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HERMITE-HADAMARD TYPE INEQUALITIES FOR PRODUCT
OF SYMMETRIZED CONVEX FUNCTIONS

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we obtain some Hermite-Hadamard type inequalities
for product of symmetrized convex functions. Some examples of interest are
provided as well.

1. INTRODUCTION

In [5], B. G. Pachpatte established two Hermite-Hadamard type inequalities for
product of nonnegative convex functions f, g : [a,b] — [0,00) as follows:

w2 (50)e(%50) - gV @s @+ 1 0)a )
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< 3lf@)gla)+7®)g®)]+ ¢ 1f(a)g®)+ f(b)g(a)l.

Some new integral inequalities involving two nonnegative and integrable func-
tions that are related to the Hermite-Hadamard type are also obtained by other
authors. For instance, in [6], B. G. Pachpatte proposed some Hermite-Hadamard
type inequalities involving two log-convex functions. An analogous result for s-
convex functions is established by Kirmaci et. al. in [4]. In [7], M. Z. Sarikaya
presented some integral inequalities for two h-convex functions. For recent results
and generalizations concerning Hermite-Hadamard type inequality for product of
two functions see [7] and the references given therein. For a monograph on Hermite-
Hadamard type inequalities see [2].

For a function f : [a,b] — C we consider the symmetrical transform of f on the
interval [a, b], denoted by f[a,b} or simply f, when the interval [a, b] is implicit, as
defined by

W =

A

g 1
(1.2) F@)=5lf O+ fla+b=1)], t€lab].
The anti-symmetrical transform of f on the interval [a,b] is denoted by f[awb], or

simply f and is defined by

f@)=5f ()= fla+tb=1)],t€lab].
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It is obvious that for any function f we have f +f=F
If f is convex on [a,b], then for any ¢1, t2 € [a,b] and o, 8 > 0 with a+ 8 =1
we have

F(ots + 12) = 1 [f (ats +Bt2) + f (a+ b — oty — Bt)]
= S @b+ Bt2) + f(alatb—t) + B (a+ b 1))
< 3 [0f (1) + BF (2) +f (a+b— 1) + Bf (a+ b 1)
= Salf (6) 4 f @t b=t + 381 () + f (at b )]

=af (1) + Bf (t2) ,

which shows that f is convex on [a, b].
Consider the real numbers a < b and define the function fy : [a,b] — R, fo (t) =
t3. We have [1]

A 53 , 3 ), 1 5
fo(t)._Q[t +(a+b t)}—Q(a—i—b)t “(a+0)7t+ 5 (a+b)
for any t € R.
Since the second derivative (fo) (t) =3(a+b),t € R, then fyis strictly convex

on [a,b] if “E* > 0 and strictly concave on [a,b] if %2 < 0. Therefore if a < 0 < b
with ‘%rb > 0, then we can conclude that fy is not convex on [a, b] while fo is convex
on [a,b].

We can introduce the following concept of convexity [1], see also [3] for an equiv-
alent definition.

Definition 1. We say that the function f : [a,b] — R is symmetrized convex
(concave) on the interval [a,b] if the symmetrical transform f is convex (concave)
on [a,b].

Now, if we denote by Con [a, b] the closed convex cone of convex functions defined
on [a,b] and by SCon [a,b] the class of symmetrized convex functions, then from
the above remarks we can conclude that
(1.3) Con[a,b] & SCon [a,b].

Also, if [¢,d] C [a,b] and f € SCon [a,b], then this does not imply in general that
feSConle,d.

We have the following result [1]:

Theorem 1. Assume that f : [a,b] — R is symmetrized convex and integrable on
the interval [a,b]. Then we have the Hermite-Hadamard inequalities

a b a
(1.4) f( ;rb><bia/ f(t)dtgw_

We also have [1]:

Theorem 2. Assume that f : [a,b] — R is symmetrized convex on the interval
[a,b]. Then for any x € [a,b] we have the bounds

(15) f(@f)gf@»gf”kj““.
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Corollary 1. If f : [a,b] — R is symmetrized convex and integrable on the interval
[a,b] and w : [a,b] — [0,00) is integrable on |a,b], then

(1.6) f(“‘;b> /abw(t)dtg/abw(t)f(t)dtgW/abw(t)dt.

Moreover, if w is symmetric almost everywhere on [a,b] , i.e. w (t) = w (a + b —t)
for almost every t € [a,b], then

(1.7) f(a;b> /abw(t)dt</abw(t)f(t)dt<W/ubw(t)dt.

Remark 1. The inequality (1.7) was obtained by L. Fejér in 1906 for convex func-
tions f and symmetric weights w. It has been shown now that this inequality remains
valid for the larger class of symmetrized convex functions f on the interval [a,b].

For other results, see [1] and [3].

Motivated by the above results, in this paper we establish some Hermite-Hadamard
type inequalities for product of symmetrized convex functions. Some examples of
interest are provided as well.

2. INEQUALITIES FOR PRODUCT OF SYMMETRIZED CONVEX FUNCTIONS

The following Hermite-Hadamard type inequalities for the product of two func-
tions hold:

Theorem 3. Assume that both f, g : [a,b] — R are symmetrized convex or sym-
metrized concave and integrable on the interval [a,b]. Then we have

2.1) bia/abf(t)é(t)dwrf(a;b>g<a;b>

a+b\ 1 b a+b\ 1 b
Zf< 5 )b_a/ag(t)dt+g< 5 )b_a/af(t)dt,

b
(2.2) bia/f(t)g(t)dt+f(a);rf(b)g(a);rg(b)
b b
Zf(a)gf(b)bfa/9<t>df+g(“)§g(b)bia Iy

b b
(2.3) fla) £ /() 1a/g(t)dt+g(a+b) ! f)dt

2 h— : o
b
- bia u f(t)g(t)dt+f(a);f(b)g (a;—b>7
and
b b
(2.4) g(a);g(b)bi f(t)dt+f<a;b>bia/g(t)dt
b
- bia g f @) g(t)dt+ g(a)+g(b)f<a_2|_b>
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Proof. Assume that both of them are symmetrized convex, then by (1.5) we have

(o (=5) -+ (459) =

for any ¢ € [a,b].
This is equivalent to

25 Foao+ (5 )a(50) 27 (50 )s0+a (5 ) Fo

for any t € [a,b].

Taking the integral mean ;— f in (2.5) we get

[ osones (45)0(5)

a+b 1 b a+b 1 b
> -
_f< 5 >b_a/ag(t)dt+g< 5 )b_a/af(t)dt
and since

b b b
s [awa = i [rom [ rave-oal
1 b
= b_a/af(t)dt

Also, both of them are symmetrized convex, then by (1.5) we have

(F5 50 j) (25 ) =0

(2.6)

2 2

for any t € [a, b], which by the same procedure produces (2.2).
Finally, if both of them are symmetrized convex, then by (1.5) we have

(32 ) fro-»(252) =

for any ¢ € [a,b], which is equivalent to

HOLIO )0 (“50) F0 2 00 Fio+ KOO, (210)

for any t € [a,b].
Taking the integral mean ﬁ f: in this inequality, we get the desired result
(2.3).

The inequality (2.4) follows from (2.3) by replacing f with g. O

We notice that, by the inclusion (1.3), the inequalities (2.1)-(2.4) hold a fortiori
for functions that are both convex or concave on [a,b]. Also if the functions have
opposite symmetrized convexities, then the inequality (2.1)-(2.4) hold with the
reverse sign 7 < 7.
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Remark 2. Observe that

(2.7) f(t)g(t)dt = f@)+flat+b=0]lg(t)+g(at+b-1)dt

b
[r0s@+1@ro-0g0)
+fW)gla+b—t)+ fla+b—t)gla+b—1t)]dt

b b
:iV f(t)g(t)dt+/ fla+b—1t)g(t)dt
+/a fla+b—1t)g dt+/ f(t ]
b
:;l/ f(t)g(t)dt—&—/a f(a+b—t)g(t>dt]
b

since, by the change of variable s =a+b—t, t € [a,b] we have

/abf(a+b_t t)dt = /f gla+b—s)d
/abf(a+b—t)g(a+b—t)dt:/abf(s)g(s)ds

From (2.1)-(2.4) we then have

and

b
> max {Hmid (fag; a, b) s Hirg (f’g; a, b)}

where

(2.9) Hyir (f,9;a,b)

- f(@;f(b)b1a/abg(t)dt+g<a—2|_b) bla/:f(t)dt
f(a)+f(b)g<a+b>,

2 2

(210) Hmid (f’ g; a, b)
b b
5:f<a42_b>bia/ g(t)dt+g(a_2|_b>bia/ f(t)dt
a+b a+b
-r(557)0(5)
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and
(211) Htm(f,.g;a’b)
_f@+fd) 1 /bg(t)dt+g(a)+g(b) ! /bf(t)dt
2 b-@ o 2 b—a a
_fla)+f()gla)+g(b)
2 2 '

The following particular case when one of the functions is symmetrical on [a, b]
holds:

Corollary 2. Assume that f : [a,b] — R is convex (concave) and symmetrical,
ie. f(a+b—1t)=f(t) foranyt € [a,b]. If g : [a,b] — R is symmetrized convex
(symmetrized concave) and integrable on the interval [a,b], then

(2.12) mm{H,W f,9:0,6) , Huix (9, f50,0)}

> /f
2maX{Hmzd(f7gva7b)7HtTa(f7g;a7b)}'

This inequality may be used to provide many interesting weighted inequalities
in the case that when the weight is symmetrical.

Remark 3. We also observe that the inequalities (2.1)-(2.4) can be written in an
equivalent form as

e o [rwart [ewa- [ Foswa
[ /f t) dt — (a+b> [bia/abg(t)dt_g<a42-b>
iy 3 [ dt—/ a2 [ F
<[f(a)2 /f dtH );g@ bia/abg(t)dt]
(2.15) b_la/abf(t)dtb_la/ab t_i/f
>—V(a)§f(b)—bfa/a f(t)dt] [b_/ g(t)dt_g<a;b)

b b b
ia/ rds=— |- [ Fogwa

[ /f i <a+b> [9(“)‘2“9(5)_61(1/;9(75)&].

The case when the functions are positive provides some simpler inequalities as
follows:

and

(2.16)
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Theorem 4. Assume that both f, g : [a,b] — [0,00) are symmetrized convez (sym-
metrized concave) and integrable on the interval [a,b]. Then we have

(2.17) f(“;b)g(“‘;b)s(z>f<“+b)bfa[lbg<t>dt
TR

b
<) o o )bia/ga)dt
_|_
2

oy F(@) +f () gla)+g(b)
2

a+b 1 b

: )b_a/af(t)dt
1 b

_zb_a/ft

< () 2Lt @ b_a/f
f(@) + () g(a) +90)

<z 22 !

Proof. It f, g : [a,b] — (0, c0) are symmetrized convex, then by (1.5) we have
(2.19) 07 (*50) < fy < KOO

and

(2.20) OSQ(a;b)Sé(t)Sg(a);g(l)),

for any ¢ € [a,b].
If we multiply (2.19) by g (t), then we get

0<7(*37) a0 < Fwaw < T 0.

for any ¢ € [a,b].
If we take the integral mean in this inequality, then we get

0§f<“;b>b_1a/ dtsbf/f ) g (t

b
< f(a);f(b)bia/a §(t)dt,
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Since, by (1.4) we have

g(a+b) <! /bg(t)dts g(@)+g(b)

2 b—a 2
then
a a a b
(2.22) f( ;rb>g( ;rb>§f< ;b>bia/g(t)dt
and
(2.23) f(a>;rf(b)b1a/bg(t)dt<f(a);rf(b)g(a);rg(b).

By utilising (2.21)-(2.23) we get (2.17).
The inequality (2.18) follows in a similar way by making use of (2.20) and a
similar procedure. The details are omitted. (Il

3. SOME EXAMPLES

Consider the symmetric convex function f : [a,b] — R defined by f(t) =

a —a a b —a
[t — «b|. Then f(a) = f(b) = 5%, f (%) = 0, and X [ f(t)dt = 25
Therefore, for ¢ (t) =t, t € [a,b], we have

a+b I b—a [a+b
Hmix<’£_7g7aab>_2/ag(t)dt_ 4 g( 2 )7

2
Huix (g, g—a—;b’; ,b> ZMU)—@),

a+b a+b\b—a
Hmid(“€2'7gaaab)g( 9 ) 4

Hia ()e—“;b ,g;a,b) :;/abg(t)dt—g(a);g(b)(b—a).

From (2.12) we get

b —a a a
(3.1) min{;/a g(t)dt—b4 g< ;b>,g( )gg(b) (b—a)}
b
Zbia/a ¢ a;b‘g(t)dt

a —a b a
>max{g( ;b> bT,%/a g(t)dt—g();_g(b)(b—a)},

provided that g : [a,b] — R is symmetrized convex and integrable on [a,b].
If h is a convex function on [a,b], then the following result that is known in
literature as Bullen’s inequality holds:

1 b 1 a+b h(a)+ h(b)
< — .
b_@/@h(t)dt_Q{h< . >+ 5
We observe that, if ¢ : [a,b] — R is convex on [a, b], then

b —a a a
%/ag(t)dtfb4 g< ;b>§g()§g(b)(ba),

and
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which gives that

b —a a a
min{;/@g(t)dt_b4 g( ‘;b>,9();g(b)(b—a)}

_%(b—a) [bia/abg(t)dt;g<a;rb>

—a b a
o(57) T2 [ a1 ),

Also

2
which gives that

maX{g(a;b) b;a,;/abg(t)dt—m)gg(b)(b—a)}:g(“;b) b;“.

Therefore, if ¢ : [a,b] — R is convex on [a,b], then

(3:2) %(b—a) [b_la/abg(t)dt—;g(a;b)

1 b a+b b—a a+b
> — >
_b—a/at 2‘“)‘“ 49(2)
This inequality is equivalent to
1 1t a+b
. “(b—a)|— t) dt —
(33 S (b a)[b_a/ago s(“5°)
1 (" a+b b—a (a+b
> — — >
_b_a/a t—— ’g(t)dt ) g( 5 >_0,

where ¢ : [a,b] — R is convex on [a, b].
Consider the symmetric convex function f : [a,b] — R defined by f(t) =
2

(t—2)*. Then f(a) = f(b) = Y52, f(22) = 0 and ;L [ (1 — =42)* dt =

a
(bzg ) Therefore

Hunix ((e— a;b>2a9;aab) =%(b—a) l;/ﬂbg(t)dt—;(b—a)g(a;b)

)

and

2 b —a
%((ﬁ—ajb) 7g;a,b>=i<b—a> V g0y~ [g<a>+g<b>]]




10 S.S. DRAGOMIRY2

From (2.12) we get

(3.4) ;(b—a)min{;/g(t)dt—;(b_a)g(a;—b>7b1—2a[g(a)+g(b)]}

1 b a+b 2
> t— t) dt
b_g/@( 5 )g()

—a a b —a
zi(b—amax{bg s(“52) [ a0a-"3 [g<a>+g<b>1},

provided that g : [a,b] — R is symmetrized convex and integrable on [a, b].
Consider the symmetric concave function f : [a,b] — R defined by f(t) =

(b—1)(t—a). Then f (a) = £ (b) = 0, £ (42) = ©=2 and 2 [* (b—t) (t — a) dt =
%. Therefore

Huie (9,0 — ) (€= a)30,0) = 7 (b — ) V g (0)dt— 2 (b0 [g<a>+g<b>]],

b
Haia (0= 0 (€= ) g:0.0) = (b= 0) V g0t =5 06— (57

and

Hua (b~ €) (€~ a)g:0.0) = 2= g.(a) + 9 ().
Then by (2.12) we have

(3.5) % (b—a)

xmax{/a g(t)dt—;(b—a)g<a;—b>7b;a[9(a)+9(b)]}v

provided that g : [a,b] — R is symmetrized concave and integrable on [a, b] .
Now, consider the positive, convex and symmetric function f () = exp [k |t — “T‘H’ H ,

k > 0. Then, by (2.17), we have for any integrable symmetrized convex function
g:]a,b] CR —[0,00) that

(3.6) g(a;b) < bia/abg(t)dtgb_la/abexp {k‘t“;bug(t)dt
§%exp [k(b;aﬂ bla/abg(t)dtgéexp [k(b;aﬂ g(a);g(b).
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