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Abstract. In this paper, a new identity is established for differentiable map-

pings. By using the mathematical analysis techniques, some new integral in-
equalities of Hermite-Hadamard type for differentiable p-convex functions are

proved. A comparison of the established results with previously obtained re-

sults is demonstrated to show that the results presented in this paper are better
than those already exist in literature.

1. Introduction

Let f : I ⊂ R → R be a convex function and a, b ∈ I with a < b, the double
inequality

(1.1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2

is very famous in the theory of convex functions and is known as the Hermite-
Hadamard inequality. The inequality (1.1) is considered as a necessary and suffi-
cient condition for a function f to be convex over an interval I.

Not long ago, the theory of convexity has received a considerable attention by a
number of researchers and as a result the classical notion of convex sets and convex
functions have been extended and generalized in several directions. Zhang [10],
presented the concept of p-convex sets and p-convex functions defined on an interval
of the set of real numbers R, where p is a positive odd integer or a fraction with
numerator and denominator as positive odd integers. The definitions of p-convex
sets and p-convex functions was modified by Iscan in [7] by restricting the domain to
be the interval of the set of positive real numbers so that p can be any non-zero real
number. The class of p-convex functions introduced by Iscan not only contains the
class of classical convex functions but also contains the class of harmonically convex
functions defined over the set of positive real numbers. Moreover, a number of new
Hermite-Hadamard type inequalities were proved in [7] for the class of p-convex
functions. As a consequence of the extensions and generalizations of the classical
convexity, Hermite-Hadamard inequality (1.1) has been given different forms and
numerous bounds related to the middle and leftmost, and middle and the rightmost
terms are proved by using a variety of generalizations of the usual convexity, see
for instance [1, 3, 4, 5, 7, 8, 9] and the references cited therein.

In this article, we prove some integral inequalities for differentiable p-convex
functions. The results of this paper generalize few known results as well as improve
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some results given in [7] and [9]. We also provide a numerical example by using the
software Matlab and Mathematica to justify our claim.

In what follows we recall some basic definitions related to p-convex sets, p-convex
functions and Hermite-Hadamard type inequalities for differentiable p-convex func-
tions.

Definition 1. [10] An interval I is said to be p-convex if

Mp (x, y;α) = [αxp + (1− α) yp]
1
p ∈ I

for all x, y ∈ I and α ∈ [0, 1], where p = 2k+ 1 or p = n
m , n = 2r+ 1, m = 2t+ 1,

k, r, t ∈ N.

Definition 2. [10] Let I be a p-convex set. A function f : I → R is said to be
p-convex function or f is said to belong to the class PC (I), if

f (Mp (x, y;α)) ≤ αf (x) + (1− α) f (y)

for all x, y ∈ I and α ∈ [0, 1].

Remark 1. It is clear from the Definition 2 that the p-convex functions are the
convex functions in the classical sense for p = 1. Since p = 2k + 1 or p = n

m ,
n = 2r+1, m = 2t+1, k, r, t ∈ N, this shows that p ̸= −1. Hence the class PC (I)
does not contain the harmonic convex functions.

Remark 2. [7] If I ⊂ (0,∞) and p ∈ R\ {0}, then

Mp (x, y;α) = [αxp + (1− α) yp]
1
p ∈ I

for all x, y ∈ I and α ∈ [0, 1].

Based on Remark 2, the following modification of p-convex functions was given
in [7] by Iscan.

Definition 3. [7] Let I ⊂ (0,∞) and p ∈ R\ {0}. A function f : I → R is said to
be p-convex function or f is said to belong to the class PC (I), if

(1.2) f (Mp (x, y;α)) ≤ αf (x) + (1− α) f (y)

for all x, y ∈ I and α ∈ [0, 1]. If the inequality (1.2) is reversed, then f is said to
be p-concave.

According to Definition 3, It can be easily seen that for p = 1 and p = −1,
p-convexity reduces to ordinary convexity and harmonically convexity of functions
defined on I ⊂ (0,∞), respectively.

The following is the corrected version of proposition given in [7] that describes
how the convexity and p-convexity are related.

Proposition 1. Let f : I ⊂ (0,∞) → R be a function and p ∈ R\ {0}, then
(1) If f is convex and nondecreasing, then f is p-convex for p ∈ (−∞, 0)∪(0, 1].
(2) If f is p-convex and nondecreasing for p ≥ 1, then f is convex.
(3) If f is p-concave and nondecreasing for p ∈ (−∞, 0) ∪ (0, 1], then f is

concave.
(4) If f is concave and nondecreasing, then f is p-concave for p ≥ 1.
(5) If f is convex and nonincreasing, then f is p-convex for p ≥ 1.
(6) If f is p-convex and nonincreasing for p ∈ (−∞, 0)∪(0, 1], then f is convex.
(7) If f is p-concave and nonincreasing for p ≥ 1, then f is concave.
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(8) If f is concave and nonincreasing, then f is p-concave for p ∈ (−∞, 0) ∪
(0, 1].

Proof. (1) Suppose that f is convex and nondecreasing. For p ∈ (−∞, 0) ∪ (0, 1],
we have

[txp + (1− t) yp]
1
p ≤ tx+ (1− t) y.

for all x, y ∈ I and t ∈ [0, 1]. Hence by using the convexity of f , we have

f
(
[txp + (1− t) yp]

1
p

)
≤ f (tx+ (1− t) y)

≤ tf (x) + (1− t) + f (y) .

for all x, y ∈ I and t ∈ [0, 1]. This shows that f is p-convex.
(2) Suppose that f is p-convex and nondecreasing for p ≥ 1. For p ≥ 1, we have

tx+ (1− t) y ≤ [txp + (1− t) yp]
1
p for all t ∈ [0, 1] .

for all x, y ∈ I and t ∈ [0, 1]. Hence by using the p-convexity of f , we have

f (tx+ (1− t) y) ≤ f
(
[txp + (1− t) yp]

1
p

)
≤ tf (x) + (1− t) + f (y) .

The results (3), (4), (5), (6), (7) and (8) can be proved similarly. �

According to Proposition 1, the following p-convex and p-concave functions can
be constructed.

Example 1. [7] Let f : (0,∞) → R, f(x) = x, then f is p-convex function for
p ∈ (−∞, 0) ∪ (0, 1] and f is p-concave function for p ≥ 1.

Example 2. [7] Let f : (0,∞) → R, f(x) = x−p, p ≥ 1, then f is p-convex
function.

Example 3. [7] Let f : (0,∞) → R, f(x) = − lnx and p ≥ 1, then f is p-convex
function.

Example 4. [7] Let f : (0,∞) → R,f(x) = lnx and p ≥ 1, then f is p-concave
function.

The following Hermite-Hadamard type inequalities were obtained in [7].

Theorem 1. [7] Let f : I ⊂ (0,∞) → R be a p-convex function, p ∈ R\ {0}, and
a, b ∈ I with a < b. If f ∈ L[a, b], then we have

(1.3) f

([
ap + bp

2

] 1
p

)
≤ p

bp − ap

∫ b

a

f (x)

x1−p
dx ≤ f (a) + f (b)

2
.

The inequalities (1.3) are sharp.

Here we recall Gamma, Beta and Hyeprgeomtric functions. These special func-
tions are used to get estimates between the middle and the rightmost terms in
(1.3).

The Gamma function is defined as

Γ (x) =

∫ ∞

0

e−xtx−1dt,
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The Beta function, also known as the Euler integral of the first kind, is defined as

B (x, y) =

∫ 1

0

tx−1 (1− t)
y−1

dt, x > 0, y > 0

and the integral form of the hypergeometric function is defined as follows

2F1 (x, y; c; z) =
1

B (y, y − c)

∫ 1

0

tx−1 (1− t)
c−y−1

(1− zt)
−a

dt,

where |z| < 1 and c > y > 0.
The following error bounds of the difference between the middle and the right-

most terms in (1.3) were proved by using the modified definition of p-convex func-
tions.

Theorem 2. [7] Let Let f : I ⊂ (0,∞) → R be a differentiable function on I◦ ,

a, b ∈ I◦ with a < b, p ∈ R\ {0} and f
′ ∈ L[a, b]. If

∣∣∣f ′
∣∣∣q is p-convex on [a, b] for

q ≥ 1, then ∣∣∣∣∣f (a) + f (b)

2
− p

bp − ap

∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣(1.4)

≤
(
bp − ap

2p

)
C

1− 1
q

1

[
C2

∣∣∣f ′
(a)
∣∣∣q + C3

∣∣∣f ′
(b)
∣∣∣q] 1

q

,

where

C1 = C1 (a, b; p) =
1

4

(
ap + bp

2

)1− 1
p

×
[
2F1

(
1− 1

p
, 2; 3;

ap − bp

ap + bp

)
+2 F1

(
1− 1

p
, 2; 3;

bp − ap

ap + bp

)]
,

C2 = C2 (a, b; p) =
1

24

(
ap + bp

2

)1− 1
p
[
2F1

(
1− 1

p
, 2; 4;

ap − bp

ap + bp

)
+6 ·2 F1

(
1− 1

p
, 2; 3;

bp − ap

ap + bp

)
+2 F1

(
1− 1

p
, 2; 4;

bp − ap

ap + bp

)]
and

C3 = C1 − C2.

Theorem 3. [7] Let Let f : I ⊂ (0,∞) → R be a differentiable function on I◦ ,

a, b ∈ I◦ with a < b, p ∈ R\ {0} and f
′ ∈ L[a, b]. If

∣∣∣f ′
∣∣∣q is p-convex on [a, b] for

q > 1, 1
r + 1

q = 1, then∣∣∣∣∣f (a) + f (b)

2
− p

bp − ap

∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣(1.5)

≤ bp − ap

2p

(
1

r + 1

) 1
r [

C4

∣∣∣f ′
(a)
∣∣∣q + C5

∣∣∣f ′
(b)
∣∣∣q] 1

q

,

where

C4 = C4 (a, b; p; q) =


1

2apq−q ·2 F1

(
q − q

p , 1, 3; 1−
(
b
a

)p)
p < 0

1
2bpq−q ·2 F1

(
q − q

p , 2, 3; 1−
(
a
b

)p)
p > 0

,
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C5 = C4 (a, b; p; q) =


1

2apq−q ·2 F1

(
q − q

p , 2, 3; 1−
(
b
a

)p)
p < 0

1
2bpq−q ·2 F1

(
q − q

p , 1, 3; 1−
(
a
b

)p)
p > 0

.

Theorem 4. [7] Let Let f : I ⊂ (0,∞) → R be a differentiable function on I◦ ,

a, b ∈ I◦ with a < b, p ∈ R\ {0} and f
′ ∈ L[a, b]. If

∣∣∣f ′
∣∣∣q is p-convex on [a, b] for

q > 1, 1
r + 1

q = 1, then∣∣∣∣∣f (a) + f (b)

2
− p

bp − ap

∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣(1.6)

≤ bp − ap

2p
C

1
r
6

(
1

q + 1

) 1
q


∣∣∣f ′

(a)
∣∣∣q + ∣∣∣f ′

(b)
∣∣∣q

2


1
q

,

where

C6 = C6 (a, b; p; r) =


1

2apr−r ·2 F1

(
r − r

p , 1, 2; 1−
(
b
a

)p)
p < 0

1
2bpr−r ·2 F1

(
r − r

p , 1, 2; 1−
(
a
b

)p)
p > 0

.

In the next section, we will prove some improved integral inequalities of Hermite-
Hadamard type by using the modified definition of p-convexity. The software Math-
ematica is used to demonstrate that the results of this paper are better than those
proved in [7].

2. Hermite-Hadamard type using p-convex functions

In order to prove our results of this paper we first prove the following auxilary
result.

Lemma 1. Let f : I ⊂ (0,∞) → R be a differentiable mapping on I◦ (the interior

of the interval I) and let a, b ∈ I◦ with a < b. If f
′ ∈ L [a, b], the following equality

holds

(2.1)
f (a) + f (b)

2
− p

bp − ap

∫ b

a

f (x)

x1−p
dx

=

(
bp − ap

4p

)[∫ 1

0

Mp−1

(
a, b;

1− t

2

)
tf

′
(
Mp

(
a, b;

1− t

2

))
dt

−
∫ 1

0

Mp−1

(
a, b;

1 + t

2

)
tf

′
(
Mp

(
a, b;

1 + t

2

))
dt

]
,

where p ∈ R\ {0},

Mp−1

(
a, b;

1− t

2

)
=

[(
1− t

2

)
ap +

(
1 + t

2

)
bp
] 1

p−1

and

Mp−1

(
a, b;

1 + t

2

)
=

[(
1 + t

2

)
ap +

(
1− t

2

)
bp
] 1

p−1

.
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Proof. By integration by parts, we observe that

(2.2)

(
bp − ap

4p

)∫ 1

0

Mp−1

(
a, b;

1− t

2

)
tf

′
(
Mp

(
a, b;

1− t

2

))
dt

=
1

2

∫ 1

0

td

[
f

(
Mp

(
a, b;

1− t

2

))]
=

1

2
tf

(
Mp

(
a, b;

1− t

2

))∣∣∣∣1
0

− 1

2

∫ 1

0

f

(
Mp

(
a, b;

1− t

2

))
dt

=
f (b)

2
− p

bp − ap

∫ b

( ap+bp

2 )
1
p

f (x)

x1−p
dx

and

(2.3)

(
bp − ap

4p

)∫ 1

0

Mp−1

(
a, b;

1 + t

2

)
tf

′
(
Mp

(
a, b;

1 + t

2

))
dt

= −1

2

∫ 1

0

td

[
f

(
Mp

(
a, b;

1 + t

2

))]
= −1

2
tf

(
Mp

(
a, b;

1 + t

2

))∣∣∣∣1
0

+
1

2

∫ 1

0

f

(
Mp

(
a, b;

1 + t

2

))
dt

= −f (a)

2
+

p

bp − ap

∫ ( ap+bp

2 )
1
p

a

f (x)

x1−p
dx.

From the equalities (2.2) and (2.3), we get the equality (2.1). �

Remark 3. If p = 1, Lemma 1 becomes Lemma 2.1 proved in [1, page 226] with
restricted domain (0,∞) of the function f .

If p = −1, Lemma 1 gives the following new identity for harmonaically-convex
functions.

Lemma 2. Let f : I ⊂ (0,∞) → R be a differentiable mapping on I◦ (the interior

of the interval I) and let a, b ∈ I◦ with a < b. If f
′ ∈ L [a, b], the following equality

holds

(2.4)
f (a) + f (b)

2
− ab

b− a

∫ b

a

f (x)

x2
dx

= 4ab (b− a)

[∫ 1

0

t

[(1− t) b+ (1 + t) a]
2 f

′
(

2ab

(1− t) b+ (1 + t) a

)
dt

−
∫ 1

0

t

[(1 + t) b+ (1− t) a]
2 f

′
(

2ab

(1 + t) b+ (1− t) a

)
dt

]
.

We can now begin to establish the main results of our paper by using Lemma 1.

Theorem 5. Let f : [c, d] ⊂ (0,∞) → R be a differentiable function on (c, d) and

a, b ∈ (c, d) with a < b. If f
′ ∈ L [a, b] and

∣∣∣f ′
∣∣∣q is p-convex function for q ≥ 1 and
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p ∈ R\
{
0,−1, 1

2

}
, then the following inequality holds

(2.5)

∣∣∣∣∣f (a) + f (b)

2
− p

bp − ap

∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣
≤
(
bp − ap

4p

)[
(ϑ (a, b; p))

1− 1
q

{
η1 (a, b; p)

∣∣∣f ′
(a)
∣∣∣q + η2 (a, b; p)

∣∣∣f ′
(b)
∣∣∣q} 1

q

+(ϑ (b, a; p))
1− 1

q

{
η2 (b, a; p)

∣∣∣f ′
(a)
∣∣∣q + η1 (b, a; p)

∣∣∣f ′
(b)
∣∣∣q} 1

q

]
,

where

η1 (a, b; p) =
p2
[
2bp+1 ((2p− 1) bp + (2p+ 1) ap) + 2−

1
p (ap + bp)

1+ 1
p (ap − bp (4p+ 1))

]
(ap − bp)

3
(p+ 1) (2p+ 1)

,

η2 (a, b; p) =
p

(ap − bp)
3
(p+ 1) (2p+ 1)

[
2−

1
p (ap + bp)

1+ 1
p p (−bp + ap (4p+ 1))

−2b
(
b2p + apbp

(
2p2 − 3p− 2

)
+
(
2p2 + 3p+ 1

)
a2p
)]

and

ϑ (a, b; p) =
2p
[
2−

1
p · p (ap + bp)

1+ 1
p − b ((p− 1) bp + (p+ 1) ap)

]
(ap − bp)

2
(p+ 1)

.

Proof. From Lemma 1 and using the power-mean inequality, we get

(2.6)

∣∣∣∣∣f (a) + f (b)

2
− p

bp − ap

∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣
≤
(
bp − ap

4p

)[(∫ 1

0

tMp−1

(
a, b;

1− t

2

)
dt

)1− 1
q
(∫ 1

0

tMp−1

(
a, b;

1− t

2

)

×
∣∣∣∣f ′
(
Mp

(
a, b;

1− t

2

))∣∣∣∣q dt)
1
q

+

(∫ 1

0

tMp−1

(
a, b;

1 + t

2

)
dt

)1− 1
q

×
(∫ 1

0

tMp−1

(
a, b;

1 + t

2

) ∣∣∣∣f ′
(
Mp

(
a, b;

1 + t

2

))∣∣∣∣q dt)
1
q

]
.

By using the p-convexity of
∣∣∣f ′
∣∣∣qfor q ≥ 1, we have∣∣∣∣f ′

(
Mp

(
a, b;

1− t

2

))∣∣∣∣q =

∣∣∣∣∣f ′

([(
1− t

2

)
ap +

(
1 + t

2

)
bp
] 1

p

)∣∣∣∣∣
q

≤
(
1− t

2

) ∣∣∣f ′
(a)
∣∣∣q + (1 + t

2

) ∣∣∣f ′
(b)
∣∣∣q .

and ∣∣∣∣f ′
(
Mp

(
a, b;

1 + t

2

))∣∣∣∣q =

∣∣∣∣∣f ′

([(
1 + t

2

)
ap +

(
1− t

2

)
bp
] 1

p

)∣∣∣∣∣
q

≤
(
1 + t

2

) ∣∣∣f ′
(a)
∣∣∣q + (1− t

2

) ∣∣∣f ′
(b)
∣∣∣q .
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Hence

(2.7)

∫ 1

0

Mp−1

(
a, b;

1− t

2

)
t

∣∣∣∣f ′
(
Mp

(
a, b;

1− t

2

))∣∣∣∣q dt
≤
∫ 1

0

[(
1− t

2

)
ap +

(
1 + t

2

)
bp
] 1

p−1

t

[(
1− t

2

) ∣∣∣f ′
(a)
∣∣∣q + (1 + t

2

) ∣∣∣f ′
(b)
∣∣∣q] dt

=
∣∣∣f ′

(a)
∣∣∣q ∫ 1

0

[(
1− t

2

)
ap +

(
1 + t

2

)
bp
] 1

p−1

t

(
1− t

2

)
dt

+
∣∣∣f ′

(b)
∣∣∣q ∫ 1

0

[(
1− t

2

)
ap +

(
1 + t

2

)
bp
] 1

p−1

t

(
1 + t

2

)
dt

=
∣∣∣f ′

(a)
∣∣∣q p2

[
2bp+1 ((2p− 1) bp + (2p+ 1) ap) + 2−

1
p (ap + bp)

1+ 1
p (ap − bp (4p+ 1))

]
(ap − bp)

3
(p+ 1) (2p+ 1)

+

∣∣∣f ′
(b)
∣∣∣q

(ap − bp)
3
(p+ 1) (2p+ 1)

p
[
2−

1
p (ap + bp)

1+ 1
p p (ap (4p+ 1)− bp)

−2b
(
b2p + apbp

(
2p2 − 3p− 2

)
+
(
2p2 + 3p+ 1

)
a2p
)]

.

Similarly, one can have

(2.8)

∫ 1

0

Mp−1

(
a, b;

1 + t

2

)
t

∣∣∣∣f ′
(
Mp

(
a, b;

1 + t

2

))∣∣∣∣q dt
=

∣∣∣f ′
(a)
∣∣∣q

(ap − bp)
3
(p+ 1) (2p+ 1)

p
[
2−

1
p (ap + bp)

1+ 1
p p (ap − bp (4p+ 1))

+2a
(
a2p + apbp

(
2p2 − 3p− 2

)
+
(
2p2 + 3p+ 1

)
b2p
)]

+
∣∣∣f ′

(b)
∣∣∣q p2

[
−2ap+1 ((2p− 1) ap + (2p+ 1) bp) + 2−

1
p (ap + bp)

1+ 1
p (ap (4p+ 1)− bp)

]
(ap − bp)

3
(p+ 1) (2p+ 1)

.

We also observe that

(2.9)

∫ 1

0

tMp−1

(
a, b;

1− t

2

)
dt =

∫ 1

0

t

[(
1− t

2

)
ap +

(
1 + t

2

)
bp
] 1

p−1

dt

=
2p
[
2−

1
p · p (ap + bp)

1+ 1
p − b ((p− 1) bp + (p+ 1) ap)

]
(ap − bp)

2
(p+ 1)

and

(2.10)

∫ 1

0

tMp−1

(
a, b;

1 + t

2

)
dt =

∫ 1

0

t

[(
1 + t

2

)
ap +

(
1− t

2

)
bp
] 1

p−1

dt

=
2p
[
2−

1
p · p (ap + bp)

1+ 1
p − a ((p− 1) ap + (p+ 1) bp)

]
(ap − bp)

2
(p+ 1)

.

The result follows by applying the inequalities (2.7)-(2.10) in (2.6). �
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Corollary 1. Suppose the assumptions of Theorem 5 are satisfied and if p = 1, the
following inequality holds

(2.11)

∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣ ≤ b− a

4

(
1

2

)1− 1
q

×



∣∣∣f ′

(a)
∣∣∣q + 5

∣∣∣f ′
(b)
∣∣∣q

12


1
q

+

5
∣∣∣f ′

(a)
∣∣∣q + ∣∣∣f ′

(b)
∣∣∣q

12


1
q

 .

Theorem 6. Let f : [c, d] ⊂ R → R be a differentiable function on (c, d) and a,

b ∈ (c, d) with a < b. If f
′ ∈ L [a, b] and

∣∣∣f ′
∣∣∣q is p-convex function for q > 1 and

p ∈ R\ {0, q}, the following inequality holds

(2.12)

∣∣∣∣∣f (a) + f (b)

2
− p

bp − ap

∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣
≤
(
bp − ap

4p

)(θ (a, b; p, q))1− 1
q


∣∣∣f ′

(a)
∣∣∣q + (2q + 3)

∣∣∣f ′
(b)
∣∣∣q

2 (q + 1) (q + 2)


1
q

+(θ (b, a; p, q))
1− 1

q

 (2q + 3)
∣∣∣f ′

(a)
∣∣∣q + ∣∣∣f ′

(b)
∣∣∣q

2 (q + 1) (q + 2)


1
q

 ,

where

θ (a, b; p, q) =
p (q − 1)

(
2b

p−q
1−q − 2

q(1−p)
p(1−q) (ap + bp)

p−q
p(1−q)

)
(p− q) (ap − bp)

.

Proof. Using Lemma 1 and by using the Hölder inequality, we have

(2.13)

∣∣∣∣∣f (a) + f (b)

2
− p

bp − ap

∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣ ≤
(
bp − ap

4p

)

×

(∫ 1

0

(
Mp−1

(
a, b;

1− t

2

)) q
q−1

dt

)1− 1
q (∫ 1

0

tq
∣∣∣∣f ′
(
Mp

(
a, b;

1− t

2

))∣∣∣∣q dt)
1
q

+

(∫ 1

0

(
Mp−1

(
a, b;

1 + t

2

)) q
q−1

dt

)1− 1
q (∫ 1

0

tq
∣∣∣∣f ′
(
Mp

(
a, b;

1 + t

2

))∣∣∣∣q dt)
1
q

 .

The integrals involved can be calculated by using the p-convexity of
∣∣∣f ′
∣∣∣q, q > 1 as

follows ∫ 1

0

tq
∣∣∣∣f ′
(
Mp

(
a, b;

1− t

2

))∣∣∣∣q dt ≤
∣∣∣f ′

(a)
∣∣∣q + (2q + 3)

∣∣∣f ′
(b)
∣∣∣q

2 (q + 1) (q + 2)



10 M. A. LATIF, S. S. DRAGOMIR1,2, AND E. MOMONIAT

and ∫ 1

0

tq
∣∣∣∣f ′
(
Mp

(
a, b;

1 + t

2

))∣∣∣∣q ≤

∣∣∣f ′
(a)
∣∣∣q + (2q + 3)

∣∣∣f ′
(b)
∣∣∣q

2 (q + 1) (q + 2)
.

Moreover, we also observe that∫ 1

0

(
Mp−1

(
a, b;

1− t

2

)) q
q−1

dt =
p (q − 1)

(
2b

p−q
1−q − 2

q(1−p)
p(1−q) (ap + bp)

p−q
p(1−q)

)
(p− q) (ap − bp)

and∫ 1

0

(
Mp−1

(
a, b;

1 + t

2

)) q
q−1

dt =
p (q − 1)

(
−2a

p−q
1−q + 2

q(1−p)
p(1−q) (ap + bp)

p−q
p(1−q)

)
(p− q) (ap − bp)

.

Utilizing the above observations in (2.13), we get the inequality (2.12). �
Some important results for convex functions and harmonically-convex functions

defined on (0,∞) can be deduced from Theorem 6 which are summarized in the
following corollaries.

Corollary 2. Suppose that the conditions of Theorem 6 are fulfilled and p = 1, the
following inequality holds:

(2.14)

∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣
≤
(
b− a

4

)

∣∣∣f ′

(a)
∣∣∣q + (2q + 3)

∣∣∣f ′
(b)
∣∣∣q

2 (q + 1) (q + 2)


1
q

+

 (2q + 3)
∣∣∣f ′

(a)
∣∣∣q + ∣∣∣f ′

(b)
∣∣∣q

2 (q + 1) (q + 2)


1
q

 .

Corollary 3. Suppose that the suppositions of Theorem 6 are met and p = −1, the
following inequality holds:

(2.15)

∣∣∣∣∣f (a) + f (b)

2
− ab

b− a

∫ b

a

f (x)

x2
dx

∣∣∣∣∣
≤
(
b− a

4ab

)(θ (a, b;−1, q))
1− 1

q


∣∣∣f ′

(a)
∣∣∣q + (2q + 3)

∣∣∣f ′
(b)
∣∣∣q

2 (q + 1) (q + 2)


1
q

+(θ (b, a;−1, q))
1− 1

q

 (2q + 3)
∣∣∣f ′

(a)
∣∣∣q + ∣∣∣f ′

(b)
∣∣∣q

2 (q + 1) (q + 2)


1
q

 ,

where

θ (a, b;−1, q) =

(q − 1)

(
2b

q+1
q−1 − 2

2q
q−1
(
a−1 + b−1

) 1+q
1−q

)
(q + 1) (a−1 − b−1)

.
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Theorem 7. Let f : [c, d] ⊂ R → R be a differentiable function on (c, d) and a,

b ∈ (c, d) with a < b. If f
′ ∈ L [a, b] and

∣∣∣f ′
∣∣∣q is p-convex function for q > 1, q ̸= 2

and p ∈ R\
{
0, q

q−1 ,
q

q−2

}
, then the following inequality holds

(2.16)

∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣ ≤
(
bp − ap

4p

)(
q − 1

2q − 1

)1− 1
q

×
[(

λ1 (a, b; p, q)
∣∣∣f ′

(a)
∣∣∣q + λ2 (a, b; p, q)

∣∣∣f ′
(b)
∣∣∣q) 1

q

+
(
λ1 (b, a; p, q)

∣∣∣f ′
(a)
∣∣∣q + λ2 (b, a; p, q)

∣∣∣f ′
(b)
∣∣∣q) 1

q

]
,

where

λ1 (a, b; p, q) =
4p2b2p−pq+q − p · 2

pq−q
p (ap + bp)

1−q+ q
p [(3p− pq + q) bp − (p− pq + q) ap]

2 (ap − bp)
2
(2p− pq + q) (p− pq + q)

and

λ1 (b, a; p, q) =
4pbp−pq+q [(p− pq + q) bp − (2p− pq + q) ap]

2 (ap − bp)
2
(2p− pq + q) (p− pq + q)

+
p · 2

pq−q
p (ap + bp)

1−q+ q
p [(3p− pq + q) ap − (p− pq + q) bp]

2 (ap − bp)
2
(2p− pq + q) (p− pq + q)

.

Proof. Taking absolute value on both sides of the equality in Lemma 1 and by using
the Hölder inequality, we have

(2.17)

∣∣∣∣∣f (a) + f (b)

2
− p

bp − ap

∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣ ≤
(
bp − ap

4p

)(∫ 1

0

t
q

q−1 dt

)1− 1
q

×

[(∫ 1

0

(
Mp−1

(
a, b;

1− t

2

))q ∣∣∣∣f ′
(
Mp

(
a, b;

1− t

2

))∣∣∣∣q dt)
1
q

+

(∫ 1

0

(
Mp−1

(
a, b;

1 + t

2

))q ∣∣∣∣f ′
(
Mp

(
a, b;

1 + t

2

))∣∣∣∣q dt)
1
q

]
.

Since
∣∣∣f ′
∣∣∣q, q > 1 is p-convex, we have

∫ 1

0

(
Mp−1

(
a, b;

1− t

2

))q ∣∣∣∣f ′
(
Mp

(
a, b;

1− t

2

))∣∣∣∣q dt
≤
∣∣∣f ′

(a)
∣∣∣q ∫ 1

0

(
1− t

2

)[(
1− t

2

)
ap +

(
1 + t

2

)
bp
] q

p−q

dt

+
∣∣∣f ′

(b)
∣∣∣q ∫ 1

0

(
1 + t

2

)[(
1− t

2

)
ap +

(
1 + t

2

)
bp
] q

p−q

dt.
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By making the suitable substitution, we have

(2.18)

∫ 1

0

(
1− t

2

)[(
1− t

2

)
ap +

(
1 + t

2

)
bp
] q

p−q

dt

=
4p2b2p−pq+q − p · 2

pq−q
p (ap + bp)

1−q+ q
p [(3p− pq + q) bp − (p− pq + q) ap]

2 (ap − bp)
2
(2p− pq + q) (p− pq + q)

and

(2.19)

∫ 1

0

(
1 + t

2

)[(
1− t

2

)
ap +

(
1 + t

2

)
bp
] q

p−q

dt

=
4pbp−pq+q [(p− pq + q) bp − (2p− pq + q) ap]

2 (ap − bp)
2
(2p− pq + q) (p− pq + q)

+
p · 2

pq−q
p (ap + bp)

1−q+ q
p [(3p− pq + q) ap − (p− pq + q) bp]

2 (ap − bp)
2
(2p− pq + q) (p− pq + q)

.

Using (2.18) and (2.19) in (2.17), we get the desired result. �

The following corollaries are the direct consequences of Theorem 7.

Corollary 4. According to the conditions mentioned in Theorem 7, the following
inequality holds for p = 1:

(2.20)

∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣ ≤
(
b− a

4

)(
q − 1

2q − 1

)1− 1
q

×



∣∣∣f ′

(a)
∣∣∣q + 3

∣∣∣f ′
(b)
∣∣∣q

4


1
q

+

3
∣∣∣f ′

(a)
∣∣∣q + ∣∣∣f ′

(b)
∣∣∣q

4


1
q

 .

Corollary 5. Let the assumptions of Theorem 7 be satisfied and p = −1, the
following inequality holds

(2.21)

∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x)

x2
dx

∣∣∣∣∣ ≤
(
b− a

4ab

)(
q − 1

2q − 1

)1− 1
q

×
[(

λ1 (a, b;−1, q)
∣∣∣f ′

(a)
∣∣∣q + λ2 (a, b;−1, q)

∣∣∣f ′
(b)
∣∣∣q) 1

q

+
(
λ1 (b, a;−1, q)

∣∣∣f ′
(a)
∣∣∣q + λ2 (b, a;−1, q)

∣∣∣f ′
(b)
∣∣∣q) 1

q

]
,

where

λ1 (a, b;−1, q) =
b2q−2 + 22q−2

(
a−1 + b−1

)1−2q [
(2q − 3) b−1 − (2q − 1) a−1

]
(a−1 − b−1)

2
(q − 1) (2q − 1)
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and

λ1 (b, a; p, q) =
b2q−1

[
(2q − 2) a−1 − (2q − 1) b−1

]
(a−1 − b−1)

2
(q − 1) (2q − 1)

+
22q−2

(
a−1 + b−1

)1−2q [
(2q − 1) b−1 − (2q − 3) a−1

]
(a−1 − b−1)

2
(q − 1) (2q − 1)

.

Theorem 8. Let f : [c, d] ⊂ R → R be a differentiable function on (c, d) and a,

b ∈ (c, d) with a < b. If f
′ ∈ L [a, b] and

∣∣∣f ′
∣∣∣q is p-convex function for q > 1 and

p ∈ R\ {0}, the following inequality holds

(2.22)

∣∣∣∣∣f (a) + f (b)

2
− p

bp − ap

∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣
≤
(
bp − ap

4p

)(µ (a, b; p, q))
1− 1

q


∣∣∣f ′

(a)
∣∣∣q + 3

∣∣∣f ′
(b)
∣∣∣q

4


1
q

+(µ (b, a; p, q))
1− 1

q

3
∣∣∣f ′

(a)
∣∣∣q + ∣∣∣f ′

(b)
∣∣∣q

4


1
q

 ,

where

µ (a, b; p, q)

=

(
ap + bp

2

) q(1−p)
p(q−1)

(
q − 1

2q − 1

)
2F1

(
2 +

1

q − 1
,
q (p− 1)

p (q − 1)
; 3 +

1

q − 1
; 1− 2ap

ap + bp

)
.

Proof. Taking absolute value on both sides of the equality in Lemma 1 and by using
the Hölder inequality, we have

(2.23)

∣∣∣∣∣f (a) + f (b)

2
− p

bp − ap

∫ b

a

f (x)

x1−p
dx

∣∣∣∣∣ ≤
(
bp − ap

4p

)

×

(∫ 1

0

t
q

q−1

(
Mp−1

(
a, b;

1− t

2

)) q
q−1

dt

)1− 1
q (∫ 1

0

∣∣∣∣f ′
(
Mp

(
a, b;

1− t

2

))∣∣∣∣q dt)
1
q

+

(∫ 1

0

t
q

q−1

(
Mp−1

(
a, b;

1 + t

2

)) q
q−1

dt

)1− 1
q (∫ 1

0

∣∣∣∣f ′
(
Mp

(
a, b;

1 + t

2

))∣∣∣∣q dt)
1
q

 .

Since
∣∣∣f ′
∣∣∣q, q > 1 is p-convex, we have∫ 1

0

∣∣∣∣f ′
(
Mp

(
a, b;

1− t

2

))∣∣∣∣q dt ≤ 1

4

∣∣∣f ′
(a)
∣∣∣q + 3

4

∣∣∣f ′
(b)
∣∣∣q

and ∫ 1

0

∣∣∣∣f ′
(
Mp

(
a, b;

1 + t

2

))∣∣∣∣q dt ≤ 3

4

∣∣∣f ′
(a)
∣∣∣q + 1

4

∣∣∣f ′
(b)
∣∣∣q .
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Moreover

(2.24)

∫ 1

0

t
q

q−1

(
Mp−1

(
a, b;

1− t

2

)) q
q−1

dt

=

∫ 1

0

t
q

q−1

[(
1− t

2

)
ap +

(
1 + t

2

)
bp
] q(1−p)

p(q−1)

dt

=

(
ap + bp

2

) q(1−p)
p(q−1)

(
q − 1

2q − 1

)
2F1

(
2 +

1

q − 1
,
q (p− 1)

p (q − 1)
; 3 +

1

q − 1
;−1 +

2ap

ap + bp

)
= µ (a, b; p, q)

and likewise, we also have

(2.25)

∫ 1

0

t
q

q−1

(
Mp−1

(
a, b;

1 + t

2

)) q
q−1

dt = µ (b, a; p, q) .

Combining (2.23), (2.24) and (2.25) give the required result. �

3. Comparison of the Results

In this section we compare our results with results proved in [7].
Let

E1 (a, b; p, q) =

(
bp − ap

2p

)
C

1− 1
q

1

[
C2

∣∣∣f ′
(a)
∣∣∣q + C3

∣∣∣f ′
(b)
∣∣∣q] 1

q

and

E2 (a, b; p, q) =

(
bp − ap

4p

)[
(ϑ (a, b; p))

1− 1
q

{
η1 (a, b; p)

∣∣∣f ′
(a)
∣∣∣q + η2 (a, b; p)

∣∣∣f ′
(b)
∣∣∣q} 1

q

+(ϑ (b, a; p))
1− 1

q

{
η2 (b, a; p)

∣∣∣f ′
(a)
∣∣∣q + η1 (b, a; p)

∣∣∣f ′
(b)
∣∣∣q} 1

q

]
,

where C1, C2 and C3 are defined in Theorem 2, and ϑ (a, b; p), η1 (a, b; p) and
η2 (a, b; p) are defined in Theorem 5.

Let the function f : (0,∞) → R be defined as f(x) = q
q−px

− p
q+1, q ≥ 1. Then∣∣∣f ′

(x)
∣∣∣q = x−p is p-convex function for p ≥ 1. By using the software Mathematica

the following table is obtained:

Table 1
E1 (a, b; p, q) E2 (a, b; p, q)

a = 1, b = 2, p = 2, q = 2 0.208936 0.58386

a = 2, b = 5, p = 3, q = 4 0.450634 131.391

a = 2, b = 5, p = 15, q = 15 0.640252 6.57839×1018

a = 10, b = 15, p = 10, q = 50 1.03967 4.57516×1020

It is obvious from Table 1 that E1 (a, b; p, q) gives better results than E2 (a, b; p, q).
Hence the result of Theorem 5 actually gives the improved bound.

Now we compare the results of Theorem 6 and Theorem 4. Let us denote the error
bounds in Theorem 6 and Theorem 4 by E3 (a, b; p, q) and E4 (a, b; p, q) respectively.



HERMITE-HADAMARD TYPE INEQUALITIES BY USING THE p-CONVEXITY 15

That is

E3 (a, b; p, q) =

(
bp − ap

4p

)(θ (a, b; p, q))1− 1
q


∣∣∣f ′

(a)
∣∣∣q + (2q + 3)

∣∣∣f ′
(b)
∣∣∣q

(q + 1) (q + 2)


1
q

+(θ (b, a; p, q))
1− 1

q

 (2q + 3)
∣∣∣f ′

(a)
∣∣∣q + ∣∣∣f ′

(b)
∣∣∣q

2 (q + 1) (q + 2)


1
q


and

E4 (a, b; p, q) =
bp − ap

2p
C

1
r
6

(
1

q + 1

) 1
q


∣∣∣f ′

(a)
∣∣∣q + ∣∣∣f ′

(b)
∣∣∣q

2


1
q

,

where θ (a, b; p, q) id defined in Theorem 6 and C6 is given in Theorem 4. By using
the software Mathematica, we obtain the following table

Table 2
E3 (a, b; p, q) E4 (a, b; p, q)

a = 1, b = 2, p = 3, q = 3
2 , r = 3 0.21354 0.215794

a = 1, b = 10, p = 10, q = 5
4 , r = 5 1.02222×106 1.16839×1010

a = 1, b = 10, p = 20, q = 5
4 , r = 5 5.04108×1013 5.76187×1013

a = 10, b = 15, p = 20, q = 5
4 , r = 5 3.31374×10−15 3.78463×10−15

From Table 2, it reveals that the result of Theorem 6 gives better error bound as
compared to the result of Theorem 4.

A similar comparison can be made with the other results of this paper with those
of given in [7].
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