INTEGRAL INEQUALITIES FOR ASYMMETRIZED SYNCHRONOUS FUNCTIONS

S. S. DRAGOMIR^{1,2}

ABSTRACT. In this paper we establish some integral inequalities for the product of asymmetrized synchronous/asynchronous functions. Some examples for integrals of monotonic functions, including power, logarithmic and sin functions are also provided.

1. INTRODUCTION

For a function $f : [a, b] \to \mathbb{C}$ we consider the symmetrical transform of f on the interval [a, b], denoted by $\check{f}_{[a,b]}$ or simply \check{f} , when the interval [a, b] is implicit, as defined by

(1.1)
$$\breve{f}(t) := \frac{1}{2} \left[f(t) + f(a+b-t) \right], \ t \in [a,b].$$

The anti-symmetrical transform of f on the interval [a, b] is denoted by $\tilde{f}_{[a,b]}$, or simply \tilde{f} and is defined by

$$\tilde{f}\left(t\right) := \frac{1}{2} \left[f\left(t\right) - f\left(a + b - t\right)\right], t \in [a, b].$$

It is obvious that for any function f we have $\check{f} + \tilde{f} = f$.

If f is convex on [a, b], then for any $t_1, t_2 \in [a, b]$ and $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$ we have

$$\begin{split} \check{f}(\alpha t_1 + \beta t_2) &= \frac{1}{2} \left[f\left(\alpha t_1 + \beta t_2\right) + f\left(a + b - \alpha t_1 - \beta t_2\right) \right] \\ &= \frac{1}{2} \left[f\left(\alpha t_1 + \beta t_2\right) + f\left(\alpha \left(a + b - t_1\right) + \beta \left(a + b - t_2\right)\right) \right] \\ &\leq \frac{1}{2} \left[\alpha f\left(t_1\right) + \beta f\left(t_2\right) + \alpha f\left(a + b - t_1\right) + \beta f\left(a + b - t_2\right) \right] \\ &= \frac{1}{2} \alpha \left[f\left(t_1\right) + f\left(a + b - t_1\right) \right] + \frac{1}{2} \beta \left[f\left(t_2\right) + f\left(a + b - t_2\right) \right] \\ &= \alpha \check{f}(t_1) + \beta \check{f}(t_2) \,, \end{split}$$

which shows that \check{f} is convex on [a, b].

Consider the real numbers a < b and define the function $f_0 : [a, b] \to \mathbb{R}$, $f_0(t) = t^3$. We have [6]

$$\check{f}_{0}(t) := \frac{1}{2} \left[t^{3} + (a+b-t)^{3} \right] = \frac{3}{2} (a+b) t^{2} - \frac{3}{2} (a+b)^{2} t + \frac{1}{2} (a+b)^{3}$$

RGMIA Res. Rep. Coll. 20 (2017), Art. 9, 11 pp.

¹⁹⁹¹ Mathematics Subject Classification. 26D15; 25D10.

 $Key\ words\ and\ phrases.$ Monotonic functions, Synchronous functions, Čebyšev's inequality, Integral inequalities.

for any $t \in \mathbb{R}$.

Since the second derivative $(\check{f}_0)''(t) = 3(a+b), t \in \mathbb{R}$, then \check{f}_0 is strictly convex on [a, b] if $\frac{a+b}{2} > 0$ and strictly concave on [a, b] if $\frac{a+b}{2} < 0$. Therefore if a < 0 < bwith $\frac{a+b}{2} > 0$, then we can conclude that f_0 is not convex on [a, b] while \check{f}_0 is convex on [a, b].

We can introduce the following concept of convexity [6], see also [9] for an equivalent definition.

Definition 1. We say that the function $f : [a,b] \to \mathbb{R}$ is symmetrized convex (concave) on the interval [a,b] if the symmetrical transform \check{f} is convex (concave) on [a,b].

Now, if we denote by Con[a, b] the closed convex cone of convex functions defined on [a, b] and by SCon[a, b] the closed convex cone of symmetrized convex functions, then from the above remarks we can conclude that

Also, if $[c, d] \subset [a, b]$ and $f \in SCon[a, b]$, then this does not imply in general that $f \in SCon[c, d]$.

We have the following result [6], [9]:

Theorem 1. Assume that $f : [a,b] \to \mathbb{R}$ is symmetrized convex and integrable on the interval [a,b]. Then we have the Hermite-Hadamard inequalities

(1.3)
$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f\left(t\right) dt \le \frac{f\left(a\right) + f\left(b\right)}{2}$$

We also have [6]:

 \tilde{f}

Theorem 2. Assume that $f : [a,b] \to \mathbb{R}$ is symmetrized convex on the interval [a,b]. Then for any $x \in [a,b]$ we have the bounds

(1.4)
$$f\left(\frac{a+b}{2}\right) \le \check{f}(x) \le \frac{f(a)+f(b)}{2}$$

For a monograph on Hermite-Hadamard type inequalities see [8].

In a similar way, we can introduce the following concept as well:

Definition 2. We say that the function $f : [a, b] \to \mathbb{R}$ is asymmetrized monotonic nondecreasing (nonincreasing) on the interval [a, b] if the anti-symmetrical transform \tilde{f} is monotonic nondecreasing (nonincreasing) on the interval [a, b].

If f is monotonic nondecreasing on [a, b], then for any $t_1, t_2 \in [a, b]$ we have

$$(t_2) - \tilde{f}(t_1) = \frac{1}{2} [f(t_2) - f(a+b-t_2)] - \frac{1}{2} [f(t_1) - f(a+b-t_1)]$$

= $\frac{1}{2} [f(t_2) - f(t_1)] + \frac{1}{2} [f(a+b-t_1) - f(a+b-t_2)]$
 $\ge 0,$

which shows that $f : [a, b] \to \mathbb{R}$ is asymmetrized monotonic nondecreasing on the interval [a, b].

Consider the real numbers a < b and define the function $f_0 : [a, b] \to \mathbb{R}, f_0(t) = t^2$. We have

$$\tilde{f}_0(t) := \frac{1}{2} \left[t^2 - (a+b-t)^2 \right] = (a+b)t - \frac{1}{2}(a+b)^2$$

 $\mathbf{2}$

3

and $(\tilde{f}_0)'(t) = a + b$, therefore $f : [a, b] \to \mathbb{R}$ is asymmetrized monotonic nondecreasing (nonincreasing) on the interval [a, b] provided $\frac{a+b}{2} > 0$ (< 0). So, if we take a < 0 < b with $\frac{a+b}{2} > 0$, then f is asymmetrized monotonic nondecreasing on [a, b] but not monotonic nondecreasing on [a, b].

If we denote by $\mathcal{M}^{\nearrow}[a, b]$ the closed convex cone of monotonic nondecreasing functions defined on [a, b] and by $\mathcal{AM}^{\nearrow}[a, b]$ the closed convex cone of asymmetrized monotonic nondecreasing functions, then from the above remarks we can conclude that

(1.5)
$$\mathcal{M}^{\nearrow}[a,b] \subsetneq \mathcal{A}\mathcal{M}^{\checkmark}[a,b]$$

Also, if $[c, d] \subset [a, b]$ and $f \in \mathcal{AM}^{\nearrow}[a, b]$, then this does not imply in general that $f \in \mathcal{AM}^{\nearrow}[c, d]$.

We recall that the pair of functions (f, g) defined on [a, b] are called *synchronous* (asynchronous) on [a, b] if

(1.6)
$$(f(t) - f(s))(g(t) - g(s)) \ge (\le) 0$$

for any $t, s \in [a, b]$. It is clear that if both functions (f, g) are monotonic nondecreasing (nonincreasing) on [a, b] then they are synchronous on [a, b]. There are also functions that change monotonicity on [a, b], but as a pair they are still synchronous. For instance if a < 0 < b and $f, g : [a, b] \to \mathbb{R}$, $f(t) = t^2$ and $g(t) = t^4$, then

$$(f(t) - f(s))(g(t) - g(s)) = (t^2 - s^2)(t^4 - s^4) = (t^2 - s^2)^2(t^2 + s^2) \ge 0$$

for any $t, s \in [a, b]$, which show that (f, g) is synchronous.

Definition 3. We say that the pair of functions (f,g) defined on [a,b] is called asymmetrized synchronous (asynchronous) on [a,b] if the pair of transforms (\tilde{f},\tilde{g}) is synchronous (asynchronous) on [a,b], namely

(1.7)
$$\left(\tilde{f}\left(t\right) - \tilde{f}\left(s\right)\right)\left(\tilde{g}\left(t\right) - \tilde{g}\left(s\right)\right) \ge (\le) 0$$

for any $t, s \in [a, b]$.

It is clear that if f, g are asymmetrized monotonic nondecreasing (nonincreasing) on [a, b] then they are asymmetrized synchronous on [a, b].

One of the most important results for synchronous (asynchronous) and integrable functions f, g on [a, b] is the well-known *Čebyšev's inequality*:

(1.8)
$$\frac{1}{b-a} \int_{a}^{b} f(t) g(t) dt \ge (\le) \frac{1}{b-a} \int_{a}^{b} f(t) dt \frac{1}{b-a} \int_{a}^{b} g(t) dt.$$

For integral inequalities of Čebyšev's type, see [1]-[5], [7], [10]-[18] and the references therein.

Motivated by the above results, we establish in this paper some inequalities for asymmetrized synchronous (asynchronous) functions on [a, b]. Some examples for power, logarithm and sin functions are provided as well.

2. Main Results

We have the following result:

Theorem 3. Assume that f, g are asymmetrized synchronous (asynchronous) and integrable functions on [a, b]. Then

(2.1)
$$\int_{a}^{b} \tilde{f}(t) g(t) dt \ge (\le) 0.$$

Proof. We consider only the case of symmetrized synchronous and integrable functions.

1. By the Čebyšev's inequality (1.8) for (\tilde{f}, \tilde{g}) we get

(2.2)
$$\frac{1}{b-a} \int_{a}^{b} \tilde{f}(t) \, \tilde{g}(t) \, dt \ge \frac{1}{b-a} \int_{a}^{b} \tilde{f}(t) \, dt \frac{1}{b-a} \int_{a}^{b} \tilde{g}(t) \, dt.$$
We have

We have

$$\int_{a}^{b} \tilde{f}(t) dt = \frac{1}{2} \left[\int_{a}^{b} f(t) dt - \int_{a}^{b} f(a+b-t) dt \right] = 0$$

since, by the change of variable $s = a + b - t, t \in [a, b]$,

$$\int_{a}^{b} f(a+b-t) dt = \int_{a}^{b} f(s) ds.$$

Also,

$$(2.3) \qquad \int_{a}^{b} \tilde{f}(t) \,\tilde{g}(t) = \frac{1}{4} \int_{a}^{b} \left[f(t) - f(a+b-t) \right] \left[g(t) - g(a+b-t) \right] dt \\ = \frac{1}{4} \int_{a}^{b} \left[f(t) \, g(t) + f(a+b-t) \, g(a+b-t) \right] dt \\ - \frac{1}{4} \int_{a}^{b} \left[f(t) \, g(a+b-t) + f(a+b-t) \, g(t) \right] dt \\ = \frac{1}{4} \left[\int_{a}^{b} f(t) \, g(t) \, dt + \int_{a}^{b} f(a+b-t) \, g(a+b-t) \, dt \right] \\ - \frac{1}{4} \left[\int_{a}^{b} f(t) \, g(a+b-t) \, dt + \int_{a}^{b} f(a+b-t) \, g(t) \, dt \right] \\ = \frac{1}{2} \left(\int_{a}^{b} f(t) \, g(t) \, dt - \int_{a}^{b} f(a+b-t) \, g(t) \, dt \right) \\ = \int_{a}^{b} \tilde{f}(t) \, g(t) \, dt$$

since, by the change of variable s = a + b - t, $t \in [a, b]$, we have

$$\int_{a}^{b} f(a+b-t) g(a+b-t) dt = \int_{a}^{b} f(t) g(t) dt$$

and

$$\int_{a}^{b} f(t) g(a+b-t) dt = \int_{a}^{b} f(a+b-t) g(t) dt.$$

5

By (2.2) we then get the desired result (2.1).

2. An alternative proof is as follows. Since (\tilde{f}, \tilde{g}) are synchronous, then

$$\left[\tilde{f}\left(t\right) - \tilde{f}\left(\frac{a+b}{2}\right)\right] \left[\tilde{g}\left(t\right) - \tilde{g}\left(\frac{a+b}{2}\right)\right] \ge 0$$

for any $t \in [a, b]$, which is equivalent to

(2.4)
$$f(t)\tilde{g}(t) \ge 0 \text{ for any } t \in [a,b],$$

or to

$$[f(t) - f(a + b - t)] [g(t) - g(a + b - t)] \ge 0 \text{ for any } t \in [a, b].$$

This is a property of interest for asymmetrized synchronous functions.

If we integrate the inequality (2.4) and use the identity (2.3) we get the desired result (2.1).

Remark 1. The inequality (2.1) can be written in an equivalent form as

$$\int_{a}^{b} f(t) g(t) dt \ge \int_{a}^{b} f(a+b-t) g(t) dt,$$

or as

$$\int_{a}^{b} f(t) g(t) dt \ge \int_{a}^{b} \breve{f}(t) g(t) dt.$$

Theorem 4. If both f, g are asymmetrized monotonic nondecreasing (nonincreasing) and integrable functions on [a, b], then

(2.5)
$$\frac{1}{4} |f(b) - f(a)| |g(b) - g(a)| \ge \frac{1}{b-a} \int_{a}^{b} \tilde{f}(t) g(t) dt \ge 0$$

and

$$(2.6) \quad \frac{1}{2}\min\left\{ \left| f\left(b\right) - f\left(a\right) \right| \frac{1}{b-a} \int_{a}^{b} \left| g\left(t\right) \right| dt, \left| g\left(b\right) - g\left(a\right) \right| \frac{1}{b-a} \int_{a}^{b} \left| f\left(t\right) \right| dt \right\} \\ \ge \frac{1}{b-a} \int_{a}^{b} \tilde{f}\left(t\right) g\left(t\right) dt \ge 0.$$

Proof. Assume that both f, g are asymmetrized monotonic nondecreasing and integrable functions on [a, b], then they are asymmetrized synchronous and by (2.1) we get the second inequality in (2.5).

We also have

$$\hat{f}(a) \le \hat{f}(t) \le \hat{f}(b)$$

for any $t \in [a, b]$, namely

$$-\frac{1}{2}[f(b) - f(a)] \le \frac{1}{2}[f(t) - f(a + b - t)] \le \frac{1}{2}[f(b) - f(a)]$$

for any $t \in [a, b]$, which implies that $\frac{1}{2} [f(b) - f(a)] \ge 0$ and

(2.7)
$$\frac{1}{2}|f(t) - f(a+b-t)| \le \frac{1}{2}[f(b) - f(a)]$$

for any $t \in [a, b]$.

Similarly, we have $\frac{1}{2} [g(b) - g(a)] \ge 0$ and

(2.8)
$$\frac{1}{2}|g(t) - g(a+b-t)| \le \frac{1}{2}[g(b) - g(a)]$$

for any $t \in [a, b]$.

If we multiply (2.7) and (2.8), then we get

(2.9)
$$\frac{1}{4} [f(t) - f(a+b-t)] [g(t) - g(a+b-t)] = \frac{1}{4} |[f(t) - f(a+b-t)] [g(t) - g(a+b-t)]| \leq \frac{1}{4} [f(b) - f(a)] [g(b) - g(a)]$$

for any $t \in [a, b]$.

Since

$$0 \le \int_{a}^{b} \tilde{f}(t) g(t) dt = \frac{1}{4} \int_{a}^{b} [f(t) - f(a+b-t)] [g(t) - g(a+b-t)] dt$$

$$\le \frac{1}{4} [f(b) - f(a)] [g(b) - g(a)] (b-a) ,$$

where for the last inequality we used (2.9), hence we get the first inequality in (2.5). Also, we observe that

$$0 \le \int_{a}^{b} \tilde{f}(t) g(t) dt = \int_{a}^{b} \left| \tilde{f}(t) g(t) \right| dt \le \frac{1}{2} \left[f(b) - f(a) \right] \int_{a}^{b} \left| g(t) \right| dt$$

and since

$$\int_{a}^{b} \tilde{f}(t) g(t) dt = \int_{a}^{b} f(t) \tilde{g}(t) dt,$$

then also

$$\int_{a}^{b} f(t) \tilde{g}(t) dt \leq \frac{1}{2} \left[g(b) - g(a) \right] \int_{a}^{b} |f(t)| dt$$

and the inequality (2.6) is also proved.

Remark 2. If the functions $f, g: [a, b] \to \mathbb{R}$ are either both of them nonincreasing or nondecreasing on [a, b], then they are integrable and we have the inequalities (2.5) and (2.6).

We have the following refinement of the inequality in (2.1).

Theorem 5. Assume that f, g are asymmetrized synchronous and integrable functions on [a, b]. Then

(2.10)
$$\frac{1}{b-a} \int_{a}^{b} \tilde{f}(t) g(t) dt$$
$$\geq \left| \frac{1}{b-a} \int_{a}^{b} \left| \tilde{f}(t) \right| \left| \tilde{g}(t) \right| dt - \frac{1}{b-a} \int_{a}^{b} \left| \tilde{f}(t) \right| dt \frac{1}{b-a} \int_{a}^{b} \left| \tilde{g}(t) \right| dt \right| \geq 0.$$

Proof. By the continuity property of modulus, we have

$$\begin{split} \left[\tilde{f}\left(t\right) - \tilde{f}\left(s\right)\right] \left[\tilde{g}\left(t\right) - \tilde{g}\left(s\right)\right] &= \left|\left[\tilde{f}\left(t\right) - \tilde{f}\left(s\right)\right] \left[\tilde{g}\left(t\right) - \tilde{g}\left(s\right)\right]\right| \\ &= \left|\tilde{f}\left(t\right) - \tilde{f}\left(s\right)\right| \left|\tilde{g}\left(t\right) - \tilde{g}\left(s\right)\right| \\ &\geq \left|\left|\tilde{f}\left(t\right)\right| - \left|\tilde{f}\left(s\right)\right|\right| \left|\tilde{g}\left(t\right) - \tilde{g}\left(s\right)\right| \\ &= \left|\left(\left|\tilde{f}\left(t\right)\right| - \left|\tilde{f}\left(s\right)\right|\right) \left(\tilde{g}\left(t\right) - \tilde{g}\left(s\right)\right)\right| \end{split}$$

 $\mathbf{6}$

for any $t, s \in [a, b]$.

Taking the double integral mean on $[a, b]^2$ and using the properties of the integral versus the modulus, we have

(2.11)
$$\frac{1}{(b-a)^2} \int_a^b \int_a^b \left[\tilde{f}(t) - \tilde{f}(s) \right] \left[\tilde{g}(t) - \tilde{g}(s) \right] dt ds$$
$$\geq \left| \frac{1}{(b-a)^2} \int_a^b \int_a^b \left(\left| \tilde{f}(t) \right| - \left| \tilde{f}(s) \right| \right) \left(\left| \tilde{g}(t) \right| - \left| \tilde{g}(s) \right| \right) dt ds \right|$$

Since, by Korkine's identity we have

$$\frac{1}{(b-a)^2} \int_a^b \int_a^b \left[\tilde{f}(t) - \tilde{f}(s) \right] \left[\tilde{g}(t) - \tilde{g}(s) \right] dt ds$$
$$= 2 \left[\frac{1}{b-a} \int_a^b \tilde{f}(t) \, \tilde{g}(t) \, dt - \frac{1}{b-a} \int_a^b \tilde{f}(t) \, dt \frac{1}{b-a} \int_a^b \tilde{g}(t) \, dt \right]$$
$$= \frac{2}{b-a} \int_a^b \tilde{f}(t) \, \tilde{g}(t) \, dt$$

and

$$\frac{1}{\left(b-a\right)^{2}} \int_{a}^{b} \int_{a}^{b} \left(\left|\tilde{f}\left(t\right)\right| - \left|\tilde{f}\left(s\right)\right|\right) \left(\left|\tilde{g}\left(t\right)\right| - \left|\tilde{g}\left(s\right)\right|\right) dt ds$$
$$= 2 \left[\frac{1}{b-a} \int_{a}^{b} \left|\tilde{f}\left(t\right)\right| \left|\tilde{g}\left(t\right)\right| dt - \frac{1}{b-a} \int_{a}^{b} \left|\tilde{f}\left(t\right)\right| dt \frac{1}{b-a} \int_{a}^{b} \left|\tilde{g}\left(t\right)\right| dt\right],$$

hence by (2.11) we have

$$\frac{1}{b-a} \int_{a}^{b} \tilde{f}(t) \,\tilde{g}(t) \,dt$$

$$\geq \left| \frac{1}{b-a} \int_{a}^{b} \left| \tilde{f}(t) \right| \left| \tilde{g}(t) \right| \,dt - \frac{1}{b-a} \int_{a}^{b} \left| \tilde{f}(t) \right| \,dt \frac{1}{b-a} \int_{a}^{b} \left| \tilde{g}(t) \right| \,dt \right|.$$

By using the identity (2.3) we get the desired result (2.10).

7

Remark 3. We remark that, if (\tilde{f}, g) are synchronous, then by a similar argument to the one above for $g \leftrightarrow \tilde{g}$ we have

(2.12)
$$\frac{1}{b-a} \int_{a}^{b} \tilde{f}(t) g(t) dt$$
$$\geq \left| \frac{1}{b-a} \int_{a}^{b} \left| \tilde{f}(t) \right| |g(t)| dt - \frac{1}{b-a} \int_{a}^{b} \left| \tilde{f}(t) \right| dt \frac{1}{b-a} \int_{a}^{b} |g(t)| dt \right| \geq 0.$$

Also, since

$$\frac{1}{b-a}\int_{a}^{b}\tilde{f}\left(t\right)g\left(t\right)dt = \frac{1}{b-a}\int_{a}^{b}f\left(t\right)\tilde{g}\left(t\right)dt,$$

then if we assume that (f, \tilde{g}) are synchronous we also have

$$(2.13) \quad \frac{1}{b-a} \int_{a}^{b} \tilde{f}(t) g(t) dt \\ \geq \left| \frac{1}{b-a} \int_{a}^{b} |f(t)| |\tilde{g}(t)| dt - \frac{1}{b-a} \int_{a}^{b} |f(t)| dt \frac{1}{b-a} \int_{a}^{b} |\tilde{g}(t)| dt \right| \geq 0$$

Now, if f and g have the same monotonicity, then $(\tilde{f}, \tilde{g}), (\tilde{f}, g), (f, \tilde{g})$ are synchronous and we have

$$(2.14) \qquad \frac{1}{b-a} \int_{a}^{b} \tilde{f}(t) g(t) dt \ge \max\left\{ \left| C\left(\tilde{f}, \tilde{g}\right) \right|, \left| C\left(\tilde{f}, g\right) \right|, \left| C\left(f, \tilde{g}\right) \right| \right\} \ge 0,$$

where

$$C(h,\ell) := \frac{1}{b-a} \int_{a}^{b} |h(t)\ell(t)| \, dt - \frac{1}{b-a} \int_{a}^{b} |h(t)| \, dt \frac{1}{b-a} \int_{a}^{b} |\ell(t)| \, dt$$

provided h and ℓ are integrable on [a, b].

We say that the function $h:[a,b]\to\mathbb{R}$ is *H*-*r*-*Hölder continuous* with the constant H>0 and power $r\in(0,1]$ if

(2.15)
$$|h(t) - h(s)| \le H |t - s|^r$$

for any $t, s \in [a, b]$. If r = 1 we call that h is *L*-Lipschitzian when H = L > 0.

Theorem 6. Assume that f, g are asymmetrized synchronous with f is H_1 - r_1 -Hölder continuous and g is H_2 - r_2 -Hölder continuous on [a, b]. Then

(2.16)
$$\frac{1}{4(r_1+r_2+1)}H_1H_2(b-a)^{r_1+r_2} \ge \frac{1}{b-a}\int_a^b \tilde{f}(t)g(t)\,dt \ge 0.$$

If particular, if f is L_1 -Lipschitzian and g is L_2 -Lipschitzian, then

(2.17)
$$\frac{1}{12}L_1L_2(b-a)^2 \ge \frac{1}{b-a}\int_a^b \tilde{f}(t)g(t)\,dt \ge 0.$$

Proof. From (2.3) we have

$$\begin{split} 0 &\leq \int_{a}^{b} \tilde{f}\left(t\right) g\left(t\right) dt = \frac{1}{4} \int_{a}^{b} \left[f\left(t\right) - f\left(a + b - t\right)\right] \left[g\left(t\right) - g\left(a + b - t\right)\right] dt \\ &= \frac{1}{4} \int_{a}^{b} \left|\left[f\left(t\right) - f\left(a + b - t\right)\right] \left[g\left(t\right) - g\left(a + b - t\right)\right]\right| dt \\ &\leq \frac{1}{4} H_{1} H_{2} \int_{a}^{b} \left|2t - a - b\right|^{r_{1} + r_{2}} dt = \frac{2^{r_{1} + r_{2}}}{4} H_{1} H_{2} \int_{a}^{b} \left|t - \frac{a + b}{2}\right|^{r_{1} + r_{2}} dt \\ &= \frac{2}{2^{2 - r_{1} - r_{2}}} H_{1} H_{2} \int_{\frac{a + b}{2}}^{b} \left(t - \frac{a + b}{2}\right)^{r_{1} + r_{2}} dt = \frac{2}{2^{2 - r_{1} - r_{2}}} H_{1} H_{2} \frac{\left(\frac{b - a}{2}\right)^{r_{1} + r_{2} + 1}}{r_{1} + r_{2} + 1} \\ &= \frac{1}{4 \left(r_{1} + r_{2} + 1\right)} H_{1} H_{2} \left(b - a\right)^{r_{1} + r_{2} + 1}, \end{split}$$

which is equivalent to the desired result (2.16).

3. Some Examples

Consider the identity function $\ell : [a, b] \to \mathbb{R}$ defined by $\ell(t) = t$. If g is monotonic nondecreasing, then by (2.5) and (2.14) we have

(3.1)
$$\frac{1}{4} (b-a) [g(b) - g(a)] \ge \frac{1}{b-a} \int_{a}^{b} \left(t - \frac{a+b}{2} \right) g(t) dt$$
$$\ge \max \left\{ |C_{1,\ell}(g)|, |C_{2,\ell}(g)|, |C_{3,\ell}(g)| \right\} \ge 0,$$

where

$$C_{1,\ell}(g) := \frac{1}{b-a} \int_{a}^{b} \left| \left(t - \frac{a+b}{2} \right) \tilde{g}(t) \right| dt - \frac{1}{4} \int_{a}^{b} |\tilde{g}(t)| dt,$$
$$C_{2,\ell}(g) := \frac{1}{b-a} \int_{a}^{b} \left| \left(t - \frac{a+b}{2} \right) g(t) \right| dt - \frac{1}{4} \int_{a}^{b} |g(t)| dt$$

and

$$C_{3,\ell}(g) := \frac{1}{b-a} \int_a^b |t\tilde{g}(t)| \, dt - \frac{1}{b-a} \int_a^b |t| \, dt \frac{1}{b-a} \int_a^b |\tilde{g}(t)| \, dt.$$

If g is monotonic nondecreasing and L-Lipschitzian on [a, b], then by (2.17) we get

(3.2)
$$\frac{1}{12}L(b-a)^2 \ge \frac{1}{b-a} \int_a^b \left(t - \frac{a+b}{2}\right) g(t) dt \ (\ge 0) .$$

Consider the power function $f: [a,b] \subset (0,\infty) \to \mathbb{R}, f(t) = t^p$ with p > 0. If g is monotonic nondecreasing, then by (2.5) and (2.14) we get

(3.3)
$$\frac{1}{4} (b^{p} - a^{p}) [g(b) - g(a)] \ge \frac{1}{b-a} \int_{a}^{b} \left[\frac{t^{p} - (a+b-t)^{p}}{2} \right] g(t) dt$$
$$\ge \max \left\{ |C_{1,p}(g)|, |C_{2,p}(g)|, |C_{3,p}(g)| \right\} \ge 0,$$

where

$$C_{1,p}(g) := \frac{1}{b-a} \int_{a}^{b} \left| \frac{t^{p} - (a+b-t)^{p}}{2} \right| |\tilde{g}(t)| dt$$
$$- \frac{1}{b-a} \int_{a}^{b} \left| \frac{t^{p} - (a+b-t)^{p}}{2} \right| dt \frac{1}{b-a} \int_{a}^{b} |\tilde{g}(t)| dt,$$
$$C_{2,p}(g) := \frac{1}{b-a} \int_{a}^{b} \left| \frac{t^{p} - (a+b-t)^{p}}{2} \right| |g(t)| dt$$
$$- \frac{1}{b-a} \int_{a}^{b} \left| \frac{t^{p} - (a+b-t)^{p}}{2} \right| dt \frac{1}{b-a} \int_{a}^{b} |g(t)| dt$$

and

$$C_{3,p}(g) := \int_{a}^{b} t^{p} |\tilde{g}(t)| dt - \frac{b^{p+1} - a^{p+1}}{(p+1)(b-a)} \frac{1}{b-a} \int_{a}^{b} |\tilde{g}(t)| dt.$$

If g is monotonic nondecreasing and L-Lipschitzian on [a, b], then by (2.17) we get

.

.

(3.4)
$$\frac{p}{12}L(b-a)^{2} \begin{cases} b^{p-1} \text{ if } p \ge 1\\ a^{p-1} \text{ if } p \in (0,1) \end{cases}$$
$$\ge \frac{1}{b-a} \int_{a}^{b} \left[\frac{t^{p} - (a+b-t)^{p}}{2} \right] g(t) dt \ (\ge 0)$$

Consider the function $f : [a, b] \subset (0, \infty) \to \mathbb{R}$, $f = \ln$. If g is monotonic nondecreasing, then by (2.5) and (2.14) we have

(3.5)
$$\frac{1}{4}\ln\left(\frac{b}{a}\right)[g(b) - g(a)] \ge \frac{1}{2(b-a)}\int_{a}^{b}\ln\left(\frac{t}{a+b-t}\right)g(t)\,dt$$
$$\ge \max\left\{|C_{1,\ln}(g)|, |C_{2,\ln}(g)|, |C_{3,\ln}(g)|\right\} \ge 0,$$

where

$$C_{1,\ln}(g) := \frac{1}{b-a} \int_{a}^{b} \left| \ln\left(\frac{t}{a+b-t}\right)^{1/2} \right| |\tilde{g}(t)| dt$$
$$- \frac{1}{b-a} \int_{a}^{b} \left| \ln\left(\frac{t}{a+b-t}\right)^{1/2} \right| dt \frac{1}{b-a} \int_{a}^{b} |\tilde{g}(t)| dt,$$
$$C_{2,\ln}(g) := \frac{1}{b-a} \int_{a}^{b} |\ln t| |\tilde{g}(t)| dt - \frac{1}{b-a} \int_{a}^{b} |\ln t| dt \frac{1}{b-a} \int_{a}^{b} |\tilde{g}(t)| dt$$

and

$$C_{1,\ln}(g) := \frac{1}{b-a} \int_{a}^{b} \left| \ln\left(\frac{t}{a+b-t}\right)^{1/2} \right| |g(t)| dt$$
$$- \frac{1}{b-a} \int_{a}^{b} \left| \ln\left(\frac{t}{a+b-t}\right)^{1/2} \right| dt \frac{1}{b-a} \int_{a}^{b} |g(t)| dt.$$

If g is monotonic nondecreasing and L-Lipschitzian on [a, b], then by (2.17) we get

(3.6)
$$\frac{1}{6a}L(b-a)^{2} \ge \frac{1}{b-a}\int_{a}^{b}\ln\left(\frac{t}{a+b-t}\right)g(t)\,dt \ (\ge 0)\,.$$

Consider the function $f:[a,b] \subset \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \to \mathbb{R}, f = \sin$. If g is monotonic nondecreasing, then by (2.5) we have

(3.7)
$$\frac{1}{2}\sin\left(\frac{b-a}{2}\right)[g(b)-g(a)] \ge \frac{1}{b-a}\int_{a}^{b}\sin\left(t-\frac{a+b}{2}\right)g(t)\,dt \ge 0.$$

If g is monotonic nondecreasing and L-Lipschitzian on $\left[a,b\right],$ then by (2.17) we get

(3.8)
$$\frac{1}{12}L(b-a)^2 \times \begin{cases} \cos b \text{ if } -\frac{\pi}{2} \le a < b \le 0, \\ \max\{\cos a, \cos b\} \text{ if } -\frac{\pi}{2} \le a < 0 < b \le \frac{\pi}{2}, \\ \cos a \text{ if } 0 \le a < b \le \frac{\pi}{2} \end{cases}$$

$$\geq \frac{1}{b-a} \cos\left(\frac{a+b}{2}\right) \int_{a}^{b} \sin\left(t-\frac{a+b}{2}\right) g(t) dt \ (\geq 0) \,.$$

References

- A. Aglić Aljinović, R. Hoxha and J. Pečarić, On some Čebyšev-Grüss type integral inequalities. Mat. Bilten No. 30 (2006), 49–62
- [2] P. R. Beesack and J. E. Pečarić, Integral inequalities of Čebyšev type. J. Math. Anal. Appl. 111 (1985), no. 2, 643–659.
- [3] K. Boukerrioua and A. Guezane-Lakoud, On generalization of Čebyšev type inequalities. J. Inequal. Pure Appl. Math. 8 (2007), No. 2, Article 55, 4 pp.

10

- [4] S. S. Dragomir, On some improvements of Čebyšev's inequality for sequences and integrals. Studia Univ. Babeş-Bolyai Math. 35 (1990), no. 4, 35–40.
- [5] S. S. Dragomir, A refinement of Ostrowski's inequality for the Čebyšev functional and applications. Analysis (Munich) 23 (2003), No. 4, 287–297.
- [6] S. S. Dragomir, Symmetrized convexity and Hermite-Hadamard type inequalities, J. Math. Ineq. 10 (2016), No. 4, 901–918. Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 2. [Online http://rgmia.org/papers/v17/v17a02.pdf].
- [7] S. S. Dragomir and B. Mond, Some mappings associated with Cebysev's inequality for sequences of real numbers. Bull. Allahabad Math. Soc. 8/9 (1993/94), 37–55 (1997).
- [8] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online http://rgmia.org/monographs/hermite_hadamard.html].
- [9] A. El Farissi, M. Benbachir and M. Dahmane, An extension of the Hermite-Hadamard inequality for convex symmetrized functions. *Real Anal. Exchange*, 38 (2012/13), No. 2, 467–474.
- [10] A Guezane-Lakoud and F. Aissaoui, New Čebyšev type inequalities for double integrals. J. Math. Inequal. 5 (2011), No. 4, 453–462.
- [11] S.-R. Hwang, Ostrowski-Grüss-Čebyšev type inequalities involving several functions. *Tamsui Oxf. J. Math. Sci.* 23 (2007), No. 1, 105–125.
- [12] Z. Liu, Generalizations of some new Čebyšev type inequalities. J. Inequal. Pure Appl. Math. 8 (2007), No. 1, Article 13, 6 pp.
- [13] B. G. Pachpatte, On Ostrowski-Grüss-Čebyšev type inequalities for functions whose modulus of derivatives are convex. J. Inequal. Pure Appl. Math. 6 (2005), No. 4, Article 128, 15 pp.
- [14] B. G. Pachpatte, New inequalities of Čebyšev type for double integrals, *Demonstratio Math.* 40 (2007), no. 1, 43–50.
- [15] B. G. Pachpatte, A note on Čebyšev type inequalities. An. Stiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 53 (2007), no. 1, 97–102.
- [16] R. T. Rahmail, Inversion of Čebyšev's inequality for bounded functions. (Russian) Izv. Vysš. Učebn. Zaved. Matematika 1977, No. 12 (187), 77–84.
- [17] E. Set, M. Z. Sarikaya and F. Ahmad, A generalization of Čebyšev type inequalities for first differentiable mappings. *Miskolc Math. Notes* **12** (2011), No. 2, 245–253.
- [18] F. Zafar and N. A. Mir, A note on the generalization of some new Čebyšev type inequalities. *Tamsui Oxf. J. Inf. Math. Sci.* 27 (2011), No. 2, 149–157.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

²DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa