t € [m, M] and x € H with ||z| = 1 we have
) {7 F}
f ({(Az, ) '+’

hence by (3.14) we get

(1= v) f ((Az,2)) +vf () < K" <5) Fr (@) 177 ((Az, 2))

for any t € [m, M] and x € H with ||z| = 1.
Now the proof goes along the lines of the proof in Theorem 5 and we omit the
details. 0

In the recent paper [4], the author obtained the following reverse of Young’s
inequality
1-— b
USBE s (1(2) )

for any a, b > 0 and v € [0,1], where K is Kantorovich’s constant defined in (1.4).
If a, b € [m, M], then by the properties of K we have the upper bound:

% < exp {4y(1 —) (K <J‘nf> - 1)} ,

for any and v € [0, 1].
Using a similar argument as in Theorem 3 and the inequality (3.16) we can also
state:

(3.15)

(3.16)

Theorem 7. With the assumptions of Theorem 5 we have the inequality

(3.17) (1= v) f (A, ) + v (f (A) 2, )
< exp {4V (1) (K (5) - 1)} (P (A) 2, 2) 1 (A, 7))

for any x € H with |z|]| = 1, where v € [0,1].
Moreover, if f is convex on [m, M], then

(3.18) m < exp {41/(1 ) (K (5) - 1)}
while, if f is concave on [m, M), then
o0y <ew |wa-n (x(5) 1) S

for any x € H with ||z| = 1.
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The proof follows as above, however the details are not presented here.
The interested reader may establish similar results by employing the following
multiplicative reverses of Young inequalities:

Lemma 1 (see [5]). Ifa, b€ [v,T] C (0,00) and v € [0, 1], then we have

1—v)a+vb
(3.20) (al—)i”b” <max{kyr (V),kyr (1 —v)}
where
(1—-v)y+l
3.21 =—
(321) o )= S
and

Lemma 2 (see [6]). Ifa, b€ [v,T] C (0,00) and v € [0, 1], then we have
(I-v)a+vwvb 1 r 2
The inequality (3.22) can also be obtained from inequality (2.9) from the paper
[1].
4. SOME EXAMPLES

Now, let v € (0,1) and r > L > 1. Consider the function f : [0,00) — [0, 00)
defined by f (t) = ¢". Then the function f” is convex on [0, 00) and if A is a positive
operator on the Hilbert space H, then by the inequality (2.1) we have the following
refinement of Holder-McCarthy inequality
(4.1) (Az,z)" < (Az, )" (A 2, 2) < (AT, 2)
for any x € H with ||z| = 1.

If » > 2, then by (4.1) we have
(4.2) (Az,z)" < (Az,z)"? <Ar/2x,x> < (A"z,z),

for any x € H with ||z = 1.

Let v € (0,1) and o € R. Consider the function f (¢t) = exp (at), t € R. Then
the function f¥ (t) = exp (vat) is convex on R and for any selfadjoint operator A
on H we have

(4.3) exp(a(Ax,z)) <exp ((1 —v)a(Azx,z)) {exp (vad) z,z) < (exp (aA) z, ),

for any x € H with ||z| = 1.
For a =1, we get

(4.4) exp ((Az,z)) < exp ((1 —v) (Az,z)) (exp (VA) z,z) < (exp (A) z, z),

for any « € H with ||z|| =1 and v € (0,1).
Consider ¢ € (0,1), then the function f () = t? is concave on [0, 00) and if A is
a positive operator on the Hilbert space H, then by the inequality (2.3) we have

2
(4.5) <Aq/2z,a:> < <A(1*V)qx,x> (AY2, 2) < (Az, ) (AY92, )
< (Az,z)?,

for any x € H with ||z| = 1.
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If we take in (4.5) ¢ — 1, ¢ < 1 we get

(4.6) <A1/2x,x>2 < <A1_"x,x> (AVz,z) < (Ax,x)l_” (AYz, )

for any x € H with ||z| = 1.
The function f (¢t) = In (¢ + 1) is positive concave on [0, 00) and if A is a positive
operator on the Hilbert space H, then by the inequality (2.3) we have

(4.7) < In (A + 1H)x,ac>2 < <1n1‘” (A+1p) x$> (In” (A + 15) 2, z)
<In'™" ((Az,z) + 1) (In” (A + 1) =, z)
<In((Az,z) +1),

for any x € H with ||z|| =1 and v € (0,1).
Consider the function f: R — (0,00), f (t) = exp (—5¢?) . Then

f'(t) = —texp <;t2) and f (t) = exp <;t2) t*—1),

which shows that the function is concave on [—1,1].
Now, if A is selfadjoint and —1y < A < 1p, then by (2.3) we have that

an  (ow(-a)s)
< <exp (_; (1-v) A2> > <exp (_;m) >
< exp <; (1-v) (Ax,x>2> <exp <;VA2> mx>

< exp <—; <Ax,fﬁ>2) ,

for any x € H with ||z| = 1.

Now, let v € (0,1) and £ > r > 1. Consider the function f : [0,00) — [0, 00)
defined by f (t) = t". Then f is convex while function f* is concave on [0, c0) and if
A is a positive operator on the Hilbert space H satisfying the condition (3.2) then
by taking vy =m” and ' = M" in (3.9) we get

(Ax,z)"™ M\"

4.9 1<——<§5((—
(49) ~ (Ava,x) T m
for any = € H with ||z| = 1, where v € (0,1) and £ > r > 1.

If we take r =1 in (4.9), then we get

(Ax, z)” M

4.10 1<——<<85|—
(4.10) — (Avz,z) T m
for any z € H with ||z|| =1 and v € (0,1).

Consider ¢ € (0,1), then the function f (¢) = t? is concave on [0,00) and if A is
a positive operator on the Hilbert space H satisfying the condition (3.2) then by
taking v =m? and I' = M? in (3.5) we get

(4.11) (Az,2) < § ((M)) (A0 2) (A, )0

m
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for any € H with ||z|| =1 and v € (0,1).
This inequality can be written in equivalent form as

for any z € H with ||z|| =1 and v € (0,1).
Consider the function f (t) = exp (—3t?) on the concavity interval [—1,1]. We
have that

max f(t)=f(0)=1and min f(¢t)=f(£l)=exp (—;) .

te[—1,1] te[—1,1]
If A is selfadjoint and —1y < A < 1p, then by the inequality (3.10) we have
_142 _1,42
wiy AR (o (1)) 0 ik
exp (—% (Az, ) ) exp (—%V (Az, ) )
for any « € H with ||z]| = 1.

If A is a positive operator on the Hilbert space H satisfying the condition (3.2)
then by (3.12) we get

A TV M T
(4.14) 1< % < KE -
(Arve, x) m
for any € H with ||z]| = 1, where v € (0,1) with £ > r > 1 and R =

™ o (313) e e

where ¢ € (0,1), » € (0,1) and R = max {v,1 —v}.
If A is selfadjoint and —1y < A < 1p, then by the inequality (3.13) we have

142 1,42
(4.16) (exp (25 4%) @,2) < K" <exp <1>> iy
exp (—% <Ax,a:)2> 2)) exp (—%V <A$7m>2)
for any « € H with ||z|| = 1, where v € (0,1) and R = max{v,1 —v}.
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