
ONE PARAMETER BOUNDS FOR AN OPERATOR
ASSOCIATED TO HERMITE-HADAMARD INEQUALITY FOR

CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish one parameter bounds for the operator

Da+;b�f (x) :=
1

2

�
1

x� a

Z x

a
f (t) dt+

1

b� x

Z b

x
f (t) dt

�
; x 2 (a; b)

in the case of convex functions f : [a; b] ! R. Various weighted Hermite-
Hadamard type inequalities are also provided.

1. Introduction

The following integral inequality

(1.1) f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt � f (a) + f (b)

2
;

which holds for any convex function f : [a; b] ! R; is well known in the literature
as the Hermite-Hadamard inequality.
There is an extensive amount of literature devoted to this simple and nice result

which has many applications in the Theory of Special Means and in Information
Theory for divergence measures, from which we would like to refer the reader to
the monograph [7], the recent survey paper [5], the research papers [1]-[2], [8]-[16]
and the references therein.
Assume that the function f : (a; b) ! C is Lebesgue integrable on (a; b) : We

introduce the following operator

(1.2) Da+;b�f (x) :=
1

2

"
1

x� a

Z x

a

f (t) dt+
1

b� x

Z b

x

f (t) dt

#
; x 2 (a; b) :

We observe that if we take x = a+b
2 ; then we have

Da+;b�f

�
a+ b

2

�
=

1

b� a

Z b

a

f (t) dt:

Moreover, if f (a+) := limx!a+ f (x) exists and is �nite, then we have

lim
x!a+

Da+;b�f (x) =
1

2

"
f (a+) +

1

b� a

Z b

a

f (t) dt

#
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and if f (b�) := limx!b� f (x) exists and is �nite, then we have

lim
x!b�

Da+;b�f (x) =
1

2

"
f (b�) + 1

b� a

Z b

a

f (t) dt

#
:

So, if f : [a; b]! C is Lebesgue integrable on [a; b] and continuous at right in a and
at left in b, then we can extend the operator on the whole interval by putting

Da+;b�f (a) :=
1

2

"
f (a) +

1

b� a

Z b

a

f (t) dt

#
and

Da+;b�f (b) :=
1

2

"
f (b) +

1

b� a

Z b

a

f (t) dt

#
:

If we change the variable t = (1� s) a+ sx for x 2 (a; b) then we have

1

x� a

Z x

a

f (t) dt =

Z 1

0

f ((1� s) a+ sx) ds

and if we change the variable t = (1� s)x+ sb for x 2 (a; b) ; then we also have

1

b� x

Z b

x

f (t) dt =

Z 1

0

f ((1� s)x+ sb) ds;

which gives the representation

(1.3) Da+;b�f (x) =
1

2

Z 1

0

[f ((1� s) a+ sx) + f ((1� s)x+ sb)] ds; x 2 (a; b) :

Using the representation (1.3), we observe that the operator Da+;b� is linear,
nonnegative and preserves the constant functions, namely

Da+;b� (�f + �g) = �Da+;b� (f) + �Da+;b� (g)

for any complex numbers �; � and integrable functions f; g: If f � 0 almost
everywhere on [a; b] and f is integrable, then Da+;b�f (x) � 0 for any x 2 (a; b) :
Also, if f = k; a constant, then Da+;b�k (x) = k for any x 2 (a; b) : If we de�ne the
function 1 (t) = 1; t 2 [a; b] ; then, obviously, Da+;b�1 = 1:
In this paper we establish one parameter bounds for the operator Da+;b�f (x) ;

x 2 (a; b) in the case of convex functions f : [a; b]! R. Various weighted Hermite-
Hadamard type inequalities are also provided.

2. Some Bounds for Convex Functions

Suppose that I is an interval of real numbers with interior �I and f : I ! R is
a convex function on I. Then f is continuous on �I and has �nite left and right
derivatives at each point of �I. Moreover, if x; y 2 �I and x < y; then f 0� (x) �
f 0+ (x) � f 0� (y) � f 0+ (y) which shows that both f

0
� and f 0+ are nondecreasing

function on �I. It is also known that a convex function must be di¤erentiable except
for at most countably many points.
For a convex function f : I ! R, the subdi¤erential of f denoted by @f is the

set of all functions ' : I ! [�1;1] such that '
�
�I
�
� R and

(2.1) f (x) � f (y) + (x� y)' (y) for any x; y 2 I:



ONE PARAMETER BOUNDS 3

It is also well known that if f is convex on I; then @f is nonempty, f 0�, f
0
+ 2 @f

and if ' 2 @f , then
f 0� (x) � ' (x) � f 0+ (x) for any x 2 �I.

In particular, ' is a nondecreasing function.
If f is di¤erentiable and convex on �I, then @f = ff 0g :

Theorem 1. Assume that f : I ! R is a convex function on the interval of real
numbers I and a; b real numbers such that [a; b] � I: Then for any x; y 2 (a; b) we
have

(2.2) f (y) + ' (y)

�
1

2

�
x+

a+ b

2

�
� y
�
� Da+;b�f (x)

� 1

2
f (y) +

1

2

(x� y)
�
a+b
2 � x

�
(x� a) (b� x) f (x) +

1

4

�
y � a
x� af (a) +

b� y
b� xf (b)

�
:

Proof. From the gradient inequality we have

f (t) � f (y) + (t� y)' (y)
for any t; y 2 I:
If we denote by e the identity function, namely e (t) = t; we have in the function

order that
f � f (y)1+ ' (y) (e� y1)

for any �xed y 2 I:
If we take the operator Da+;b� to this inequality and use the facts that it is

linear, nonnegative and preserves the constant functions, then we get

Da+;b�f � f (y)Da+;b�1+ ' (y) (Da+;b�e� yDa+;b�1)
= f (y)1+ ' (y) (Da+;b�e� y1)

for any �xed y 2 I:
This inequality can be written for any x 2 (a; b) as

(2.3) Da+;b�f (x) � f (y) + ' (y) (Da+;b�e (x)� y) :
Since

Da+;b�e (x) =
1

2

"
1

x� a

Z x

a

tdt+
1

b� x

Z b

x

tdt

#

=
1

2

�
x2 � a2
2 (x� a) +

b2 � x2
2 (b� x)

�
=
1

2

�
x+ a

2
+
b+ x

2

�
=

1

2

�
x+

a+ b

2

�
;

then by (2.3) we get the �rst inequality in (2.2).
From the gradient inequality we also have

(t� y)' (t) + f (y) � f (t)
for any t; y 2 I:
This can be writen in the function order as

(e� y1)'+ f (y)1 � f
for any �xed y 2 I:
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If we take the operator Da+;b� to this inequality, we also get

Da+;b� (e')� yDa+;b�'+ f (y)1 � Da+;b�f

for any �xed y 2 I:
This inequality can be written for any x 2 (a; b) as

(2.4) Da+;b� (e') (x)� yDa+;b�' (x) + f (y) � Da+;b�f (x) :

Since f is convex, then ' (t) = f 0 (t) for almost every t 2 (a; b) and we have

Da+;b� (e') (x) =
1

2

"
1

x� a

Z x

a

tf 0 (t) dt+
1

b� x

Z b

x

tf 0 (t) dt

#

=
1

2

�
1

x� a

�
xf (x)� af (a)�

Z x

a

f (t) dt

�
+

1

b� x

 
bf (b)� xf (x)�

Z b

x

f (t) dt

!#

=
1

2

�
xf (x)� af (a)

x� a +
bf (b)� xf (x)

b� x

�
�Da+;b�f (x)

and

Da+;b�' (x) =
1

2

"
1

x� a

Z x

a

f 0 (t) dt+
1

b� x

Z b

x

f 0 (t) dt

#

=
1

2

�
f (x)� f (a)

x� a +
f (b)� f (x)

b� x

�
:

Therefore, by (2.4) we get

1

2

�
xf (x)� af (a)

x� a +
bf (b)� xf (x)

b� x

�
� 1
2

�
f (x)� f (a)

x� a +
f (b)� f (x)

b� x

�
y + f (y)

� 2Da+;b�f (x)

that is equivalent to

1

4

�
xf (x)� af (a)

x� a +
bf (b)� xf (x)

b� x

�
(2.5)

� 1
4

�
f (x)� f (a)

x� a +
f (b)� f (x)

b� x

�
y +

1

2
f (y)

� Da+;b�f (x) :

Now observe that

1

4

xf (x)� af (a)
x� a � 1

4

f (x)� f (a)
x� a y

=
1

4 (x� a) [xf (x)� af (a)� f (x) y + f (a) y]

=
1

4 (x� a) [(x� y) f (x) + f (a) (y � a)]
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and

1

4

bf (b)� xf (x)
b� x � 1

4

f (b)� f (x)
b� x y

=
1

4 (b� x) [bf (b)� xf (x)� f (b) y + f (x) y]

=
1

4 (b� x) [f (b) (b� y)� f (x) (x� y)] ;

and by (2.5) we get

Da+;b�f (x) �
1

2
f (y) +

1

4 (x� a) [(x� y) f (x) + f (a) (y � a)]

+
1

4 (b� x) [f (b) (b� y)� f (x) (x� y)]

=
1

2
f (y) +

1

2

(x� y)
�
a+b
2 � x

�
(x� a) (b� x) f (x) +

1

4

�
y � a
x� af (a) +

b� y
b� xf (b)

�
;

which proves the second inequality in (2.2). �

Corollary 1. With the assumptions of Theorem 1 we have that

(2.6) f (x) +
1

2
' (x)

�
a+ b

2
� x
�
� Da+;b�f (x) �

1

2

�
f (x) +

f (a) + f (b)

2

�
and

(2.7) f

�
a+ b

2

�
+
1

2
'

�
a+ b

2

��
x� a+ b

2

�
� Da+;b�f (x)

� 1

2
f

�
a+ b

2

�
� 1
2

�
x� a+b

2

�2
(x� a) (b� x)f (x)

+
1

8
(b� a)

�
(b� x) f (a) + (x� a) f (b)

(x� a) (b� x)

�
;

for any x 2 (a; b) :

The proof follows by (2.2) on taking y = x and y = a+b
2 ; respectively.

Corollary 2. With the assumptions of Theorem 1 we have that

(2.8) f

�
1

2

�
x+

a+ b

2

��
� Da+;b�f (x)

� 1

2
f

�
1

2

�
x+

a+ b

2

��
� 1
4

�
x� a+b

2

�2
(x� a) (b� x)f (x)

+
1

8

 
1
2

�
x+ a+b

2

�
� a

x� a f (a) +
b� 1

2

�
x+ a+b

2

�
b� x f (b)

!
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and

(2.9)
2

b� a

Z b

a

f (t) dt�
f (b)

�
b� 1

2

�
x+ a+b

2

��
+ f (a)

�
1
2

�
x+ a+b

2

�
� a
�

b� a
� Da+;b�f (x)

� 1

2

1

b� a

Z b

a

f (t) dt� 1
2

�
x� a+b

2

�2
(x� a) (b� x)f (x)

+
1

8
(b� a)

�
(b� x) f (a) + (b� x) f (b)

(x� a) (b� x)

�
:

Proof. The inequality (2.8) follows by (2.2) on taking y = 1
2

�
x+ a+b

2

�
:

If we take the integral mean in (2.2), then we get

(2.10)
1

b� a

Z b

a

f (y) dy +
1

b� a

Z b

a

' (y)

�
1

2

�
x+

a+ b

2

�
� y
�
dy � Da+;b�f (x)

� 1

2

1

b� a

Z b

a

f (y) dy +
1

2

�
x� 1

b�a
R b
a
ydy
� �

a+b
2 � x

�
(x� a) (b� x) f (x)

+
1

4

 
1
b�a

R b
a
ydy � a

x� a f (a) +
b� 1

b�a
R b
a
ydy

b� x f (b)

!

=
1

2

1

b� a

Z b

a

f (y) dy +
1

2

�
x� a+b

2

� �
a+b
2 � x

�
(x� a) (b� x) f (x)

+
1

4

 
a+b
2 � a
x� a f (a) +

b� a+b
2

b� x f (b)

!

=
1

2

1

b� a

Z b

a

f (y) dy � 1
2

�
x� a+b

2

�2
(x� a) (b� x)f (x)

+
1

8
(b� a)

�
(b� x) f (a) + (b� x) f (b)

(x� a) (b� x)

�
:

Using the integration by parts, we haveZ b

a

' (y)

�
1

2

�
x+

a+ b

2

�
� y
�
dy

=

Z b

a

f 0 (y)

�
1

2

�
x+

a+ b

2

�
� y
�
dy

= f (y)

�
1

2

�
x+

a+ b

2

�
� y
�����b
a

+

Z b

a

f (y) dy

= f (b)

�
1

2

�
x+

a+ b

2

�
� b
�
� f (a)

�
1

2

�
x+

a+ b

2

�
� a
�
+

Z b

a

f (y) dy

= �f (b)
�
b� 1

2

�
x+

a+ b

2

��
� f (a)

�
1

2

�
x+

a+ b

2

�
� a
�
+

Z b

a

f (y) dy

and by (2.10) we get the desired result (2.9). �
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3. Some Weighted Integral Inequalities

We have

Theorem 2. Assume that f : I ! R is a convex function on the interval of real
numbers I and a; b real numbers such that [a; b] � I; the interior of I: Then for any
y 2 (a; b) we have

(3.1) f (y) + ' (y)

�
a+ b

2
� y
�
�
Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx:

In particular, we have

(3.2) f

�
a+ b

2

�
�
Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx:

Proof. Taking the integral mean in the �rst inequality in (2.2) we have

(3.3) f (y) + ' (y)

"
1

2

1

b� a

Z b

a

�
x+

a+ b

2

�
dx� y

#
� 1

b� a

Z b

a

Da+;b�f (x)

for any y 2 (a; b) :
We observe that f is continuous on [a; b] : We claim that

(3.4)
Z b

a

Da+;b�f (x) dx =

Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx:

Observe that, integrating by parts, we haveZ b

a

�
1

x� a

Z x

a

f (t) dt

�
dx =

Z b

a

�Z x

a

f (t) dt

�
d (ln (x� a))

= ln (x� a)
�Z x

a

f (t) dt

�����b
a+

�
Z b

a

ln (x� a) f (x) dx

= ln (b� a)
 Z b

a

f (t) dt

!
� lim
x!a+

�
ln (x� a)

�Z x

a

f (t) dt

��
�
Z b

a

ln (x� a) f (x) dx:

Since

lim
x!a+

�
ln (x� a)

�Z x

a

f (t) dt

��
= lim

x!a+

�
(x� a) ln (x� a)

�
1

x� a

Z x

a

f (t) dt

��
= lim

x!a+
[(x� a) ln (x� a)] lim

x!a+

�
1

x� a

Z x

a

f (t) dt

�
= 0f (a+) = 0;

henceZ b

a

�
1

x� a

Z x

a

f (t) dt

�
dx = ln (b� a)

 Z b

a

f (t) dt

!
�
Z b

a

ln (x� a) f (x) dx

=

Z b

a

[ln (b� a)� ln (x� a)] f (x) dx =
Z b

a

ln

�
b� a
x� a

�
f (x) dx



8 S. S. DRAGOMIR

Also, integrating by parts, we have

Z b

a

 
1

b� x

Z b

x

f (t) dt

!
dx = �

Z b

a

 Z b

x

f (t) dt

!
d (ln (b� x))

= � ln (b� x)
 Z b

x

f (t) dt

!�����
b�

a

+

Z b

a

ln (b� x) d
 Z b

x

f (t) dt

!

= � lim
x!b�

"
ln (b� x)

 Z b

x

f (t) dt

!#
+ln (b� a)

 Z b

a

f (t) dt

!
�
Z b

a

ln (b� x) f (x) dx

= ln (b� a)
 Z b

a

f (t) dt

!
�
Z b

a

ln (b� x) f (x) dx =
Z b

a

ln

�
b� a
b� x

�
f (x) dx:

Therefore

Z b

a

Da+;b�f (x) dx =
1

2

"Z b

a

ln

�
b� a
x� a

�
f (x) dx+

Z b

a

ln

�
b� a
b� x

�
f (x) dx

#

=
1

2

Z b

a

ln

"
(b� a)2

(x� a) (b� x)

#
f (x) dx =

Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx

and the equality (3.4) is obtained.
Since

1

b� a

Z b

a

�
x+

a+ b

2

�
dx = a+ b;

then by (3.3) we get the desired result (3.1). �

We have:

Theorem 3. Assume that f : I ! R is a convex function on the interval of real
numbers I and a; b real numbers such that [a; b] � I; the interior of I: Assume also
that w � 0 a.e. on [a; b] and

R b
a
w (t) dt > 0; then we have

(3.5)

1

2

 
1R b

a
w (x) dx

Z b

a

f (x)

�
x� a+ b

2

�
w0 (x) dx� (f (a)w (a) + f (b)w (b)) (b� a)

2

!

+
3

2

1R b
a
w (x) dx

Z b

a

f (x)w (x) dx

� 1R b
a
w (x) dx

Z b

a

Da+;b�f (x)w (x) dx

� 1R b
a
w (x) dx

Z b

a

f (x)w (x) dx+
f (a) + f (b)

2
:
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Proof. From (2.6) to get

(3.6) f (x)w (x) +
1

2
' (x)

�
a+ b

2
� x
�
w (x) � Da+;b�f (x)w (x)

� 1

2

�
f (x)w (x) +

f (a) + f (b)

2
w (x)

�
for a.e. x 2 [a; b] :
Integrating this on [a; b] we getZ b

a

f (x)w (x) dx+
1

2

Z b

a

f 0 (x)

�
a+ b

2
� x
�
w (x) dx

�
Z b

a

Da+;b�f (x)w (x) dx

� 1

2

 Z b

a

f (x)w (x) dx+
f (a) + f (b)

2

Z b

a

w (x) dx

!

namely

(3.7)
1R b

a
w (x) dx

Z b

a

f (x)w (x) dx

+
1

2

1R b
a
w (x) dx

Z b

a

f 0 (x)

�
a+ b

2
� x
�
w (x) dx

� 1R b
a
w (x) dx

Z b

a

Da+;b�f (x)w (x) dx

� 1

2

 
1R b

a
w (x) dx

Z b

a

f (x)w (x) dx+
f (a) + f (b)

2

!
:

Using the integration by parts formula, we haveZ b

a

f 0 (x)

�
a+ b

2
� x
�
w (x) dx

= f (x)

�
a+ b

2
� x
�
w (x)

����b
a

�
Z b

a

f (x)

��
a+ b

2
� x
�
w (x)

�0
dx

= f (b)

�
a+ b

2
� b
�
w (b)� f (a)

�
a+ b

2
� a
�
w (a)

�
Z b

a

f (x)

�
�w (x) +

�
a+ b

2
� x
�
w0 (x)

�
dx

= �f (a)w (a) + f (b)w (b)
2

(b� a) +
Z b

a

f (x)w (x) dx

+

Z b

a

f (x)

�
x� a+ b

2

�
w0 (x) dx:
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Therefore

Z b

a

f (x)w (x) dx+
1

2

Z b

a

f 0 (x)

�
a+ b

2
� x
�
w (x) dx

=

Z b

a

f (x)w (x) dx+
1

2

Z b

a

f (x)w (x) dx

+
1

2

 Z b

a

f (x)

�
x� a+ b

2

�
w0 (x) dx� f (a)w (a) + f (b)w (b)

2
(b� a)

!

=
3

2

Z b

a

f (x)w (x) dx

+
1

2

 Z b

a

f (x)

�
x� a+ b

2

�
w0 (x) dx� f (a)w (a) + f (b)w (b)

2
(b� a)

!

and by (3.7) we get (3.5). �

The following representation holds:

Lemma 1. Assume that the function f : (a; b)! C is Lebesgue integrable on (a; b).
Then we have

(3.8)
Z b

a

(x� a) (b� x)Da+;b�f (x) dx =
1

4

Z b

a

h
(x� a)2 + (b� x)2

i
f (x) dx:

Proof. We have

Z b

a

(x� a) (b� x)Da+;b�f (x) dx(3.9)

=
1

2

"Z b

a

(b� x)
�Z x

a

f (t) dt

�
dx+

Z b

a

(x� a)
 Z b

x

f (t) dt

!
dx

#
:

Using the integration by parts formula, we have

Z b

a

(b� x)
�Z x

a

f (t) dt

�
dx

= �
Z b

a

�Z x

a

f (t) dt

�
d

 
(b� x)2

2

!

= �
�Z x

a

f (t) dt

�
(b� x)2

2

�����
b

a+

+

Z b

a

(b� x)2

2
d

�Z x

a

f (t) dt

�

=
1

2

Z b

a

(b� x)2 f (x) dx
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and Z b

a

(x� a)
 Z b

x

f (t) dt

!
dx

=

Z b

a

 Z b

x

f (t) dt

!
d

 
(x� a)2

2

!

=
(x� a)2

2

Z b

x

f (t) dt

�����
b�

a

�
Z b

a

(x� a)2

2
d

 Z b

x

f (t) dt

!

=
1

2

Z b

a

(x� a)2 f (x) dx;

which, by (3.9) produces the desired result (3.8). �

Corollary 3. Assume that f : I ! R is a convex function on the interval of real
numbers I and a; b real numbers such that [a; b] � I; the interior of I: Then

3

2

Z b

a

f (x) (x� a) (b� x) dx�
Z b

a

f (x)

�
x� a+ b

2

�2
dx(3.10)

� 1

4

Z b

a

h
(x� a)2 + (b� x)2

i
f (x) dx

�
Z b

a

f (x) (x� a) (b� x) dx+ f (a) + f (b)
12

(b� a)3 :

Proof. If we take w (x) = (x� a) (b� x) ; x 2 [a; b] in (3.5), then we have
1R b

a
(x� a) (b� x) dx

Z b

a

f (x)

�
x� a+ b

2

��
a+ b

2
� x
�
dx

+
3

2

1R b
a
(x� a) (b� x) dx

Z b

a

f (x) (x� a) (b� x) dx

� 1R b
a
(x� a) (b� x) dx

Z b

a

Da+;b�f (x) (x� a) (b� x) dx

� 1R b
a
(x� a) (b� x) dx

Z b

a

f (x) (x� a) (b� x) dx+ f (a) + f (b)
2

;

that is equaivalent to

3

2

Z b

a

f (x) (x� a) (b� x) dx�
Z b

a

f (x)

�
x� a+ b

2

�2
dx(3.11)

�
Z b

a

Da+;b�f (x) (x� a) (b� x) dx

�
Z b

a

f (x) (x� a) (b� x) dx+ f (a) + f (b)
2

Z b

a

(x� a) (b� x) dx;

Since
R b
a
(x� a) (b� x) dx = 1

6 (b� a)
3
;then by Lemma 1 and (3.11) we get (3.10).

�

We also have:
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Theorem 4. Assume that f : I ! R is a convex function on the interval of real
numbers I and a; b real numbers such that [a; b] � I; the interior of I: Assume also
that w � 0 a.e. on [a; b] and

R b
a
w (t) dt > 0; then we have

f

�
a+ b

2

�
+
1

2
'

�
a+ b

2

�
1R b

a
w (x) dx

Z b

a

�
x� a+ b

2

�
w (x) dx(3.12)

� 1R b
a
w (x) dx

Z b

a

Da+;b�f (x)w (x) dx

� 1

2
f

�
a+ b

2

�
� 1
2

1R b
a
w (x) dx

Z b

a

�
x� a+b

2

�2
(x� a) (b� x)w (x) f (x) dx

+
1

8
(b� a) 1R b

a
w (x) dx

Z b

a

(b� x) f (a) + (x� a) f (b)
(x� a) (b� x) w (x) dx:

Proof. From the inequality (2.7) we have

f

�
a+ b

2

�
w (x) +

1

2
'

�
a+ b

2

��
x� a+ b

2

�
w (x)

� Da+;b�f (x)w (x)

� 1

2
f

�
a+ b

2

�
w (x)� 1

2

�
x� a+b

2

�2
(x� a) (b� x)w (x) f (x)

+
1

8
(b� a)

�
(b� x) f (a) + (x� a) f (b)

(x� a) (b� x) w (x)

�
;

which by integration we get

f

�
a+ b

2

�Z b

a

w (x) dx+
1

2
'

�
a+ b

2

�Z b

a

�
x� a+ b

2

�
w (x) dx

�
Z b

a

Da+;b�f (x)w (x) dx

� 1

2
f

�
a+ b

2

�Z b

a

w (x) dx� 1
2

Z b

a

�
x� a+b

2

�2
(x� a) (b� x)w (x) f (x) dx

+
1

8
(b� a)

Z b

a

(b� x) f (a) + (x� a) f (b)
(x� a) (b� x) w (x) dx;

that is equivalent to (3.12). �

Remark 1. If w is symmetric, i.e. w (a+ b� x) = w (x) for any x 2 (a; b) ; then
the function g (x) :=

�
x� a+b

2

�
w (x) is assymetric and thus

R b
a
g (x) dx = 0: By the

�rst inequality in (3.12) we then get

(3.13) f

�
a+ b

2

�
� 1R b

a
w (x) dx

Z b

a

Da+;b�f (x)w (x) dx:

We have:
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Corollary 4. Assume that f : I ! R is a convex function on the interval of real
numbers I and a; b real numbers such that [a; b] � I; the interior of I: Then

(3.14)
1

6
(b� a)3 f

�
a+ b

2

�
� 1

4

Z b

a

h
(x� a)2 + (b� x)2

i
f (x) dx

� 1

12
(b� a)3 f

�
a+ b

2

�
� 1
2

Z b

a

�
x� a+ b

2

�2
f (x) dx+

1

8
(b� a)3 f (a) + f (b)

2

� 1

8
(b� a)3

�
1

3
f

�
a+ b

2

�
+
f (a) + f (b)

2

�
:

Proof. From the inequality (3.12) we have

f

�
a+ b

2

�Z b

a

(x� a) (b� x) dx(3.15)

�
Z b

a

Da+;b�f (x) (x� a) (b� x) dx

� 1

2
f

�
a+ b

2

�Z b

a

(x� a) (b� x) dx� 1
2

Z b

a

�
x� a+ b

2

�2
f (x) dx

+
1

8
(b� a)

Z b

a

[(b� x) f (a) + (x� a) f (b)] dx:

and since Z b

a

[(b� x) f (a) + (x� a) f (b)] dx = f (a) + f (b)

2
(b� a)2

then (3.15) is equivalent to

1

6
(b� a)3 f

�
a+ b

2

�
�
Z b

a

Da+;b�f (x) (x� a) (b� x) dx

� 1

12
(b� a)3 f

�
a+ b

2

�
� 1
2

Z b

a

�
x� a+ b

2

�2
f (x) dx

+
1

8
(b� a)3 f (a) + f (b)

2
:

By making use of Lemma 1 we get the �rst two inequalities in (3.14).
By Fejér�s inequality

(3.16) h

�
a+ b

2

�Z b

a

g (t) dt �
Z b

a

h (t) g (t) dx � h (a) + h (b)

2

Z b

a

g (t) dt:

that holds for the convex function h : [a; b]! R and the positive symmetric function
g : [a; b]! R; we also haveZ b

a

�
x� a+ b

2

�2
f (x) dx � f

�
a+ b

2

�Z b

a

�
x� a+ b

2

�2
dx

=
1

12
(b� a)3 f

�
a+ b

2

�
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giving that

1

12
(b� a)3 f

�
a+ b

2

�
� 1
2

Z b

a

�
x� a+ b

2

�2
f (x) dx

� 1

12
(b� a)3 f

�
a+ b

2

�
� 1

24
(b� a)3 f

�
a+ b

2

�
=
1

24
(b� a)3 f

�
a+ b

2

�
;

which proves the last part of (3.14). �
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