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ON SOME INTEGRAL INEQUALITIES FOR SYMMETRIZED
SYNCHRONOUS FUNCTIONS

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we establish some integral inequalities for the prod-
uct of symmetrized synchronous/asynchronous functions. Refinements and re-
verses of Cauchy-Bunyakovsky-Schwarz inequality for one function and some
examples for logarithmic and exponential functions are also given.

1. INTRODUCTION

For a function f : [a,b] — C we consider the symmetrical transform of f on the
interval [a,b] , denoted by f|, 4 or simply f, when the interval [a, b] is implicit, as
defined by

v 1

(1.1) f(t)::§[f(t)+f(a+b—t)],te[a,b].

The anti-symmetrical transform of f on the interval [a,b] is denoted by f[a,b], or
simply f and is defined by
~ 1

f@ =5f@®) - flatb=-1),t€lab.

It is obvious that for any function f we have f +f=f
If f is convex on [a,b], then for any t1, t2 € [a,b] and o, 8 > 0 with o+ 8 =1

we have
f(aty + Bty) = % [f (aty + Bta) + f (a+ b — aty = Bts)]
= S 1 (@t + Bt2) + f(alatb—t) + B(a+b 1))
< [0 (1) + BF (12) + 0 (a+b— 1) + Bf (a+ b 1)
= Salf () fatb— )]+ 5B (8) + S (a+0—12)
= af (0)+ B (1),

which shows that f is convex on [a,b] .
Consider the real numbers a < b and define the function fy : [a,b] — R, fo () =
t3. We have [7]

fo (@) ::% t3+(a+b—t)3} :g(a+b)t2—g(a+b)2t+%(a+b)3
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for any t € R.
o\ v
Since the second derivative (fo) (t) =3(a+Db),t €R,then fyis strictly convex

on [a,b] if “E* > 0 and strictly concave on [a,b] if %2 < 0. Therefore if a < 0 < b
with ‘%Lb > 0, then we can conclude that fy is not convex on [a, b] while fo is convex
on [a,b].

We can introduce the following concept of convexity [7], see also [10] for an
equivalent definition.

Definition 1. We say that the function f : [a,b] — R is symmetrized convex
(concave) on the interval [a,b] if the symmetrical transform f is convex (concave)
on [a,b].

Now, if we denote by C [a, b] the closed convex cone of convex functions defined

on [a,b] and by SC [a,b] the closed convex cone of symmetrized convex functions,
then from the above remarks we can conclude that

(1.2) Cla,b] & SCla,b].
Also, if [e,d] C [a,b] and f € SCJa,b], then this does not imply in general that
feSCled.

We have the following result 7], [10] :

Theorem 1. Assume that f : [a,b] — R is symmetrized convex and integrable on
the interval [a,b]. Then we have the Hermite-Hadamard inequalities

b
(1.3) f<a_2|_b>§ia/ f(t)dtgw.

For a monograph on Hermite-Hadamard type inequalities see [9].
In a similar way, we can introduce the following concept as well:

Definition 2. We say that the function f : [a,b] — R is asymmetrized monotonic
nondecreasing (nonincreasing) on the interval [a,b] if the anti-symmetrical trans-
form f is monotonic nondecreasing (nonincreasing) on the interval [a,b] .

If f is monotonic nondecreasing on [a, b], then for any ¢y, t2 € [a,b] we have

F(t2) = F (1) = 51 (02) — f @+ b= 1)) = 51 () = f (a+ b= 1)
= S ) = F 0]+ 5 [fatb—t) ~ fa+b— 1)
0

which shows that f : [a,b] — R is asymmetrized monotonic nondecreasing on the
interval [a, b] .

Consider the real numbers a < b and define the function fy : [a,b] — R, fo (¢) =
2. We have

fo (@) ::% t2—(a+b—t)2} :(a+b)t—%(a+b)2

N
and ( fo) (t) = a + b, therefore f : [a,b] — R is asymmetrized monotonic nonde-

creasing (nonincreasing) on the interval [a, b] provided “£2 > 0 (< 0) . So, if we take
a <0 < b with %*b > 0, then f is asymmetrized monotonic nondecreasing on [a, b]
but not monotonic nondecreasing on [a, b] .
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If we denote by M~ [a,b] the closed convex cone of monotonic nondecreasing
functions defined on [a,b] and by AM~ [a,b] the closed convex cone of asym-
metrized monotonic nondecreasing functions, then from the above remarks we can
conclude that

(1.4) M7 a,b] ¢ AM” [a, b].
Also, if [¢,d] C [a,b] and f € AM” [a,b], then this does not imply in general that
feAM” [e,d].

We recall that the pair of functions (f, g) defined on [a, b] are called synchronous
(asynchronous) on [a, b] if
(1.5) (f @) =f()(g#)—g(s) = ()0
for any ¢, s € [a,b]. It is clear that if both functions (f,g) are monotonic non-
decreasing (nonincreasing) on [a, b] then they are synchronous on [a,b]. There are
also functions that change monotonicity on [a,b], but as a pair they are still syn-
chronous. For instance if a < 0 < b and f,g: [a,b] = R, f(t) =t* and g (t) = t*,
then

2
(fO—F6)@E) —g(s) = (=) (t* —s') = (=) (P +5%) 20

for any ¢, s € [a,b], which show that (f,g) is synchronous.
Definition 3. We say that the pair of functions (f,g) defined on [a,b] is called

asymmetrized synchronous (asynchronous) on [a,b] if the pair of transforms (f, g)

is synchronous (asynchronous) on [a,b], namely

(16) (70 - F) @0 -3 = ()0
for any t,s € [a,b].

It is clear that if f, g are asymmetrized monotonic nondecreasing (nonincreasing)
on [a,b] then they are asymmetrized synchronous on [a, b] .
In the recent paper we obtained amongst others the following results:

Theorem 2. Assume that f, g are asymmetrized synchronous (asynchronous) and
integrable functions on [a,b]. Then

b
(17) | Fgwa= <o
If both f, g are asymmetrized monotonic nondecreasing (nonincreasing) and inte-

grable functions on [a,b], then

1
b—a

1 b
(1.8) 1 1) = f(a)llg(b) — g(a)] / f(#)g(t)dt =0,

and
b b
(19) ;min{lf(b)—f(a)lb_la/ 9(®ldtlg®) - g(a)l ;= [ If(t)ldt}

b
[ Fwswd=o

We can introduce the following concept as well:

>
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Definition 4. We say that the pair of functions (f,g) defined on [a,b] is called
symmetrized synchronous (asynchronous) on |a,b] if the pair of symmetrized trans-
forms (f,§) is synchronous (asynchronous) on [a,b], namely

(1.10) (W) =) (@) —3g(s) = ()0
for any t,s € [a,].

Now, assume that the function z : [a,b] — I, where I is an interval of real
numbers, and (¢, ¢) is a pair of synchronous (asynchronous) functions defined on the
interval I. Consider the functions f, g : [a,b] — R defined by f = ¢oZ and g = ¢ oi.
Then the functions f and g are symmetrical on [a,b] and f=¢oiand g=1oz.
Since (¢, 1) is a pair of synchronous (asynchronous) functions, it follows that ( f, g)
is synchronous (asynchronous) on [a, b], namely the pair of functions (f, g) defined
on [a, b] is symmetrized synchronous (asynchronous) on [a, b] . Therefore, we can give
many example of symmetrized synchronous (asynchronous) functions on [a, ] . For
instance, if (¢,%) is a pair of synchronous (asynchronous) functions defined on the

interval [0, 00), then the functions f, g : [a,b] — R defined by f (¢) (|t ath |p)
and g (t) (|t a;rb |p) with p > 0 are symmetrized synchronous (asynchronous)
on [a,b].

One of the most important results for synchronous (asynchronous) and integrable
functions f, g on [a,b] is the well-known Cebysev’s inequality:

_a/f fdi > (<) 7— /f dt—/ (t) dt.

For integral inequalities of Cebysev’s type, see [1]-[6], [8], [11]-[20] and the refer-
ences therein.

Motivated by the above results, we establish in this paper some inequalities
for symmetrized synchronous (asynchronous) functions on [a, b] . Refinements and
reverses of Cauchy-Bunyakovsky-Schwarz inequality for one function and some ex-
amples for logarithmic and exponential functions are also given.

(1.11)

2. MAIN RESULTS

We have the following Cebysev’s type result:

Theorem 3. Assume that the pair of integrable functions (f,g) defined on [a,b] is
symmetrized synchronous (asynchronous) on [a,b], then

_a/f t)dt > ( b_ /f dti abg(t)dt,

Proof. Since ( f g) is synchronous (asynchronous) on [a,b], then by Cebysev’s in-
equality (1.11) we have

/f() () dt > (< _a/f dt/fg(t)dt.

(2.1)

1

(2.2)
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Observe that, by the change of variable s =a+ b —t, t € [a,b] we have

/abf<t>dt=;/ab[f(t)+f<a+b—t>1
=2 [/abf(t)dtJr/abf(aer—t)dt] =/abf(t)dt

/abg(t)dt:/abg(t)dt

b b
@3 [ Foawa=g [ 7O+ Fa@rb-lls®+glarb-b)d

and

b
— 1 [ fOs@+r@rb-00)
+ft)gla+b—t)+ fla+b—t)gla+b—1t)]dt
b

- [/ ()

f( (t)dt+/bf(a+b—t)g(t)dt

-}
o[ sass-ngwas [ros0a
1

b
[ rwswas [ f(a+b—t>g<t>dt]

since,

b

/f(a+b—t t)dt = /f gla+b—s)d
b

/faerft +b7t)dt:/f(s)g(s)ds

By making use of (2.2) we obtain the desired result (2.1).

and

In addition, we also have:

Theorem 4. Assume that the pair of integrable functions (f,g) defined on [a,b] is

symmetrized synchronous (asynchronous) on [a,b], then

(2.4) /f dt——/f dt— g(t)dt

> (<) (f“)—ba/ f(t)dt> (b/ g(t)dt—g<s>>

for any s € [a,b].
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In particular,

(2.5) bia/f dt——/f dt—/ () dt
z(s)(f(“;”’)—ba/ f(t)dt>
(b a/”g (a+b)>
and
(2.6) b_a/f dtf—/f dt—/

z(s)(f( ! —b_a/afuwt)
y (bia/abﬂﬂdt—g(a);g(b))

Proof. Since ( 1, §) is synchronous (asynchronous) on [a,b], then

(2.7) F®g@) —F()g@) = FB)a(s)+f(5)a(s) = ()0

for any t, s € [a,b].
Taking the integral mean over t € [a, b] we get

b_a/f (s) la/abw)dt

t)ydt+ f(s)g(s)

0‘

> (7)

for any s € [a,b].
This is equivalent to

(2.8)

/f t)dt > ( )f(S)

b—a

for any s € [a,b].
Now, if we subtract in both sides of the inequality (2.8)

_a/f dt—/ (1),
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then we get

(2.9) bl /f() dt——/f dt—/ g (t)dt
1

> (905 [ 0atats D f(5)90)
/ Ft dt— g(t) dt
b

= <f<s>—b_a/ f(t)dt) (bi/ g(t)dt—g@))

and since
b b b
o [roa=t [ roa o iwa= 2 [wa
and, by (2.3)
b b
= [ Fwawa= = [ Fwewa
then by (2.9) we get the desired inequality (2.4).
Since

c(a+d\  ,(a+b oy iy J(a)+ f(D)

f< : )—f( ! ) and f(a) = f (1) = L@ TL0)
and the similar relations for g, hence (2.5) and (2.6) follow from (2.4). O

Remark 1. We observe that if the pair of integrable functions (f,g) defined on
[a,b] is symmetrized synchronous and one is symmetrized convexr while the other is
symmetrized concave, then we have the following reﬁnements of (2.1)

(2.10) 7— /f dtf—/f dt— g(t)dt

z<f<““’) )( /abg<t>dtg(“;”)>zo

(2.11) bia/f() dt——/f dt—/g(t)dt
2(““)_2” —b_a/af(ﬂdt)
b
x(bla/ag@dt—g(a);g‘b))

> 0.

We have the following refinement of Cauchy-Bunyakovsky-Schwarz integral in-
equality for a real-valued functions:
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Theorem 5. For any integrable function f : [a,b] — R, we have

(2.12) _a/ I0) dt>—/ @) f(t)dt > (I)_lgb/abf(t))2

or, equivalently

b
bia/ f2(t)dt
b b
Z;(z;ia/a fQ(t)dtﬁ*ﬁ/a f(t)f(a+bt)dt>
b 2
><bia/ f(t)>

Proof. By taking g = f in (2.1), since for any integrable function f, the pair (f, f)
is symmetrized synchronous on [a, b], we get the second inequality in (2.12).
By the Cauchy-Bunyakovsky-Schwarz integral inequality we have

(2.13)

b b
/f(t)f(a+b—t)dt§/ F(8) Fa+b—t)|dt

1/2 1/2
g(/bfz(t)dt) </bf2(a+b—t)dt>
X 1/2 X 1/2 ,
- < / I <t)dt> ( / I (t)dt) - / £ (1) dt

which proves the first inequality in (2.13). ([l
The following reverse inequality also holds:

Theorem 6. Assume that the measurable function f : [a,b] — R satisfies the
conditions

—co<m< f(t) <M < oo for a.e tela,b]
and
—oo<m§7h§f(t)§M§M<oofora.e.te[a,b]
for the constants m, 1, M, M. Then

(2.14) ;(b_ /f2 dt+—/f +b—t)dt>
—(b_a/a f(t)>
1

SZ(M—W)(M_ m) <

(M —m)?>.

.JM»—*

Proof. We use G. Griiss’ inequality [12] who showed that

(2.15) T (h,g9)l < (M m) (N —mn),
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provided m, M,n, N are real numbers with the property
(2.16) —co<m<h<M<oo, —co<n<g<N<oo ae. on [a,b,

where the Cebysev functional T (h, g) is defined by

(217)  T(hg): b_a/ ht dt—b_a/ h(t dt—/g(t)dt.

By taking in (2.15) h = f and g = f we get (2.14). O

Another less well known inequality for T (h, g) was derived in 1882 by Cebysev
[4] under the assumption that f’, ¢’ exist and are bounded in (a,b) and is given by

(2.18) T (h, 9) 17l 119l (b = @),

‘_12

where [|B/||, := sup [h/(t)|. The constant -5 cannot be improved in the gen-
t€(a,b)

eral case. This inequality can be extended for absolutely continuos functions

f, g : |a,b] — R for which the derivatives are essentially bounded, namely f,

!

g € Ly [a,b].

Theorem 7. Assume that the function f : [a,b] — R is absolutely continuous and
' € Loo|a,b]. Then we have

Ao
(o)

/ / / 2
Sﬂ\\f—f(a+b—~)lloo||flloo( )Sﬁllfll (b—a)”.

(2.19)

The proof follows by Cebysev’s inequality (2.18) for the functions h = f (t) and
g = f and by observing that B’ = 1 (f' — f'(a+b—")).

Corollary 1. Assume that the function f : [a,b] — R is absolutely continuous and
' is H-r-Holder continuous, i.e.

(2.20) lf' ()= f (s)| < HIt—s|" foranyt,s € [a,b]

for some H > 0 and r € (0,1]. Then we have

(2.21) (b /f2 dt—s——/f +b—t)dt>
(bia/a f(t)>

1 r
SrH I o (b =)™

IN
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Proof. From (2.20) we have

r

a+b

|f’(t)—f’(a+b—t)|§Ht—a—b+t|’"=27“H‘t—

(b—a)
27"

<oH —H®b-a)

for any ¢ € [a,b]. Taking the supremum over t € [a, ], we get
If = flat+b=")ll <H(b—a)
and by (2.19) we get (2.21). O

Remark 2. If f : [a,b] — R is absolutely continuous and f' is K -Lipschitzian, i.e.
r=1and H= K >0, then from (2.21) we have

b b
(2.22) o§;<b1a/ f2(t)dt+ﬁ/ f(t)f(a+b—t)dt>
b

(bia/a f(t)>2

1 / 3
g7 K 1F e (0= )’

IN

3. SOME EXAMPLES

Consider the function f : [a,b] C (0,00) — R given by f (t) = Int. We have

f(t):%[lnt+ln(a+b7t)]

and
o 11 1 ath ¢
) =55 =2 L te(ab
(f() 2<t a+bt> ta+b—1t) € (a,5)
and
9 " 1(1 1
t) =—|5+——=5],te(ab).
(F® 2<t2 (Hb_t)Q) (a,b)
These shows that f is strictly increasing on (a, %*b) and strictly decreasing on

(22, b) and strictly concave on (a,b) . Therefore
InG (a,b) < f(t) <InA(a,b) for any ¢ € (a,b),

where G (a,b) := Vab is the geometric mean and A (a,b) := % (a+b) is the arith-
metic mean of positive numbers a, b.
Since

1 b
m/a Intdt =1In[ (Cl7 b)

where I (a,b) is the identric mean defined by

1
10\
I(a,b) = g <aa) .
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By using the inequality (2.14) for f (t) = Int, t € [a,b], we have

(3.1) OS;(bia/b(lnt)zdt_F[)_1a/b1ntln(a+b_t)dt) — (I(a,b))?

Qe S )

Consider the function f : [a,b] CR — R, f(t) = exp (at) for oo > 0. We have

v

Ft) = % fexp (at) + exp (a (a + b — )],
(F®) = 3alexp (at) — exp(afa+ 1))
and

VAR |
(1) = 30% [exp (at) +exp (a(a+b—1))
for any t € [a,b].
These shows that f is strictly decreasing on (a, “T"’b) and strictly increasing on
(%H’, b) and strictly convex on (a,b) . Therefore

exp (@A (a,b)) < f(t) < A (exp (aa) ,exp (ab))

for any t € [a,b].
If we define the exponential mean F (u,v) for u # v by

expu — expv

E(u,v) T T u—o
then
[, 1P
b—@/a f (t)dtzm/a exp (2at) dt = E (2ab,2aa) ,
I I
b—a/ f(t)f(a+b7t)dt:b_a/ exp (2at) exp [2a(a + b —t)] dt
= exp [2a (a + b)]
and

I I
By using the inequality (2.14) for f (t) = exp (at), t € [a,b], we have

(3.2) 0< % (E (2ab, 2aa) + exp [2a (a + b)]) — [E (ab, aa))?

< — [exp (ab) — exp (aa)] [exp (%b) — exp (%a)} ’ .

| =
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