
ON SOME INTEGRAL INEQUALITIES FOR SYMMETRIZED
SYNCHRONOUS FUNCTIONS

S. S. DRAGOMIR1;2

Abstract. In this paper we establish some integral inequalities for the prod-
uct of symmetrized synchronous/asynchronous functions. Re�nements and re-
verses of Cauchy-Bunyakovsky-Schwarz inequality for one function and some
examples for logarithmic and exponential functions are also given.

1. Introduction

For a function f : [a; b]! C we consider the symmetrical transform of f on the
interval [a; b] ; denoted by �f[a;b] or simply �f , when the interval [a; b] is implicit, as
de�ned by

(1.1) �f (t) :=
1

2
[f (t) + f (a+ b� t)] ; t 2 [a; b] :

The anti-symmetrical transform of f on the interval [a; b] is denoted by ~f[a;b]; or
simply ~f and is de�ned by

~f (t) :=
1

2
[f (t)� f (a+ b� t)] ; t 2 [a; b] :

It is obvious that for any function f we have �f + ~f = f:
If f is convex on [a; b] ; then for any t1; t2 2 [a; b] and �; � � 0 with � + � = 1

we have

�f (�t1 + �t2) =
1

2
[f (�t1 + �t2) + f (a+ b� �t1 � �t2)]

=
1

2
[f (�t1 + �t2) + f (� (a+ b� t1) + � (a+ b� t2))]

� 1

2
[�f (t1) + �f (t2) + �f (a+ b� t1) + �f (a+ b� t2)]

=
1

2
� [f (t1) + f (a+ b� t1)] +

1

2
� [f (t2) + f (a+ b� t2)]

= � �f (t1) + � �f (t2) ;

which shows that �f is convex on [a; b] :
Consider the real numbers a < b and de�ne the function f0 : [a; b]! R, f0 (t) =

t3: We have [7]

�f0 (t) :=
1

2

h
t3 + (a+ b� t)3

i
=
3

2
(a+ b) t2 � 3

2
(a+ b)

2
t+

1

2
(a+ b)

3
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for any t 2 R.
Since the second derivative

�
�f0

�00
(t) = 3 (a+ b) ; t 2 R, then �f0 is strictly convex

on [a; b] if a+b2 > 0 and strictly concave on [a; b] if a+b2 < 0: Therefore if a < 0 < b

with a+b
2 > 0; then we can conclude that f0 is not convex on [a; b] while �f0 is convex

on [a; b] :
We can introduce the following concept of convexity [7], see also [10] for an

equivalent de�nition.

De�nition 1. We say that the function f : [a; b] ! R is symmetrized convex
(concave) on the interval [a; b] if the symmetrical transform �f is convex (concave)
on [a; b] :

Now, if we denote by C [a; b] the closed convex cone of convex functions de�ned
on [a; b] and by SC [a; b] the closed convex cone of symmetrized convex functions,
then from the above remarks we can conclude that

(1.2) C [a; b]  SC [a; b] :
Also, if [c; d] � [a; b] and f 2 SC [a; b] ; then this does not imply in general that
f 2 SC [c; d] :
We have the following result [7], [10] :

Theorem 1. Assume that f : [a; b] ! R is symmetrized convex and integrable on
the interval [a; b] : Then we have the Hermite-Hadamard inequalities

(1.3) f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt � f (a) + f (b)

2
:

For a monograph on Hermite-Hadamard type inequalities see [9].
In a similar way, we can introduce the following concept as well:

De�nition 2. We say that the function f : [a; b]! R is asymmetrized monotonic
nondecreasing (nonincreasing) on the interval [a; b] if the anti-symmetrical trans-
form ~f is monotonic nondecreasing (nonincreasing) on the interval [a; b] :

If f is monotonic nondecreasing on [a; b] ; then for any t1; t2 2 [a; b] we have

~f (t2)� ~f (t1) =
1

2
[f (t2)� f (a+ b� t2)]�

1

2
[f (t1)� f (a+ b� t1)]

=
1

2
[f (t2)� f (t1)] +

1

2
[f (a+ b� t1)� f (a+ b� t2)]

� 0;
which shows that f : [a; b] ! R is asymmetrized monotonic nondecreasing on the
interval [a; b] :
Consider the real numbers a < b and de�ne the function f0 : [a; b]! R, f0 (t) =

t2: We have

~f0 (t) :=
1

2

h
t2 � (a+ b� t)2

i
= (a+ b) t� 1

2
(a+ b)

2

and
�
~f0

�0
(t) = a + b; therefore f : [a; b] ! R is asymmetrized monotonic nonde-

creasing (nonincreasing) on the interval [a; b] provided a+b
2 > 0 (< 0) : So, if we take

a < 0 < b with a+b
2 > 0; then f is asymmetrized monotonic nondecreasing on [a; b]

but not monotonic nondecreasing on [a; b] :
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If we denote by M% [a; b] the closed convex cone of monotonic nondecreasing
functions de�ned on [a; b] and by AM% [a; b] the closed convex cone of asym-
metrized monotonic nondecreasing functions, then from the above remarks we can
conclude that

(1.4) M% [a; b]  AM% [a; b] :

Also, if [c; d] � [a; b] and f 2 AM% [a; b] ; then this does not imply in general that
f 2 AM% [c; d] :
We recall that the pair of functions (f; g) de�ned on [a; b] are called synchronous

(asynchronous) on [a; b] if

(1.5) (f (t)� f (s)) (g (t)� g (s)) � (�) 0
for any t; s 2 [a; b] : It is clear that if both functions (f; g) are monotonic non-
decreasing (nonincreasing) on [a; b] then they are synchronous on [a; b] : There are
also functions that change monotonicity on [a; b] ; but as a pair they are still syn-
chronous. For instance if a < 0 < b and f; g : [a; b] ! R, f (t) = t2 and g (t) = t4;
then

(f (t)� f (s)) (g (t)� g (s)) =
�
t2 � s2

� �
t4 � s4

�
=
�
t2 � s2

�2 �
t2 + s2

�
� 0

for any t; s 2 [a; b] ; which show that (f; g) is synchronous.

De�nition 3. We say that the pair of functions (f; g) de�ned on [a; b] is called
asymmetrized synchronous (asynchronous) on [a; b] if the pair of transforms

�
~f; ~g
�

is synchronous (asynchronous) on [a; b] ; namely

(1.6)
�
~f (t)� ~f (s)

�
(~g (t)� ~g (s)) � (�) 0

for any t; s 2 [a; b] :

It is clear that if f; g are asymmetrized monotonic nondecreasing (nonincreasing)
on [a; b] then they are asymmetrized synchronous on [a; b] :
In the recent paper we obtained amongst others the following results:

Theorem 2. Assume that f; g are asymmetrized synchronous (asynchronous) and
integrable functions on [a; b]. Then

(1.7)
Z b

a

~f (t) g (t) dt � (�) 0:

If both f; g are asymmetrized monotonic nondecreasing (nonincreasing) and inte-
grable functions on [a; b] ; then

(1.8)
1

4
jf (b)� f (a)j jg (b)� g (a)j � 1

b� a

Z b

a

~f (t) g (t) dt � 0;

and

1

2
min

(
jf (b)� f (a)j 1

b� a

Z b

a

jg (t)j dt; jg (b)� g (a)j 1

b� a

Z b

a

jf (t)j dt
)

(1.9)

� 1

b� a

Z b

a

~f (t) g (t) dt � 0:

We can introduce the following concept as well:
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De�nition 4. We say that the pair of functions (f; g) de�ned on [a; b] is called
symmetrized synchronous (asynchronous) on [a; b] if the pair of symmetrized trans-
forms

�
�f; �g
�
is synchronous (asynchronous) on [a; b] ; namely

(1.10)
�
�f (t)� �f (s)

�
(�g (t)� �g (s)) � (�) 0

for any t; s 2 [a; b] :

Now, assume that the function x : [a; b] ! I; where I is an interval of real
numbers, and (�;  ) is a pair of synchronous (asynchronous) functions de�ned on the
interval I: Consider the functions f; g : [a; b]! R de�ned by f = ���x and g =  ��x:
Then the functions f and g are symmetrical on [a; b] and �f = � � �x and �g =  � �x:
Since (�;  ) is a pair of synchronous (asynchronous) functions, it follows that

�
�f; �g
�

is synchronous (asynchronous) on [a; b] ; namely the pair of functions (f; g) de�ned
on [a; b] is symmetrized synchronous (asynchronous) on [a; b] : Therefore, we can give
many example of symmetrized synchronous (asynchronous) functions on [a; b] : For
instance, if (�;  ) is a pair of synchronous (asynchronous) functions de�ned on the

interval [0;1); then the functions f; g : [a; b]! R de�ned by f (t) = �
���t� a+b

2

��p�
and g (t) =  

���t� a+b
2

��p� with p > 0 are symmetrized synchronous (asynchronous)
on [a; b] :
One of the most important results for synchronous (asynchronous) and integrable

functions f; g on [a; b] is the well-known µCeby�ev�s inequality :

(1.11)
1

b� a

Z b

a

f (t) g (t) dt � (�) 1

b� a

Z b

a

f (t) dt
1

b� a

Z b

a

g (t) dt:

For integral inequalities of µCeby�ev�s type, see [1]-[6], [8], [11]-[20] and the refer-
ences therein.
Motivated by the above results, we establish in this paper some inequalities

for symmetrized synchronous (asynchronous) functions on [a; b] : Re�nements and
reverses of Cauchy-Bunyakovsky-Schwarz inequality for one function and some ex-
amples for logarithmic and exponential functions are also given.

2. Main Results

We have the following µCeby�ev�s type result:

Theorem 3. Assume that the pair of integrable functions (f; g) de�ned on [a; b] is
symmetrized synchronous (asynchronous) on [a; b] ; then

(2.1)
1

b� a

Z b

a

�f (t) g (t) dt � (�) 1

b� a

Z b

a

f (t) dt
1

b� a

Z b

a

g (t) dt:

Proof. Since
�
�f; �g
�
is synchronous (asynchronous) on [a; b] ; then by µCeby�ev�s in-

equality (1.11) we have

(2.2)
1

b� a

Z b

a

�f (t) �g (t) dt � (�) 1

b� a

Z b

a

�f (t) dt
1

b� a

Z b

a

�g (t) dt:
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Observe that, by the change of variable s = a+ b� t; t 2 [a; b] we haveZ b

a

�f (t) dt =
1

2

Z b

a

[f (t) + f (a+ b� t)]

=
1

2

"Z b

a

f (t) dt+

Z b

a

f (a+ b� t) dt
#
=

Z b

a

f (t) dt;

Z b

a

�g (t) dt =

Z b

a

g (t) dt

and Z b

a

�f (t) �g (t) dt =
1

4

Z b

a

[f (t) + f (a+ b� t)] [g (t) + g (a+ b� t)] dt(2.3)

=
1

4

Z b

a

[f (t) g (t) + f (a+ b� t) g (t)

+f (t) g (a+ b� t) + f (a+ b� t) g (a+ b� t)] dt

=
1

4

"Z b

a

f (t) g (t) dt+

Z b

a

f (a+ b� t) g (t) dt

+

Z b

a

f (a+ b� t) g (t) dt+
Z b

a

f (t) g (t) dt

#

=
1

2

"Z b

a

f (t) g (t) dt+

Z b

a

f (a+ b� t) g (t) dt
#

=

Z b

a

�f (t) g (t) dt

since, Z b

a

f (a+ b� t) g (t) dt =
Z b

a

f (s) g (a+ b� s) ds

and Z b

a

f (a+ b� t) g (a+ b� t) dt =
Z b

a

f (s) g (s) ds:

By making use of (2.2) we obtain the desired result (2.1). �

In addition, we also have:

Theorem 4. Assume that the pair of integrable functions (f; g) de�ned on [a; b] is
symmetrized synchronous (asynchronous) on [a; b] ; then

1

b� a

Z b

a

�f (t) g (t) dt� 1

b� a

Z b

a

f (t) dt
1

b� a

Z b

a

g (t) dt(2.4)

� (�)
 
�f (s)� 1

b� a

Z b

a

f (t) dt

! 
1

b� a

Z b

a

g (t) dt� �g (s)
!

for any s 2 [a; b] :
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In particular,

1

b� a

Z b

a

�f (t) g (t) dt� 1

b� a

Z b

a

f (t) dt
1

b� a

Z b

a

g (t) dt(2.5)

� (�)
 
f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt

!

�
 

1

b� a

Z b

a

g (t) dt� g
�
a+ b

2

�!

and

1

b� a

Z b

a

�f (t) g (t) dt� 1

b� a

Z b

a

f (t) dt
1

b� a

Z b

a

g (t) dt(2.6)

� (�)
 
f (a) + f (b)

2
� 1

b� a

Z b

a

f (t) dt

!

�
 

1

b� a

Z b

a

g (t) dt� g (a) + g (b)

2

!
:

Proof. Since
�
�f; �g
�
is synchronous (asynchronous) on [a; b] ; then

(2.7) �f (t) �g (t)� �f (s) �g (t)� �f (t) �g (s) + �f (s) �g (s) � (�) 0

for any t; s 2 [a; b] :
Taking the integral mean over t 2 [a; b] we get

1

b� a

Z b

a

�f (t) �g (t) dt� �f (s)
1

b� a

Z b

a

�g (t) dt

� �g (s) 1

b� a

Z b

a

�f (t) dt+ �f (s) �g (s)

� (�) 0

for any s 2 [a; b] :
This is equivalent to

1

b� a

Z b

a

�f (t) �g (t) dt � (�) �f (s) 1

b� a

Z b

a

�g (t) dt(2.8)

+ �g (s)
1

b� a

Z b

a

�f (t) dt� �f (s) �g (s)

for any s 2 [a; b] :
Now, if we subtract in both sides of the inequality (2.8)

1

b� a

Z b

a

�f (t) dt
1

b� a

Z b

a

�g (t) dt;
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then we get

1

b� a

Z b

a

�f (t) �g (t) dt� 1

b� a

Z b

a

�f (t) dt
1

b� a

Z b

a

�g (t) dt(2.9)

� (�) �f (s) 1

b� a

Z b

a

�g (t) dt+ �g (s)
1

b� a

Z b

a

�f (t) dt� �f (s) �g (s)

� 1

b� a

Z b

a

�f (t) dt
1

b� a

Z b

a

�g (t) dt

=

 
�f (s)� 1

b� a

Z b

a

�f (t) dt

! 
1

b� a

Z b

a

�g (t) dt� �g (s)
!

and since

1

b� a

Z b

a

�f (t) dt =
1

b� a

Z b

a

f (t) dt;
1

b� a

Z b

a

�g (t) dt =
1

b� a

Z b

a

g (t) dt

and, by (2.3)

1

b� a

Z b

a

�f (t) �g (t) dt =
1

b� a

Z b

a

�f (t) g (t) dt;

then by (2.9) we get the desired inequality (2.4).
Since

�f

�
a+ b

2

�
= f

�
a+ b

2

�
and �f (a) = �f (b) =

f (a) + f (b)

2

and the similar relations for g; hence (2.5) and (2.6) follow from (2.4). �

Remark 1. We observe that if the pair of integrable functions (f; g) de�ned on
[a; b] is symmetrized synchronous and one is symmetrized convex while the other is
symmetrized concave, then we have the following re�nements of (2.1)

1

b� a

Z b

a

�f (t) g (t) dt� 1

b� a

Z b

a

f (t) dt
1

b� a

Z b

a

g (t) dt(2.10)

�
 
f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt

! 
1

b� a

Z b

a

g (t) dt� g
�
a+ b

2

�!
� 0

and

1

b� a

Z b

a

�f (t) g (t) dt� 1

b� a

Z b

a

f (t) dt
1

b� a

Z b

a

g (t) dt(2.11)

�
 
f (a) + f (b)

2
� 1

b� a

Z b

a

f (t) dt

!

�
 

1

b� a

Z b

a

g (t) dt� g (a) + g (b)

2

!
� 0:

We have the following re�nement of Cauchy-Bunyakovsky-Schwarz integral in-
equality for a real-valued functions:
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Theorem 5. For any integrable function f : [a; b]! R, we have

(2.12)
1

b� a

Z b

a

f2 (t) dt � 1

b� a

Z b

a

�f (t) f (t) dt �
 

1

b� a

Z b

a

f (t)

!2
or, equivalently

1

b� a

Z b

a

f2 (t) dt(2.13)

� 1

2

 
1

b� a

Z b

a

f2 (t) dt+
1

b� a

Z b

a

f (t) f (a+ b� t) dt
!

�
 

1

b� a

Z b

a

f (t)

!2
:

Proof. By taking g = f in (2.1), since for any integrable function f , the pair (f; f)
is symmetrized synchronous on [a; b] ; we get the second inequality in (2.12).
By the Cauchy-Bunyakovsky-Schwarz integral inequality we haveZ b

a

f (t) f (a+ b� t) dt �
Z b

a

jf (t) f (a+ b� t)j dt

�
 Z b

a

f2 (t) dt

!1=2 Z b

a

f2 (a+ b� t) dt
!1=2

=

 Z b

a

f2 (t) dt

!1=2 Z b

a

f2 (t) dt

!1=2
=

Z b

a

f2 (t) dt;

which proves the �rst inequality in (2.13). �

The following reverse inequality also holds:

Theorem 6. Assume that the measurable function f : [a; b] ! R satis�es the
conditions

�1 < m � f (t) �M <1 for a.e. t 2 [a; b]
and

�1 < m � �m � �f (t) � �M �M <1 for a.e. t 2 [a; b]
for the constants m; �m; M; �M: Then

0 � 1

2

 
1

b� a

Z b

a

f2 (t) dt+
1

b� a

Z b

a

f (t) f (a+ b� t) dt
!

(2.14)

�
 

1

b� a

Z b

a

f (t)

!2
� 1

4
(M �m)

�
�M � �m

�
� 1

4
(M �m)2 :

Proof. We use G. Grüss�inequality [12], who showed that

(2.15) jT (h; g)j � 1

4
(M �m) (N � n) ;
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provided m; M;n; N are real numbers with the property

(2.16) �1 < m � h �M <1; �1 < n � g � N <1 a.e. on [a; b] ;

where the µCeby�ev functional T (h; g) is de�ned by

(2.17) T (h; g) :=
1

b� a

Z b

a

h (t) g (t) dt� 1

b� a

Z b

a

h (t) dt
1

b� a

Z b

a

g (t) dt:

By taking in (2.15) h = f and g = �f we get (2.14). �

Another less well known inequality for T (h; g) was derived in 1882 by µCeby�ev
[4] under the assumption that f 0, g0 exist and are bounded in (a; b) and is given by

(2.18) jT (h; g)j � 1

12
kh0k1 kg

0k1 (b� a)
2
;

where kh0k1 := sup
t2(a;b)

jh0 (t)j : The constant 1
12 cannot be improved in the gen-

eral case. This inequality can be extended for absolutely continuos functions
f; g : [a; b] ! R for which the derivatives are essentially bounded, namely f 0;
g0 2 L1 [a; b] :

Theorem 7. Assume that the function f : [a; b]! R is absolutely continuous and
f 0 2 L1 [a; b] : Then we have

0 � 1

2

 
1

b� a

Z b

a

f2 (t) dt+
1

b� a

Z b

a

f (t) f (a+ b� t) dt
!

(2.19)

�
 

1

b� a

Z b

a

f (t)

!2
� 1

24
kf 0 � f 0 (a+ b� �)k1 kf

0k1 (b� a)
2 � 1

12
kf 0k21 (b� a)

2
:

The proof follows by µCeby�ev�s inequality (2.18) for the functions h = �f (t) and
g = f and by observing that h0 = 1

2 (f
0 � f 0 (a+ b� �)) :

Corollary 1. Assume that the function f : [a; b]! R is absolutely continuous and
f 0 is H-r-Hölder continuous, i.e.

(2.20) jf 0 (t)� f 0 (s)j � H jt� sjr for any t; s 2 [a; b]

for some H > 0 and r 2 (0; 1]: Then we have

0 � 1

2

 
1

b� a

Z b

a

f2 (t) dt+
1

b� a

Z b

a

f (t) f (a+ b� t) dt
!

(2.21)

�
 

1

b� a

Z b

a

f (t)

!2
� 1

24
H kf 0k1 (b� a)

2+r
:
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Proof. From (2.20) we have

jf 0 (t)� f 0 (a+ b� t)j � H jt� a� b+ tjr = 2rH
����t� a+ b

2

����r
� 2rH (b� a)

r

2r
= H (b� a)r

for any t 2 [a; b] : Taking the supremum over t 2 [a; b] ; we get

kf 0 � f 0 (a+ b� �)k1 � H (b� a)r

and by (2.19) we get (2.21). �

Remark 2. If f : [a; b]! R is absolutely continuous and f 0 is K-Lipschitzian, i.e.
r = 1 and H = K > 0; then from (2.21) we have

0 � 1

2

 
1

b� a

Z b

a

f2 (t) dt+
1

b� a

Z b

a

f (t) f (a+ b� t) dt
!

(2.22)

�
 

1

b� a

Z b

a

f (t)

!2
� 1

24
K kf 0k1 (b� a)

3
:

3. Some Examples

Consider the function f : [a; b] � (0;1)! R given by f (t) = ln t: We have

�f (t) =
1

2
[ln t+ ln (a+ b� t)]

and �
�f (t)

�0
=
1

2

�
1

t
� 1

a+ b� t

�
=

a+b
2 � t

t (a+ b� t) ; t 2 (a; b)

and �
�f (t)

�00
= �1

2

 
1

t2
+

1

(a+ b� t)2

!
; t 2 (a; b) :

These shows that �f is strictly increasing on
�
a; a+b2

�
and strictly decreasing on�

a+b
2 ; b

�
and strictly concave on (a; b) : Therefore

lnG (a; b) � �f (t) � lnA (a; b) for any t 2 (a; b) ;

where G (a; b) :=
p
ab is the geometric mean and A (a; b) := 1

2 (a+ b) is the arith-
metic mean of positive numbers a; b:
Since

1

b� a

Z b

a

ln tdt = ln I (a; b)

where I (a; b) is the identric mean de�ned by

I (a; b) :=
1

e

�
bb

aa

� 1
b�a

:
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By using the inequality (2.14) for f (t) = ln t; t 2 [a; b] ; we have

0 � 1

2

 
1

b� a

Z b

a

(ln t)
2
dt+

1

b� a

Z b

a

ln t ln (a+ b� t) dt
!
� (I (a; b))2(3.1)

� 1

4
ln

�
b

a

�
ln

�
A (a; b)

G (a; b)

�
� 1

4

�
ln

�
b

a

��2
:

Consider the function f : [a; b] � R! R, f (t) = exp (�t) for � > 0: We have

�f (t) =
1

2
[exp (�t) + exp (� (a+ b� t))] ;

�
�f (t)

�0
=
1

2
� [exp (�t)� exp (� (a+ b� t))]

and �
�f (t)

�0
=
1

2
�2 [exp (�t) + exp (� (a+ b� t))]

for any t 2 [a; b] :
These shows that �f is strictly decreasing on

�
a; a+b2

�
and strictly increasing on�

a+b
2 ; b

�
and strictly convex on (a; b) : Therefore

exp (�A (a; b)) � �f (t) � A (exp (�a) ; exp (�b))

for any t 2 [a; b] :
If we de�ne the exponential mean E (u; v) for u 6= v by

E (u; v) :=
expu� exp v

u� v ;

then
1

b� a

Z b

a

f2 (t) dt =
1

b� a

Z b

a

exp (2�t) dt = E (2�b; 2�a) ;

1

b� a

Z b

a

f (t) f (a+ b� t) dt = 1

b� a

Z b

a

exp (2�t) exp [2� (a+ b� t)] dt

= exp [2� (a+ b)]

and
1

b� a

Z b

a

f (t) =
1

b� a

Z b

a

exp (�t) dt = E (�b; �a) :

By using the inequality (2.14) for f (t) = exp (�t) ; t 2 [a; b] ; we have

0 � 1

2
(E (2�b; 2�a) + exp [2� (a+ b)])� [E (�b; �a)]2(3.2)

� 1

8
[exp (�b)� exp (�a)]

h
exp

��
2
b
�
� exp

��
2
a
�i2

:
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Studia Univ. Babeş-Bolyai Math. 35 (1990), no. 4, 35�40.

[6] S. S. Dragomir, A re�nement of Ostrowski�s inequality for the µCeby�ev functional and appli-
cations. Analysis (Munich) 23 (2003), No. 4, 287�297.

[7] S. S. Dragomir, Symmetrized convexity and Hermite-Hadamard type inequalities, J. Math.
Ineq. 10 (2016), No. 4, 901�918. Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 2. [Online
http://rgmia.org/papers/v17/v17a02.pdf].

[8] S. S. Dragomir and B. Mond, Some mappings associated with Cebysev�s inequality for se-
quences of real numbers. Bull. Allahabad Math. Soc. 8/9 (1993/94), 37�55 (1997).

[9] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-
Hadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online
http://rgmia.org/monographs/hermite_hadamard.html].

[10] A. El Farissi, M. Benbachir and M. Dahmane, An extension of the Hermite-Hadamard inequal-
ity for convex symmetrized functions. Real Anal. Exchange, 38 (2012/13), No. 2, 467�474.

[11] A Guezane-Lakoud and F. Aissaoui, New µCeby�ev type inequalities for double integrals. J.
Math. Inequal. 5 (2011), No. 4, 453�462.

[12] G. Grüss, Über das Maximum des absoluten Betrages von 1
b�a

R b
a f (x) g (x) dx �

1
(b�a)2

R b
a f (x) dx

R b
a g (x) dx; Math. Z., 39 (1934), 215-226.

[13] S.-R. Hwang, Ostrowski-Grüss- µCeby�ev type inequalities involving several functions. Tamsui
Oxf. J. Math. Sci. 23 (2007), No. 1, 105�125.

[14] Z. Liu, Generalizations of some new µCeby�ev type inequalities. J. Inequal. Pure Appl. Math.
8 (2007), No. 1, Article 13, 6 pp.

[15] B. G. Pachpatte, On Ostrowski-Grüss- µCeby�ev type inequalities for functions whose modulus
of derivatives are convex. J. Inequal. Pure Appl. Math. 6 (2005), No. 4, Article 128, 15 pp.

[16] B. G. Pachpatte, New inequalities of µCeby�ev type for double integrals, Demonstratio Math.
40 (2007), no. 1, 43�50.

[17] B. G. Pachpatte, A note on µCeby�ev type inequalities. An. Ştiinţ. Univ. Al. I. Cuza Iaşi.
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