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INTEGRAL INEQUALITIES FOR ASYMMETRIZED
SYNCHRONOUS FUNCTIONS

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we establish some integral inequalities for the prod-
uct of asymmetrized synchronous/asynchronous functions. Some examples for
integrals of monotonic functions, including power, logarithmic and sin func-
tions are also provided.

1. INTRODUCTION

For a function f : [a,b] — C we consider the symmetrical transform of f on the
interval [a,b] , denoted by f|, 4 or simply f, when the interval [a, b] is implicit, as
defined by

o 1

(1.1) f(t)::§[f(t)+f(a+b—t)],te[a,b].

The anti-symmetrical transform of f on the interval [a,b] is denoted by f[a,b], or
simply f and is defined by
~ 1

f@ =5f@®) - flatb=-1),t€lab.

It is obvious that for any function f we have f +f=f
If f is convex on [a,b], then for any t1, t2 € [a,b] and o, 8 > 0 with o+ 8 =1

we have
f(aty + Bty) = % [f (aty + Bta) + f (a+ b — aty = Bts)]
= S 1 (@t + Bt2) + f(alatb—t) + B(a+b 1))
< [0 (1) + BF (12) + 0 (a+b— 1) + Bf (a+ b 1)
= Salf () fatb— )]+ 5B (8) + S (a+0—12)
= af (0)+ B (1),

which shows that f is convex on [a,b] .
Consider the real numbers a < b and define the function fy : [a,b] — R, fo () =
t3. We have [6]

fo (@) ::% t3+(a+b—t)3} :g(a+b)t2—g(a+b)2t+%(a+b)3
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for any t € R.
o\ v
Since the second derivative (fo) (t) =3(a+Db),t €R,then fyis strictly convex

on [a,b] if “E* > 0 and strictly concave on [a,b] if %2 < 0. Therefore if a < 0 < b
with ‘%Lb > 0, then we can conclude that fy is not convex on [a, b] while fo is convex
on [a,b].

We can introduce the following concept of convexity [6], see also [9] for an equiv-
alent definition.

Definition 1. We say that the function f : [a,b] — R is symmetrized convex
(concave) on the interval [a,b] if the symmetrical transform f is convex (concave)
on la,b].

Now, if we denote by Con [a, b] the closed convex cone of convex functions defined
on [a, b] and by SCon [a, b] the closed convex cone of symmetrized convex functions,
then from the above remarks we can conclude that

(1.2) Con[a,b] & SCon [a,b].
Also, if [¢,d] C [a,b] and f € SCon|a,b], then this does not imply in general that
feSConle,d.

We have the following result [6], [9] :

Theorem 1. Assume that f : [a,b] — R is symmetrized convex and integrable on
the interval [a,b]. Then we have the Hermite-Hadamard inequalities

b
(1.3) f(“;b>gia/ f(t)dtgw'

We also have [6]:

Theorem 2. Assume that f : [a,b] — R is symmetrized convex on the interval
[a,b]. Then for any x € [a,b] we have the bounds

(1.4 1(50) s fw < 0TS0,

For a monograph on Hermite-Hadamard type inequalities see [8].
In a similar way, we can introduce the following concept as well:

Definition 2. We say that the function f : [a,b] — R is asymmetrized monotonic
nondecreasing (nonincreasing) on the interval [a,b] if the anti-symmetrical trans-
form f is monotonic nondecreasing (nonincreasing) on the interval [a,b].

If f is monotonic nondecreasing on [a, b], then for any ¢y, t3 € [a,b] we have

F(2) = F (1) = 31 (12) = f @+ b= 12)] = 51 () = f (a+ b= 1)
= S )~ F 0]+ G [fatb—t)~ fa+b— 1)

2
2 07
which shows that f : [a,b] — R is asymmetrized monotonic nondecreasing on the
interval [a,b] .
Consider the real numbers a < b and define the function fy : [a,b] — R, fo () =
t2. We have

fo (@) ::% t27(a+b—t)2} :(aer)tf%(aer)Q
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N/
and ( f0> (t) = a + b, therefore f : [a,b] — R is asymmetrized monotonic nonde-

creasing (nonincreasing) on the interval [a, b] provided “£% > 0 (< 0) . So, if we take
a < 0 < b with “T'H’ > 0, then f is asymmetrized monotonic nondecreasing on [a, b]
but not monotonic nondecreasing on [a, b] .

If we denote by M~ [a,b] the closed convex cone of monotonic nondecreasing
functions defined on [a,b] and by AM~ [a,b] the closed convex cone of asym-
metrized monotonic nondecreasing functions, then from the above remarks we can
conclude that

(1.5) M7 [a,b] ¢ AM” [a,b].

Also, if [¢,d] C [a,b] and f € AM~ [a,b], then this does not imply in general that
feAM” [e,d].

We recall that the pair of functions (f, g) defined on [a, b] are called synchronous
(asynchronous) on [a,b] if

(1.6) (fF@) = f()(g(#) —g(s) = (<)0

for any t, s € [a,b]. It is clear that if both functions (f,g) are monotonic non-
decreasing (nonincreasing) on [a, b] then they are synchronous on [a,b]. There are
also functions that change monotonicity on [a,b], but as a pair they are still syn-
chronous. For instance if a < 0 < b and f,g: [a,b] — R, f(t) =t and g (t) = t*,
then

(F() = F$) () =g(s) = (2= 2) (t = s*) = (= )" (P +5%) >0
for any ¢, s € [a,b], which show that (f,g) is synchronous.

Definition 3. We say that the pair of functions (f,g) defined on [a,b] is called
asymmetrized synchronous (asynchronous) on [a,b] if the pair of transforms (f, g

is synchronous (asynchronous) on [a,b], namely

(1.7) (F - 7)) @0 -3) = ()0
for any t,s € [a,].

It is clear that if f, g are asymmetrized monotonic nondecreasing (nonincreasing)
on [a,b] then they are asymmetrized synchronous on [a, b] .

One of the most important results for synchronous (asynchronous) and integrable
functions f, g on [a,b] is the well-known Cebysev’s inequality:

1

b b b
w8 o [ rwswdz (0 [ fwd [ g0

For integral inequalities of Cebysev’s type, see [1]-[5], [7], [10]-[18] and the refer-
ences therein.

Motivated by the above results, we establish in this paper some inequalities for
asymmetrized synchronous (asynchronous) functions on [a, b]. Some examples for
power, logarithm and sin functions are provided as well.
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2. MAIN RESULTS
We have the following result:

Theorem 3. Assume that f, g are asymmetrized synchronous (asynchronous) and
integrable functions on [a,b]. Then

(2.1) / F)gt)dt > (<)o.

Proof. We consider only the case of symmetrized synchronous and integrable func-
tions. i
1. By the Cebysev’s inequality (1.8) for (f,g) we get

_a/f )g(t dt>7/f dti/g(t)dt,
/abf(t)dtzi Vabf(t)dt—/abf(wrb—t)dt] =

since, by the change of variable s =a+b—t, t € [a,}],

/abf(a—kb—t)dt:/abf(s)ds

—fla+b=1)lgt) —gla+b-1)dt

(2.2)

‘We have

Also,

o
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g)+ fla+b—t)gla+b—1t)]dt

~
—~

o~
~—

ST~ T

[ e F o SN UG G [

[f#)gla+b—t)+ flatb—1)g(t)]dt

T

b

b
f(t)g(t)dt+/ f(a+b—t)g(a+b—t)dt]

T~

RNy

f®g (a—l—b—tdt—l—/fa+b—t) ()dt]

£ dt — /f +h—t) (t)dt)

| —
m\@

N —

T/
\

= [ fF(t)g(t)dt

a

since, by the change of variable s = a4+ b —t, t € [a,b], we have

/fa+b—t (a+b—t)dt = /f

b b
/f(t)g(a+b—t)dt:/ fla+b—1t)g(t)dt.

and
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By (2.2) we then get the desired result (2.1).

2. An alternative proof is as follows. Since ( 1, §) are synchronous, then

Fo-f(50)|Jiw-a (57| 20
for any t € [a, b], which is equivalent to

(2.4) f(t)g(t) >0 for any t € [a,b]

or to

[F (&) = fla+b—)][g(t) —g(a+b—1)] =0 for any ¢ € [a,8].
This is a property of interest for asymmetrized synchronous functions.

If we integrate the inequality (2.4) and use the identity (2.3) we get the desired
result (2.1). O

Remark 1. The inequality (2.1) can be written in an equivalent form as

b b
/f(t)g(t)dtZ/ fla+b—t)g(t)dt,

b b
/f(t)g(t)dtz/ Ft)g(t)dt.

Theorem 4. If both f, g are asymmetrized monotonic nondecreasing (nonincreas-
ing) and integrable functions on [a,b], then

b
25 Ol -9l 2 [ Fogwazo,

and
b b
(26) ;min{lf(b)—f(a)Ib_IG/ 9(0ldtlg® - g (@l [ If(t)ldt}

1
b—a

b
> / f)g(t)dt=0.
a
Proof. Assume that both f, g are asymmetrized monotonic nondecreasing and in-
tegrable functions on [a, b], then they are asymmetrized synchronous and by (2.1)
we get the second inequality in (2.5).
We also have

flay<f) <@
for any t € [a,b], namely
SO~ F@] <510~ Flatb—0] < L [F ()~ (a)],

for any ¢ € [a,b], which implies that 3 [f (b) — f (a)] > 0 and

(27) S0~ flatb=nl< 1/ ®) - (a)]

for any t € [a,b].

Similarly, we have £ [g (b) — g (a)] > 0 and
(28) Sl9() —g(atb—0] < Lo ) —g(a)
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for any ¢ € [a,b].

If we multiply (2.7) and (2.8), then we get
(29) LU0~ Fatb=0]lo() —g(a+b—1)]
= (IO~ fatb=D]lg (1) ~ g (atb-1)]
<110 - F@]lg®) - g (a)

for any t € [a,b].
Since

b b
o< [ Fog@a= [ 10 - F@rb-olls®) g+t

<O =T @la ) - g @](b—0),

where for the last inequality we used (2.9), hence we get the first inequality in (2.5).
Also, we observe that

b
og/fmgwwz

and since

Fogw|a<iie /m )t

b b
/f@WW=/ﬂM@%
then also
b
/f Vit < 3l -9 (@) [ 1f @)l
and the inequality (2.6) is also proved ([l

Remark 2. If the functions f, g : [a,b] — R are either both of them nonincreasing
or nondecreasing on |a,b], then they are integrable and we have the inequalities

(2.5) and (2.6).
We have the following refinement of the inequality in (2.1).

Theorem 5. Assume that f, g are asymmetrized synchronous and integrable func-
tions on [a,b]. Then

LT

1 b
>
“|lb—a J,

(2.10)

> 0.

b b
<m<nm—ﬁ?— o) deg— [ la o)l de

Proof. By the continuity property of modulus, we have
Fo-F@]am-a61=|[FfO-F6] a0 -56)

=7 - F©)|l3® -0

> ||F |- |7 @)||1aw -

~|([Fe|-|Fe|) a® -0
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for any t,s € [a,b].
Taking the double integral mean on |[a, b]2 and using the properties of the integral
versus the modulus, we have

(211) bf{f/$Vw—f@me 3 (5)] deds

(b—a // ‘f ‘*’f D t)] =19 (s)[) dtds| .

Since, by Korkine’s identity we have

(b—a)’ // f ~f(s) H) 3 (s)] dtds
b b
Zle—a/a f(t)é(t)dt—bia/a f(t)dtb%/ g(t)dt]
b
-2 [iwina

wj@%[LYVWWWﬂMygm—mwmﬁ@
o [it [ el [ rolagt [ aora)

hence by (2.11) we have

b
bia/fMgww

[ rolaora

and

dt—/ 1G(1)] dt|

By using the identity (2.3) we get the desired result (2.10). O

Remark 3. We remark that, if (f, g) are synchronous, then by a similar argument

to the one above for g « g we have

[

1
b—a

(2.12)

>

B b
Folag= [lawna o

abﬂMmewwfaAb

Also, since
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then if we assume that (f,g) are synchronous we also have

(2.13) i/bf(t)gtdt
‘/ I |dt7—/ I \dt—/ o

Now, if f and g have the same monotonicity, then (f, §)7 (ﬁg), (f,q) are

synchronous and we have
¢ (f.9)]-lc a1} > 0.

—a/f dt>max{‘0( >,
where
C (h,?) : 7/ |h (¢ \dt—i/ |h (¢ |dt7/ |€(t)] dt

provided h and ¢ are integrable on [a,b] .

> 0.

(2.14)

[
We say that the function h : [a,b] — R is H-r-Hélder continuous with the
constant H > 0 and power r € (0, 1] if

(2.15) |h(t) —h(s)| < H|t—s|"
for any ¢, s € [a,b]. If r =1 we call that h is L-Lipschitzian when H = L > 0.

Theorem 6. Assume that f, g are asymmetrized synchronous with f is Hy-r1-
Hélder continuous and g is Ho-ro-Holder continuous on [a,b]. Then

1
4(r1+ra+1)
If particular, if f is Ly-Lipschitzian and g is Lo-Lipschitzian, then

s [ Fosnaso

b b
og/ f<t>g<t>dt=1/ £ (&)~ f(a+b—1)[g(t)—ga+b—1)dt

(2.16) HiHy(b—a)" T > —— / f(t)gt)dt>o0.

“b—a

1
LyLy (b —

(2.17) 3

Proof. From (2.3) we have

/| Fla+b—D][g(t) —g(a+b—b)dt
. 27'1-{-7*2 b b T1+72
S*Hng/ |2t—a—b| 1+2dt: H1H2/ t—a+ dt
4 a 4 ; 2
- _g\T1+r2+1
2 b a+b\" " 2 (%52)
= ——HH, t— dt=——  H/Hy~271
227’!‘1*7“2 1 2/a+b< 2 ) 2277'17r2 1442 T‘1+7“2+]_
1

- - H.H-(b—a r1+ra+1
4(7’1+T2+1) ! 2( )

which is equivalent to the desired result (2.16). (]

)
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3. SOME EXAMPLES

Consider the identity function ¢ : [a, b] — R defined by ¢ (¢) = ¢. If g is monotonic
nondecreasing, then by (2.5) and (2.14) we have

b a
B j0-abo)-g@lz 2 [ (-5 ) g0

b—a /,

> max {|Cr(9)];|C2e (9)],1Cs.0(9)[} = 0,

1 b a+b

CLg(g).fb_a/a (t— 5 ) ‘t—/ |g (t)| dt,
10 +b

C’2,e(9)3=b_a/ (1= ) o] a3 [1o@na

Cue (g /|tg |dt——/ |t\dt—/ 13(0)] dt.

If g is monotonic nondecreasmg and L-Lipschitzian on [a,b], then by (2.17) we
get

where

and

1 o 17 a+b
= _ > — > .
Gl = | <t ! )g(t)dt (= 0)

Consider the power function f : [a,b] C (0,00) = R, f(t) =t withp > 0.If ¢
is monotonic nondecreasing, then by (2.5) and (2.14) we get

1 1 [Pt —(a+b—1t)?

. ~ (b —a? - >

33 -0 @z [T o
> max {|C1p (9)],1C2, (9)],|Csp (9)]} = 0,

(3.2)

where
o=y [ | o
Lp\d b—a /, 2 g
1 Y1t — (a+b—
)| dt,
R L [aw
1 (PP —(a+b—1t)
= t)| dt
Capt0) = 5= | : g()
T [P1tP—(a+b—
— )| dt
— /a 5 / lg (t)]
and . ) .
bPt —a]”"r
= P g dt
e = [ wiaoa- Lo [
If ¢ is monotonic nondecreasing and L- szschztzzan on [a, b], then by (2.17) we get
) wlifp>1
2
(3.4) EL (b—a)
aP~1if p e (0,1)

> bla/: =g ar o).
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Consider the function f : [a,b] C (0,00) — R, f =1In. If g is monotonic nonde-
creasing, then by (2.5) and (2.14) we have

b
35 (L) -g@l 2 55t [0 (o)
> max {|C1.n ()] 1o (9)]|Cam (9)]} 2 0,

1 b t 1/2
Cl,ln (g) = b— a’/a In <a_|_b_t)

1 b t 1/2
- 1
b—a/a n<a+b—t)

1t 10 10
Com (9) == m/ |In ¢ |§(t)\dt—m/ |1nt|dtm/ g ()| dt

1 b t 1/2
n(g) = In{———
Crn (9) b—a/a n(a—i—b—t)

I t e
— | .
bfa/a n<a+bt) dtbfa/a lg (1)l dt

If ¢ is monotonic nondecreasing and L-Lipschitzian on [a,b], then by (2.17) we
get

where

|9 (8)] dt

1 b
dt g (t)|dt
= | el

and

lg (8)] dt

b
(3.6) éL(b—a)z > bia/ In <a+tb_t>g(t)dt (>0).

Consider the function f : [a,b] C [fg, g} — R, f = sin. If ¢ is monotonic

nondecreasing, then by (2.5) we have

a0 g () s -g@z s [ (- ) swazo

If ¢ is monotonic nondecreasing and L-Lipschitzian on [a,b], then by (2.17) we
get

1 , Cosbif—g§a<b§0,
(3.8) EL(b—a) X max{.cosa,COSb} if -5 <a<0<b< 3,
cosaif 0<a<b< g

1 a+b) [° . a+b
> 3 3 — >0).
_b—aCOb( 5 )/abln<t ) )g(t)dt (>0)
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