
ON JENSEN�S MULTIPLICATIVE INEQUALITY FOR POSITIVE
CONVEX FUNCTIONS OF SELFADJOINT OPERATORS IN

HILBERT SPACES

S. S. DRAGOMIR1;2

Abstract. In this paper we obtain some multiplicative re�nements and re-
verses of Jensen�s inequality for positive convex/concave functions of selfadjoint
operators in Hilbert spaces. Natural applications for power and exponential
functions are provided.

1. Introduction

The famous Young inequality for scalars says that if a; b > 0 and � 2 [0; 1]; then

(1.1) a1��b� � (1� �) a+ �b

with equality if and only if a = b. The inequality (1.1) is also called �-weighted
arithmetic-geometric mean inequality.
We recall that Specht�s ratio is de�ned by [12]

(1.2) S (h) :=

8>><>>:
h

1
h�1

e ln

�
h

1
h�1

� if h 2 (0; 1) [ (1;1) ;

1 if h = 1:

It is well known that limh!1 S (h) = 1; S (h) = S
�
1
h

�
> 1 for h > 0; h 6= 1. The

function is decreasing on (0; 1) and increasing on (1;1) :
The following inequality is due to Tominaga [13] and provides a multiplicative

reverse for Young�s inequality

(1.3) (1� �) a+ �b � S
�a
b

�
a1��b� ;

where a; b > 0, � 2 [0; 1].
We consider the Kantorovich�s constant de�ned by

(1.4) K (h) :=
(h+ 1)

2

4h
; h > 0:

The function K is decreasing on (0; 1) and increasing on [1;1) ; K (h) � 1 for any
h > 0 and K (h) = K

�
1
h

�
for any h > 0:
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The following multiplicative reverse of Young inequality in terms of Kantorovich�s
constant has been obtained by Liao et al. [8]

(1.5) (1� �) a+ �b � KR
�a
b

�
a1��b� ;

where a; b > 0, � 2 [0; 1] and R = max f1� �; �g :
The following result that provides a vector operator version for the Jensen in-

equality is well known, see for instance [10] or [11, p. 5]:

Theorem 1. Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) � [m;M ] for some scalars m; M with m < M: If f is a convex function
on [m;M ] ; then

(1.6) f (hAx; xi) � hf (A)x; xi

for each x 2 H with kxk = 1:

As a special case of Theorem 1 we have the Hölder-McCarthy inequality [9]: Let
A be a selfadjoint positive operator on a Hilbert space H, then
(i) hArx; xi � hAx; xir for all r > 1 and x 2 H with kxk = 1;
(ii) hArx; xi � hAx; xir for all 0 < r < 1 and x 2 H with kxk = 1;
(iii) If A is invertible, then hArx; xi � hAx; xir for all r < 0 and x 2 H with

kxk = 1:
In [2] (see also [3, p. 16]) we obtained the following additive reverse of (1.6):

Theorem 2. Let I be an interval and f : I ! R be a convex and di¤erentiable
function on °I (the interior of I) whose derivative f 0 is continuous on �I: If A is a
selfadjoint operators on the Hilbert space H with Sp (A) � �I; then

(1.7) (0 �) hf (A)x; xi � f (hAx; xi) � hf 0 (A)Ax; xi � hAx; xi � hf 0 (A)x; xi

for any x 2 H with kxk = 1:

This is a generalization of the scalar discrete inequality obtained in [7]. For other
reverse inequalities of this type see [3, p. 16].
Motivated by the above results, in this paper we obtain some multiplicative

re�nements and reverses of Jensen�s inequality for positive convex or concave func-
tions of selfadjoint operators in Hilbert spaces. Natural applications for power and
exponential functions are provided.

2. Refinements

We have:

Theorem 3. Let f : I ! [0;1) be continuous on the interval I and assume that
for some � 2 (0; 1) the function f� is convex on I, then f is convex on I and we
have the inequality

(2.1) f (hAx; xi) � f1�� (hAx; xi) hf� (A)x; xi � hf (A)x; xi ;

where A is a selfadjoint operator with Sp (A) � I and x 2 H with kxk = 1:

Proof. Let t; s 2 I and � 2 [0; 1] : Since f� is convex on I; then

f� ((1� �) t+ �s) � (1� �) f� (t) + �f� (s)
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and by taking the power 1� > 1 and using the convexity of power function g (t) = t
r

with exponent r = 1
� > 1 we have

f ((1� �) t+ �s) � [(1� �) f� (t) + �f� (s)]
1
�

� (1� �) (f� (t))
1
� + � (f� (s))

1
� = (1� �) f (t) + �f (s) ;

which proves the convexity of f on I.
Now by Hölder-McCarthy inequality we have for any x 2 H with kxk = 1

hf� (A)x; xi � hf (A)x; xi�

and by Young�s inequality that

f1�� (hAx; xi) hf� (A)x; xi � f1�� (hAx; xi) hf (A)x; xi�(2.2)

� (1� �) f (hAx; xi) + � hf (A)x; xi
for any x 2 H with kxk = 1:
The last inequality follows now by Jensen�s inequality for the convex function f:
Applying the Jensen�s inequality for the convex function f� we also have

f� (hAx; xi) � hf� (A)x; xi ;
which implies that

f (hAx; xi) = f1�� (hAx; xi) f� (hAx; xi) � f1�� (hAx; xi) hf� (A)x; xi
that proves the �rst inequality in (2.1). �
The case of concave functions is as follows:

Theorem 4. Let f : I ! [0;1) be continuous and concave on the interval I. Then
for any � 2 (0; 1) the function f� is concave on I and we have the inequalityD

f1=2 (A)x; x
E2
�


f1�� (A)x; x

�
hf� (A)x; xi(2.3)

� f1�� (hAx; xi) hf� (A)x; xi � f (hAx; xi) ;
where A is a selfadjoint operator with Sp (A) � I and x 2 H with kxk = 1:

Proof. From (2.2) and the concavity of f we have

f1�� (hAx; xi) hf� (A)x; xi � f1�� (hAx; xi) hf (A)x; xi�

� (1� �) f (hAx; xi) + � hf (A)x; xi
� f (hAx; xi)

for any � 2 (0; 1) and x 2 H with kxk = 1; that proves the last part of (2.3).
Now, let t; s 2 I and � 2 [0; 1] : Since f is concave on I; then

f ((1� �) t+ �s) � (1� �) f (t) + �f (s) :
By taking the power � 2 (0; 1) and using the concavity of power function g (t) = tr
for the exponent r = � 2 (0; 1) we have

f� ((1� �) t+ �s) � ((1� �) f (t) + �f (s))� � (1� �) f� (t) + �f� (s)
that shows that f� is concave on I:
Applying the Jensen�s inequality for the concave function f1�� we have


f1�� (A)x; x
�
� f1�� (hAx; xi)

for x 2 H with kxk = 1; that proves the second inequality in (2.3).
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Now, by using the Schwarz type inequality for continuous functions of selfadjoint
operators

hg (A)h (A)x; xi2 �


g2 (A)x; x

� 

h2 (A)x; x

�
for x 2 H with kxk = 1; then by choosing g = f 1��

2 and h = f
�
2 we get the �rst

inequality in (2.3). �

3. Upper Bounds

The following reverse inequalities also hold:

Theorem 5. Let f : [m;M ]! [0;1) be a continuous function and assume that
(3.1) 0 < 
 = min

t2[m;M ]
f (t) < max

t2[m;M ]
f (t) = � <1:

Then for any A a selfadjoint operator with

(3.2) m1H � A �M1H
we have the inequality

(3.3) (1� �) f (hAx; xi) + � hf (A)x; xi � S
�
�




�
hf� (A)x; xi f1�� (hAx; xi)

for any x 2 H with kxk = 1; where � 2 [0; 1] :
Moreover, if f is convex on [m;M ], then

(3.4) f� (hAx; xi) � S
�
�




�
hf� (A)x; xi

while, if f is concave on [m;M ] ; then

(3.5) hf (A)x; xi � S
�
�




�
hf� (A)x; xi f1�� (hAx; xi)

for any x 2 H with kxk = 1:

Proof. By Tominaga�s inequality we have

(1� �) + �s � S (s) s�

for any s > 0 and � 2 [0; 1] :
If s 2

h


� ;

�



i
; then

(3.6) (1� �) + �s � S (s) s� � s� max
s2[ 
� ;

�

 ]
S (s) = S

�
�




�
s�

and since for any t 2 [m;M ] and x 2 H with kxk = 1 we have
f (t)

f (hAx; xi) 2
�



�
;
�




�
;

hence by (3.6) we get

(3.7) (1� �) f (hAx; xi) + �f (t) � S
�
�




�
f� (t) f1�� (hAx; xi)

for any t 2 [m;M ] and x 2 H with kxk = 1:
If we use the functional calculus for the operator A we have by (3.7) that

(3.8) (1� �) f (hAx; xi) + �f (A) � S
�
�




�
f� (A) f1�� (hAx; xi)
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for any x 2 H with kxk = 1:
If we take the inner product over y 2 H with kyk = 1 in (3.8), then we get

(1� �) f (hAx; xi) + � hf (A) y; yi � S
�
�




�
hf� (A) y; yi f1�� (hAx; xi)

that for y = x we get the desired inequality.
If f is convex, then

f (hAx; xi) � hf (A)x; xi
for any x 2 H with kxk = 1; then by (3.3) we get

f (hAx; xi) � S
�
�




�
hf� (A)x; xi f1�� (hAx; xi)

for any x 2 H with kxk = 1; which is equivalent to (3.4).
If f is concave, then

hf (A)x; xi � f (hAx; xi)
and by (3.3) we get (3.5). �

Remark 1. If for some � 2 (0; 1) the function f� is convex on [m;M ], then
according with Theorem 3 f is convex on I and the inequality (3.4) is trivially

satis�ed since S
�
�



�
� 1:

If f is convex on I and for some � 2 (0; 1) the function f� is concave on [m;M ] ;
then from (3.4) we have the meaningful inequality

(3.9) 1 � f� (hAx; xi)
hf� (A)x; xi � S

�
�




�
for any x 2 H with kxk = 1:
The inequality (3.5) can be written in equivalent form as

(3.10)
hf (A)x; xi
f (hAx; xi) � S

�
�




�
hf� (A)x; xi
f� (hAx; xi)

for any x 2 H with kxk = 1:

We also have:

Theorem 6. With the assumptions of Theorem 5 we have the inequality

(3.11) (1� �) f (hAx; xi) + � hf (A)x; xi � KR

�
�




�
hf� (A)x; xi f1�� (hAx; xi)

for any x 2 H with kxk = 1; where � 2 [0; 1] and R = max f�; 1� �g :
Moreover, if f is convex on [m;M ], then

(3.12)
f� (hAx; xi)
hf� (A)x; xi � K

R

�
�




�
while, if f is concave on [m;M ] ; then

(3.13)
hf (A)x; xi
f (hAx; xi) � K

R

�
�




�
hf� (A)x; xi
f� (hAx; xi)

for any x 2 H with kxk = 1:
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Proof. By inequality (1.5) we have

(1� �) + �s � KR (s) s�

for any s > 0 and � 2 [0; 1] :
If s 2

h


� ;

�



i
; then

(3.14) (1� �) + �s � S (s) s� � s� max
s2[ 
� ;

�

 ]
KR (s) = KR

�
�




�
s�

and since, for any t 2 [m;M ] and x 2 H with kxk = 1 we have
f (t)

f (hAx; xi) 2
�



�
;
�




�
;

hence by (3.14) we get

(1� �) f (hAx; xi) + �f (t) � KR

�
�




�
f� (t) f1�� (hAx; xi)

for any t 2 [m;M ] and x 2 H with kxk = 1:
Now the proof goes along the lines of the proof in Theorem 5 and we omit the

details. �

In the recent paper [4], the author obtained the following reverse of Young�s
inequality

(3.15)
(1� �) a+ �b
a1��b�

� exp
h
4� (1� �)

�
K
�a
b

�
� 1
�i
;

for any a; b > 0 and � 2 [0; 1] ; where K is Kantorovich�s constant de�ned in (1.4).
If a; b 2 [m;M ] ; then by the properties of K we have the upper bound:

(3.16)
(1� �) a+ �b
a1��b�

� exp
�
4� (1� �)

�
K

�
M

m

�
� 1
��
;

for any and � 2 [0; 1] :
Using a similar argument as in Theorem 3 and the inequality (3.16) we can also

state:

Theorem 7. With the assumptions of Theorem 5 we have the inequality

(1� �) f (hAx; xi) + � hf (A)x; xi(3.17)

� exp
�
4� (1� �)

�
K

�
�




�
� 1
��
hf� (A)x; xi f1�� (hAx; xi)

for any x 2 H with kxk = 1; where � 2 [0; 1] :
Moreover, if f is convex on [m;M ], then

(3.18)
f� (hAx; xi)
hf� (A)x; xi � exp

�
4� (1� �)

�
K

�
�




�
� 1
��

while, if f is concave on [m;M ] ; then

(3.19)
hf (A)x; xi
f (hAx; xi) � exp

�
4� (1� �)

�
K

�
�




�
� 1
��

hf� (A)x; xi
f� (hAx; xi)

for any x 2 H with kxk = 1:
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The proof follows as above, however the details are not presented here.
The interested reader may establish similar results by employing the following

multiplicative reverses of Young inequalities:

Lemma 1 (see [5]). If a; b 2 [
;�] � (0;1) and � 2 [0; 1] ; then we have

(3.20)
(1� �) a+ �b
a1��b�

� max f�
;� (�) ; �
;� (1� �)g

where

(3.21) �
;� (�) :=
(1� �) 
 + ��

1����

and

Lemma 2 (see [6]). If a; b 2 [
;�] � (0;1) and � 2 [0; 1] ; then we have

(3.22)
(1� �) a+ �b
a1��b�

� exp
"
1

2
� (1� �)

�
�



� 1
�2#

:

The inequality (3.22) can also be obtained from inequality (2.9) from the paper
[1].

4. Some Examples

Now, let � 2 (0; 1) and r � 1
� > 1: Consider the function f : [0;1) ! [0;1)

de�ned by f (t) = tr: Then the function f� is convex on [0;1) and if A is a positive
operator on the Hilbert space H, then by the inequality (2.1) we have the following
re�nement of Hölder-McCarthy inequality

(4.1) hAx; xir � hAx; xi(1��)r hA�rx; xi � hArx; xi ;
for any x 2 H with kxk = 1:
If r � 2; then by (4.1) we have

(4.2) hAx; xir � hAx; xir=2
D
Ar=2x; x

E
� hArx; xi ;

for any x 2 H with kxk = 1:
Let � 2 (0; 1) and � 2 R. Consider the function f (t) = exp (�t) ; t 2 R: Then

the function f� (t) = exp (��t) is convex on R and for any selfadjoint operator A
on H we have

(4.3) exp (� hAx; xi) � exp ((1� �)� hAx; xi) hexp (��A)x; xi � hexp (�A)x; xi ;
for any x 2 H with kxk = 1:
For � = 1; we get

(4.4) exp (hAx; xi) � exp ((1� �) hAx; xi) hexp (�A)x; xi � hexp (A)x; xi ;
for any x 2 H with kxk = 1 and � 2 (0; 1) :
Consider q 2 (0; 1) ; then the function f (t) = tq is concave on [0;1) and if A is

a positive operator on the Hilbert space H, then by the inequality (2.3) we haveD
Aq=2x; x

E2
�
D
A(1��)qx; x

E
hA�qx; xi � hAx; xi(1��)q hA�qx; xi(4.5)

� hAx; xiq ;
for any x 2 H with kxk = 1:
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If we take in (4.5) q ! 1; q < 1 we getD
A1=2x; x

E2
�


A1��x; x

�
hA�x; xi � hAx; xi1�� hA�x; xi(4.6)

� hAx; xi ;
for any x 2 H with kxk = 1:
The function f (t) = ln (t+ 1) is positive concave on [0;1) and if A is a positive

operator on the Hilbert space H, then by the inequality (2.3) we haveDp
ln (A+ 1H)x; x

E2
�
D
ln

1��
(A+ 1H)x; x

E
hln� (A+ 1H)x; xi(4.7)

� ln1�� (hAx; xi+ 1) hln� (A+ 1H)x; xi
� ln (hAx; xi+ 1) ;

for any x 2 H with kxk = 1 and � 2 (0; 1) :
Consider the function f : R! (0;1) ; f (t) = exp

�
� 1
2 t
2
�
: Then

f 0 (t) = �t exp
�
�1
2
t2
�
and f 00 (t) = exp

�
�1
2
t2
��
t2 � 1

�
;

which shows that the function is concave on [�1; 1] :
Now, if A is selfadjoint and �1H � A � 1H ; then by (2.3) we have that�

exp

�
�1
4
A2
�
x; x

�2
(4.8)

�
�
exp

�
�1
2
(1� �)A2

�
x; x

��
exp

�
�1
2
�A2

�
x; x

�
� exp

�
�1
2
(1� �) hAx; xi2

��
exp

�
�1
2
�A2

�
x; x

�
� exp

�
�1
2
hAx; xi2

�
;

for any x 2 H with kxk = 1:
Now, let � 2 (0; 1) and 1

� > r � 1: Consider the function f : [0;1) ! [0;1)
de�ned by f (t) = tr: Then f is convex while function f� is concave on [0;1) and if
A is a positive operator on the Hilbert space H satisfying the condition (3.2) then
by taking 
 = mr and � =Mr in (3.9) we get

(4.9) 1 � hAx; xir�

hAr�x; xi � S
��

M

m

�r�
for any x 2 H with kxk = 1; where � 2 (0; 1) and 1

� > r � 1:
If we take r = 1 in (4.9), then we get

(4.10) 1 � hAx; xi�

hA�x; xi � S
�
M

m

�
for any x 2 H with kxk = 1 and � 2 (0; 1) :
Consider q 2 (0; 1) ; then the function f (t) = tq is concave on [0;1) and if A is

a positive operator on the Hilbert space H satisfying the condition (3.2) then by
taking 
 = mq and � =Mq in (3.5) we get

(4.11) hAqx; xi � S
��

M

m

�q�
hA�qx; xi hAx; xi(1��)q
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for any x 2 H with kxk = 1 and � 2 (0; 1) :
This inequality can be written in equivalent form as

(4.12)
hAqx; xi
hAx; xiq � S

��
M

m

�q� hA�qx; xi
hAx; xi�q

for any x 2 H with kxk = 1 and � 2 (0; 1) :
Consider the function f (t) = exp

�
� 1
2 t
2
�
on the concavity interval [�1; 1] : We

have that

max
t2[�1;1]

f (t) = f (0) = 1 and min
t2[�1;1]

f (t) = f (�1) = exp
�
�1
2

�
:

If A is selfadjoint and �1H � A � 1H , then by the inequality (3.10) we have

(4.13)



exp

�
� 1
2A

2
�
x; x

�
exp

�
� 1
2 hAx; xi

2
� � S �exp�1

2

�� 

exp

�
� 1
2�A

2
�
x; x

�
exp

�
� 1
2� hAx; xi

2
�

for any x 2 H with kxk = 1:
If A is a positive operator on the Hilbert space H satisfying the condition (3.2)

then by (3.12) we get

(4.14) 1 � hAx; xir�

hAr�x; xi � K
R

��
M

m

�r�
for any x 2 H with kxk = 1; where � 2 (0; 1) with 1

� > r � 1 and R =
max f�; 1� �g :
From (3.13) we have

(4.15)
hAqx; xi
hAx; xiq � K

R

��
M

m

�q� hA�qx; xi
hAx; xi�q

where q 2 (0; 1), � 2 (0; 1) and R = max f�; 1� �g :
If A is selfadjoint and �1H � A � 1H , then by the inequality (3.13) we have

(4.16)



exp

�
� 1
2A

2
�
x; x

�
exp

�
� 1
2 hAx; xi

2
� � KR

�
exp

�
1

2

�� 

exp

�
� 1
2�A

2
�
x; x

�
exp

�
� 1
2� hAx; xi

2
�

for any x 2 H with kxk = 1; where � 2 (0; 1) and R = max f�; 1� �g :
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