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SOME INEQUALITIES FOR AN OPERATOR ASSOCIATED TO
HERMITE-HADAMARD INEQUALITY FOR FUNCTIONS OF
BOUNDED VARIATION

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish some inequalities for the operator

Dors-t@i=3 [ [Trwar 2 [rwa]. se @

in the case of functions f : [a,b] — C of bounded variation. Several weighted
and unweighted Hermite-Hadamard type inequalities are also provided.

1. INTRODUCTION

The following integral inequality

(L1) f(“;b) <

which holds for any convex function f : [a,b] — R, is well known in the literature
as the Hermite-Hadamard inequality.

There is an extensive amount of literature devoted to this simple and nice result
which has many applications in the Theory of Special Means and in Information
Theory for divergence measures, from which we would like to refer the reader to
the monograph [9], the recent survey paper [5], the research papers [1]-[2], [10]-[18]
and the references therein.

Assume that the function f : (a,b) — C is Lebesgue integrable on (a,b). We

introduce the following operator
/ £t dt+—/f dt] € (ab).

We observe that if we take x = a—"’b, then we have

Da+,b7f <a - b)

Moreover, if f (a+) := lim,_,, f (z) exists and is finite, then we have

f(a+)+b_1a/abf(t)dt]
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and if f (b—) := lim,_,_ f (x) exists and is finite, then we have

b
i Dy f (@) = [f (b-)+ / 10 dt] .

So, if f : [a,b] — C is Lebesgue integrable on [a, b] and continuous at right in ¢ and
at left in b, then we can extend the operator on the whole interval by putting

b
Dacsf (@)= 5 [f @+ [ 1) dt]
Da+,b7f(b) =3

oyt [rod]

If we change the variable ¢t = (1 — s) a + sz for = € (a,b) then we have

x—a/f t)dt = /f 1—s)a+sx)ds

and if we change the variable t = (1 — s) z + sb for « € (a,b), then we also have

b-x/wf(t)dt=/0 F((1—s)z + sb)ds,

which gives the representation

1

(13) Dars S (@)= / F (L= s)a+sa)+ [ ((1—s)a+sb)]ds, ¢ € (ab).

Using the representation (1.3), we observe that the operator D, ;_ is linear,
nonnegative and preserves the constant functions, namely

Doy p- (af +B89) = aDayp— (f) + BDayp— (9)
for any complex numbers «, § and integrable functions f, g. If f > 0 almost
everywhere on [a,b] and f is integrable, then D,y ,—f (z) > 0 for any = € (a,b).
Also, if f =k, a constant, then D,y y_k (z) = k for any z € (a,b) . If we define the
function 1 (t) =1, t € [a,b], then, obviously, Dg4 -1 = 1.
We say that the function f : [a,b] — C is of H-r-Hélder type if

If@) = f(s) <H[t—s|"
for any ¢, s € [a,b], where H > 0 and r € (0,1]. If r = 1 and we put H = L, then

we call the function of L-Lipschitz type.
In the recent paper [7] we obtained the following results:

Theorem 1. If f is of H-r-Holder type on [a,b] with H > 0 and r € (0,1], then
for any = € (a,b) we have

and
1

(1.4) Doesf )= 1 @) € s H e =) + (0 =a)]
and
15 Dy f@ - LOEIO L gyt - ay).

2 —2(r+1)
In particular, if f is of L-Lipschitz type, then

(16) Do f (@)~ [ @)] < 1L (b—a)
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and

(1.7) Dayp-f () =

2

f(a)+f(b)’§iL(ba)

for any z € (a,b).

If we take in Theorem 1 x = ‘%rb, then we get

(1.8) b_la/abf(t)dt—f<a;b> 7%H(b—a)r
and

(1.9) b_a/f -1 )+f() §2T(r1+1)H(b—a)’"
In particular, if f is of L-Lipschitz type, then

(1.10) b_la/abf(t)dt—f(a;b> giL(b—a)
and

(1.11) b_a/ £t dt )+f() iL(b—a)

‘We also have:

Theorem 2. If f is of H-r-Holder type on [a,b] with H > 0 and r € (0,1], then
for any x € (a,b) we have

(1.12) ’D,H,bf(x) —% [f (m—ga) n (x—;b)”

1 T I
SWH[(m_a) +(b—2)].

In particular, if f is of L-Lipschitz type, then

Dusaf0 -3 [1(52) +1 (55)]| < 50—

for any © € (a,b).

(1.13)

If we take in Theorem 2 = = a—“’ then we get

(1.14) 0<|— /f dt—{f<3a+b>+f(ang)“
gmH(b—a)

and

(1.15) 0< /f dt—{f(?’“b)H(“Z?’bﬂ géL(b—a).

Motivated by the above results, in this paper we establish some inequalities
for the operator Dyt p—f (z), z € (a,b) in the case of functions f : [a,b] — C
of bounded variation. Several weighted and unweighted Hermite-Hadamard type
inequalities are also provided.
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2. SOME INEQUALITIES FOR Dy p— f

We have:

Theorem 3. Let f : [a,b] — C be a function of bounded variation on [a,b]. Then
for any z € (a,b) we have

(2.1) Doy o f () = f(2)]

T z b t b
;[i/ (\/(f)) as = | (\I/m) dt] <53V

<

and

b

T t b b
sé[xia/ (\!(f))dwbix/m (\/(f)) dt] S%\/(f).

a

Proof. If f : [a,b] — C is Lebesgue integrable on [a,b] and A, u € [a,b], then we
have the following simple equality

A+
2

=§[xia/j[f<t>—wt+bix/z [f(t)—u]dt]-

(2.3) Daso-f () -

If we take A = p = f (x), then we get the equality

Tr—a

Dﬁ,bf(w)—f(x):;[ L ro-r@ias | [f(t)—f(w)]dt]-

while for A = f (a) and p = f (b) we get

fla) +f(b)

Da+,b—f(m) - 9

* b
;[ 1 /G[f(t)f(a)]dt+bix/x[f(t)f(b)]dt],

Tr—a
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Now, if f : [a,b] — C is a function of bounded variation on [a,b], then by the
properties of the modulus we have

|Datp—f () = f(2)]

g;_xia /m[f(t)—f(x)]dt‘ﬂLbix /:[fw—f(x)]dt]
<2 s@las ;= [0 |dt]
ey, ( )it (Vo)
g;:xla\:/m/a dt+b1z\x/<f>/xdt]

1 T b 1 b
3 (Vorev) -3V,

which proves the inequality (2.1).
Similarly, we have

Dot p—f(x) — f(a);f(b)’
i ) b
S% xia/(l[f(t)—f(a)]dt’+ — / [f(t)—f(b)]dt]

which proves the inequality (2.2). O
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Remark 1. Observe that

[ L (Vo) sts [ (V)]

s (Vin-v)as s [ (vo-vin)s
V- [ (Vo) asvio - [ (Vo)
s [V [ (Vi) [ (V)

and then the inequality (2.1) can be written as
b

(24) |Duro-f (@)~ £ )
z [t b b
<1 [\a/(f)—xla/a <\a/(f)> a-= | <\/<f)> dt] <3V

b
t

for any z € (a, b)

If we take in (2.1) and (2.2) = = b, then we get, see also [5]
(2.5) — /f t)dt — <a+b>
ato (b t b
Sbia/ (\/(f))dt+(\/ )dt< V()
and
b
(2.6) ﬁ / f(t)dt—w

a+b t

atb b b b
< bia/a (\/(f)) dt+bia/a2+b (\/(f)) it < 5\ (F).

a a

Theorem 4. Let f : [a,b] — C be a function of bounded variation on [a,b]. Then
for any = € (a,b) we have

27) Daro f(a)— 1 <f (2) +

2

f(a)+f(b)>

Proof. If we take in (2.3) A = 1 [f (a

(2.8) Daiy_f (z) — % !
:;Lia j {f(t)_;[f(a)-i-f(a:)]}dt
b
+bi$/x [f(t)l[f(x)Jrf(b)]}dt]
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for any z € (a,b).
[a,b] — C is a function of bounded variation on [a,b], then

Since f :

1

f#) =5 1f (@) + f(2)]

2

_ O =fl)+FE) = f(2)
2
1 1
< SUFO-F@lI+1f(@)-fOl =3

for any t € [a, x|, and, similarly

for any t € [z,0].

By taking the modulus in (2.8) we get

f(a)+f(b)>’

DaJr,bff

<3
i /: [f(t)—;[f(a:)-s-f(b)]] dt
=i
=

HCRECENIOIEEAY

(@) 5

111
< |z
— 2|2z

a

b

x

IR

<f (w) +

2

i(\/(f)+\/(f))=i

which proves the inequality (2.7).

2

[ lro-3u@+swi

ia/gC(\/(f))dH;

b

£ =317 (@) + f (@)

3@+ 1 0] |t

|
S

V&,

a

(Vo

x

Remark 2. If we add the inequalities (2.2) and (2.4) we get

(2.9)

for any = € (a,

Da+,b7f (.’E) -

f(a)

a)+ f(b)

2

(f)) dt +

b—x

)dt

A\

b—=x

] | Das o f (2) — f ()

o

)
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By the triangle inequality we also have

2Di b f () — M —f (x)‘

< |Datp—f(z) — f(a);—f(b)‘ + [Day p—f (x) = f(2)]
namely
(2.10) Doyp—f(x) — % (‘W +f (@)'

<5 (|Peesr@ - LI Dy p ) s )

for any z € (a,b).
Therefore by (2.9) and (2.10) we also get (2.7).

If we take z = %+ in (2.7), then we get

. /f i (s (450« L4 0

3. SOME INTEGRAL INEQUALITIES

(2.11)

1b

The following lemma is of interest in itself, see also [6]:

Lemma 1. Assume that the function f : (a,b) — C is Lebesgue integrable on (a,b)
and f (a+), f(b—) exists and are finite. Then we have

b b b—a
(3.1) /a Doy p—f(z)dx = /a In ( CEDIE z)) f(z)dz.
Proof. We have

/abDa-i-,b—f(JS)dx::; [/;(xia/azf(t)dt)das—l—/ab (b_lm/:f(t)dt> dx].

Observe that, integrating by parts, we have

/:(xia/lef(t)dt)dx—/ (/ £l ) (In(z — a))
— In(z —a) (/ f(t)dt) H—/abln(x—a)f(x)da:

—ln(b—a) ([f(t)dt)-gcli% [ln(w—a) (/:f(t)dt)]—/abln(x—a)f(:odx.

Since

Jim, {ha(a;—a)(/:f(t)dt)}: lim+[(3:—a Vin(z — a ( _a/ Ft dtﬂ

= lim [(z—a)ln(z—a)] lim (m /f >_0f (a+) =0,

T—a+ T—a+
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hence

/;(xia/jf(t)dt)d:cln(ba) (/abf(t)dt> /abln@a)f(x)dx
—/ab[ln(b—a)—ln(x—a)]f(x)dx—/abln <z:z>f(x)dx

Also, integrating by parts, we have

. b J

=—In(b—12) (/ f(t)dt) +

:leir})li [ln(b:c) (/:f dt) +In(b—a </ G dt) /abln(bx)f(:r)dx
=In(b—a) (/abf(t)dt> /bln dm_/abln(z_i)f(x)dz.

Therefore

/abDa—&-,b—f(ﬂf)dx:; Vabln (i:i) f(x)dx+/abln<2:z> f(x)dx]

1 bn (b—a)? ) d — bn b—a o) de
5/ l@a)(bx)]f( o= [ ( <x—a><b—x>>f( ¢

and the equality (3.1) is obtained. O

The following result holds:
By the use of Theorem 1 we have:

Theorem 5. If f is of H-r-Holder type on [a,b] with H > 0 and r € (0,1], then

we have
10 b—a 1P
(3.2) b_@/(}ln( (xa)(bz))f(w)dx_b—a/a f(z)dz
1 ,
SmH(b_a)
and
I b—a f(a)+ f(b)
. In r)dr —
(3:3) b_a’/a ( (a:—a)(b—x))f()




10 S.S. DRAGOMIR

Proof. If we integrate the inequality the inequality (1.4), we get

i [ Pasa @ x——/f

_—/ Dt f (z) — f (2) da

1
<1 g — b—x)"]d
~2(r+1) b—a/a[(x @)’ +(b—=2)"]de
1 1 o \r+l o \r+l 1 -
B S U [V sl D W
2(r+1) b—a r+1 r+1 (r+1)
and by (3.1) we get (3.2).
The inequality (3.3) follows in a similar way from (1.5). O

The inequality (3.2) can be actually improved as follows:

Theorem 6. If f is of H-r-Holder type on [a,b] with H > 0 and r € (0,1], then

we have
10 b—a 10
(3.4) b—a/aln< (x—a)(b—m))f(x)d:CH/Q f(z)dx
1 r
_mH(b—G).

Proof. If we take the integral mean in (1.12) we get
b r+a z+0b

st pesire gyt [ (55) o (57 o

oy P x—;[f(“”)w( )]

IN

b—a /,

dx

1 I . ,
< — —
7%1(”1)}1[)_&/@ (& —a) + (b— )]
_ r+1
B 1 1 2(b—a) B 1 _H(b—a)
2t (r+1) b—a r+1 2r (r+1)

Using the change of variable we have

/abf<“;x)dx:2/a dyand/ (z+b)dx:2/c;f(y)dy

and then

() e ()] e = aa;bﬂy)dw/;f<y>dy:/:f<y>dy

By utilising (3.5) we then get (3.4) O

a+

The case of Lipschitzian functions is as follows:



SOME INEQUALITIES FOR FUNCTIONS OF BOUNDED VARIATION 11

Corollary 1. If f is of L-Lipschitz type with L > 0, then

1 b b—a fl@+fm)] 1
(3.6) m/a ln< (za)(bz))f(x)dx_Q SZL(b—a)
and
3.7 L b_a d L (" rya
T —— s = R
SéL(bfa)T.

In the case of functions of bounded variation, we have:

Theorem 7. Let f : [a,b] — C be a function of bounded variation on [a,b] and
continuous at the extremities. Then

(3.8) b_la/abln<\/($_ba)$x)>f(x)dxb_la/abf(z)d:c
g% [\:/(f)—bia (/:ln<z:z>\:/(f)d:c—i—/:ln(z:fc)\i/(f)dx)]
S;\i/(f)
and
(3.9)

g%bia </ab1n<i_2>\?(f)dm—i—/:ln(z_z) (f)dx) S;\i/(f).

Proof. Taking the integral in (2.4) we get

b b
(3.10) ﬁ / Das e f(a:)dzfﬁ / f(2) da
b
<o | Dot @) - F @
1 b
<5V

AL ()e () oo
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L1—1>I(Ill+ [ln (x — a) /GT (\/ (f)) dt]

a

= lim [(xa)ln(a:a)xia/x (v(f)>dt]

r—a+

= lim [(z —a)ln(z - a)] T1—1>rt[11+ [m—a

r—a+

t

=0 wli>rt£l+ \/ (f)

a

Also, in a similar way

0.

L))

1
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If we add these equalities we get

L) (1 (1))

a

_ /abm <z:‘;> \z/(f)d“/:ln (Z:;) \/ (f) dz
and by (3.10) we get (;.1). '

The inequality (3.9) follows by( 2.2). O

If we add the inequalities (3.8) with (3.9), use the triangle inequality and divide
by 2 we get

Corollary 2. With the assumptions of Theorem 7 we have

1 b b—a
—_— In z)dx
b_a/a ( (z—a)(b—:/n))f()

11 /[ f(a)+ f(b)
455 [ i 120)

4. SOME WEIGHTED INTEGRAL INEQUALITIES

(3.11)

1 b
SZY(f>-

We need the following equality as well, see also [6]:

Lemma 2. Assume that the function f : (a,b) — C is Lebesgue integrable on (a,b).
Then we have

(4.1) /ab (¢ —a) (b— ) Daypf (x) dz = 4/ab (@~ + 0~ 2% f () d.

Proof. We have

b
(4.2) / (x—a)(b—x) Doy p—f (x)dx

:% Vab(bm) </jf(t)dt>dz+/ab(ma) (/:f(t)dt> d:p].



14 S.S. DRAGOMIR

Using the integration by parts formula, we have

/ab(b—x) (/:f(t)dt)dx
:_/ab (/:f(t)dt)d<(b_2“)2>
(L ron) 2] B )
a+
1 b

5 [ -2 s @

a

and
b b
/(m—a) (/ f(t)dt)d;c
b [ b _ )2
:/a (/x f(t)dt)d(m 5 )>
—a)® [* " b (z—a)? b
:(“32 ) /Jvf(t)dt —/a ( 5 ) d</w f(t)dt>
b
:%/ (@ — a)? f (x) dz,
which, by (4.2) produces the desired result (4.1). O

Theorem 8. If f is of H-r-Holder type on [a,b] with H > 0 and r € (0,1], then
we have

"1z —a)’ —z)?
(4.3) bia/[( )—;(b )]f(x)dx
b
_bfa/ (x—a)(b—2x) f(z)dx
2H r+3

e ooy P9

and
b _ )2 2 L f(a

(4.4) bia/ [(z ) ;F(b )]f(x)dx—(b—a) W

< 2H
“(r+1)(r+2)(r+3)
Proof. From (1.4) and (1.5) we have
(4.5) |Datp—f (z) (x —a)(b—2) - f(z)(z —a)(b— )
1

S [(a: —a) M b— )+ (z—a) (b— z)”l}

( N )r+3
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and

@8 |Des @ -a - - OO oy

1
< -
—2(r+1)
for any x € [a,b].
Taking the integral mean in (4.5), we have

H [(x o) b—2)+ (x—a)(b— x)T—H}

b
(4.7) ﬁ/@ Da+,b7f(.%') (x—a) (b—2x)dx
1 b
i [t @b
b
= bia/a |Datp-f (z) (= a) (b~ 2) = f (2) (z — @) (b— )| dx
1
S2(7“4—1)
b b
XH[bia/a( —a)"™" (b —x)de + —a/a (z—a)(b—2)" " do
Since .
r+1 _ 1 ri3
A i e T
and

1

r+3
(r+2)(r+3)( —a)

b
/ (z—a)(b—a)"dzx =
then by (4.7) we have

b b
ibia/ [(x—a>2+(b—:c)2 f(ar)dx—i (z —a)(b—x) f(z)dx

b—a J,

< H
“(r+1)(r+2)(r+3)

which, by multiplying by 2 proves the inequality (4.3).
Taking the integral mean in (4.6), we have

(b—a)*

)

b
(4.8) ﬁ / Dty f (2) (x — a) (b— ) da

fla+f®) 1 [
AN b_a/a (@ —a) (b— ) da

1 b
=
~“b—al,

b b
SQ(Til)H[bia/a (x—a)r+1(b71:)d3:+bia/a (xa)(bm)r"_ldas].

15
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Since

1 b 1 9
bfa/a (m—a)(b—x)da:zg(b_a) ,

then by (4.8) we get

b a
i ) [t o) r@ - g oo LI
i r+3
= (r+1)(r+2)(r+3) (b—a)
and by multiplying with 2 we get (4.4). -

Corollary 3. If f is of L-Lipschitz type with L > 0, then

bz —a)? —)?
(4.9) bia/ l( );(b )]f(m)dx
b
_bia/ (x—a)(b—2x) f(z)dx
S%L(b—a)”?’
and
b ‘rfaQ 71.2 , a
(4.10) bia/ [( ) ;(b )]f(x)dz(ba) w
< 1—12L (b—a)".

Theorem 9. Let f : [a,b] — C be a function of bounded variation on [a,b]. Then

b —a)? _ )2
(4.11) bia/‘rw i )]f@ﬁm
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Proof. From (2.4) we have

[Day b1 (2) (x —a) (b—2) = f(z)(z —a) (b2
b

T t b b
<;l\/(f)(w—a)(b—w)—(b—w)/a (\!(f))dt—(w—a)/x (\/(f))dt]

a

while from (2.2) we have

Dayp—f(2) (x —a) (b —2) -

t

gé[(b—@/: (\/(f)) wri-a [ (\j/(f)) dt]

for any x € (a,b) .
Taking the integral mean we get
1 b
(113) | / Dy f (@) (& —a) (b— ) da

1
b—a

b
/ F @) (z—a) (b— 1) da

and
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Using the integration by parts, we have

T t b b T
——5 (-2 [ (V)| - [ -2V (n)ds
1 ° o\
=3 [ 0=V
and
b b /b
/ (z —a) / \ (1)) dt ) d
a T t
1 [t b /b
:5/ / \V () de ) d (@)
a T t
1 ) b b b b ) b
—5|@-a? (V)] + [ -0V
T t @ a x
1 b .
5 [ @2V (s
and by (4.13) and (4.14) we get the desired results (4.11) and (4.120. O
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