
SOME OSTROWSKI TYPE INEQUALITIES FOR AN INTEGRAL
OPERATOR AND n-TIME DIFFERENTIABLE FUNCTIONS

S. S. DRAGOMIR1;2

Abstract. In this paper we establish some Ostrowski type inequalities for
the operator

Da+;b�f (x) :=
1

2

�
1

x� a

Z x

a
f (t) dt+

1

b� x

Z b

x
f (t) dt

�
; x 2 (a; b)

in the case of functions f : [a; b] ! C whose n-derivatives f (n) are absolutely
continuous on [a; b]. Several Hermite-Hadamard type inequalities are also pro-
vided.

1. Introduction

In 1938, A. Ostrowski [20], proved the following inequality concerning the dis-
tance between the integral mean 1

b�a
R b
a
f (t) dt and the value f (x), x 2 [a; b].

Theorem 1 (Ostrowski, 1938 [20]). Let f : [a; b] ! R be continuous on [a; b]
and di¤erentiable on (a; b) such that f 0 : (a; b) ! R is bounded on (a; b), i.e.,
kf 0k1 := sup

t2(a;b)
jf 0 (t)j <1. Then

(1.1)

�����f (x)� 1

b� a

Z b

a

f (t) dt

����� �
241
4
+

 
x� a+b

2

b� a

!235 kf 0k1 (b� a) ;
for all x 2 [a; b] and the constant 14 is the best possible.

In [12], S. S. Dragomir and S. Wang, by the use of the Montgomery integral
identity [19, p. 565],

f (x)� 1

b� a

Z b

a

f (t) dt =
1

b� a

Z b

a

p (x; t) f 0 (t) dt ; x 2 [a; b] ;

where p : [a; b]2 ! R is given by

p (x; t) :=

8<: t� a if t 2 [a; x] ;

t� b if t 2 (x; b];
gave a simple proof of Ostrowski�s inequality and applied it for special means (iden-
tric mean, logarithmic mean, etc.) and to the problem of estimating the error bound
in approximating the Riemann integral

R b
a
f (t) dt by one arbitrary Riemann sum

(see [12], Section 3).
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2 S. S. DRAGOMIR

For other Ostrowski type inequalities for Lebesgue integral, see [11] and the
recent survey [7].
The following theorem is well known in the literature as Taylor�s formula or

Taylor�s theorem with the integral remainder.

Theorem 2. Let I � R be a closed interval, c 2 I and let n be a positive integer.
If f : I �! C is such that the n-derivative f (n) is absolutely continuous on I, then
for each z 2 I
(1.2) f (z) = Tn (f ; c; z) +Rn (f ; c; z) ;

where Tn (f ; c; z) is Taylor�s polynomial, i.e.,

(1.3) Tn (f ; c; z) :=
nX
k=0

(z � c)k

k!
f (k) (c) :

Note that f (0) := f and 0! := 1 and the remainder is given by

(1.4) Rn (f ; c; z) :=
1

n!

Z z

c

(z � t)n f (n+1) (t) dt:

A simple proof of this theorem can be achieved by mathematical induction using
the integration by parts formula in the Lebesgue integral.
Assume that the function f : (a; b) ! C is Lebesgue integrable on (a; b) : We

consider the following operator [8]

(1.5) Da+;b�f (x) :=
1

2

"
1

x� a

Z x

a

f (t) dt+
1

b� x

Z b

x

f (t) dt

#
; x 2 (a; b) :

We observe that if we take x = a+b
2 ; then we have

Da+;b�f

�
a+ b

2

�
=

1

b� a

Z b

a

f (t) dt:

Moreover, if f (a+) := limx!a+ f (x) exists and is �nite, then we have

lim
x!a+

Da+;b�f (x) =
1

2

"
f (a+) +

1

b� a

Z b

a

f (t) dt

#
and if f (b�) := limx!b� f (x) exists and is �nite, then we have

lim
x!b�

Da+;b�f (x) =
1

2

"
f (b�) + 1

b� a

Z b

a

f (t) dt

#
:

So, if f : [a; b]! C is Lebesgue integrable on [a; b] and continuous at right in a and
at left in b, then we can extend the operator on the whole interval by putting

Da+;b�f (a) :=
1

2

"
f (a) +

1

b� a

Z b

a

f (t) dt

#
and

Da+;b�f (b) :=
1

2

"
f (b) +

1

b� a

Z b

a

f (t) dt

#
:

We say that the function f : [a; b]! C is of H-r-Hölder type if

jf (t)� f (s)j � H jt� sjr
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for any t; s 2 [a; b] ; where H > 0 and r 2 (0; 1] : If r = 1 and we put H = L; then
we call the function of L-Lipschitz type.
In the recent paper [8] we obtained amongst other the following Ostrowski and

midpoint type inequalities for Da+;b�f :

Theorem 3. If f is of H-r-Hölder type on [a; b] with H > 0 and r 2 (0; 1] ; then
for any x 2 (a; b) we have

(1.6) jDa+;b�f (x)� f (x)j �
1

2 (r + 1)
H [(x� a)r + (b� x)r] :

In particular, if f is of L-Lipschitz type, then

(1.7) jDa+;b�f (x)� f (x)j �
1

4
L (b� a)

for any x 2 (a; b) :

If we take in Theorem 3 x = a+b
2 ; then we get the following midpoint type

inequality

(1.8)

����� 1

b� a

Z b

a

f (t) dt� f
�
a+ b

2

������ � 1

2r (r + 1)
H (b� a)r :

In particular, if f is of L-Lipschitz type, then we get the result from [9]:

(1.9)

����� 1

b� a

Z b

a

f (t) dt� f
�
a+ b

2

������ � 1

4
L (b� a) :

Motivated by the above results, by the use of Taylor�s formula with integral
remainder (1.2), in this paper we establish an Ostrowski type representation for
the operator Da+;b�f (x) ; x 2 (a; b) in the case of functions f : [a; b] ! C whose
n-derivatives f (n) are absolutely continuous on [a; b] : As applications, several mid-
point type inequalities are also provided.

2. Some Ostrowski Type Identities

We have the following representation:

Theorem 4. Let I � R be an interval, [a; b] � I and f : I �! C is such that the
n-derivative f (n) is absolutely continuous on [a; b] : Then for any x 2 (a; b) we have
the representation

(2.1) Da+;b�f (x) =
nX
k=0

(b� x)k + (�1)k (x� a)k

2 (k + 1)!
f (k) (x)

+
1

2n!
(b� x)n+1

�
Z 1

0

Z 1

0

un+1snf (n+1) (sx+ (1� s) [(1� u)x+ ub]) dsdu

+
(�1)n+1

2n!
(x� a)n+1

�
Z 1

0

Z 1

0

un+1snf (n+1) (sx+ (1� s) [ua+ (1� u)x]) dsdu:



4 S. S. DRAGOMIR

In particular,

(2.2)
1

b� a

Z b

a

f (t) dt =
nX
k=0

1 + (�1)k

2k+1 (k + 1)!
f (k)

�
a+ b

2

�
(b� a)k

+
(b� a)n+1

2n+2n!

�
Z 1

0

Z 1

0

un+1snf (n+1)
�
s
a+ b

2
+ (1� s)

�
(1� u) a+ b

2
+ ub

��
dsdu

+
(�1)n+1 (b� a)n+1

2n+2n!

�
Z 1

0

Z 1

0

un+1snf (n+1)
�
s
a+ b

2
+ (1� s)

�
ua+ (1� u) a+ b

2

��
dsdu:

Proof. Using Taylor�s representation with the integral remainder (1.2) we can write
the following identity for x 2 (a; b)

(2.3) f (y) =
nX
k=0

1

k!
f (k) (x) (y � x)k + 1

n!

Z y

x

f (n+1) (t) (y � t)n dt;

where y 2 [a; b] :
For any integrable function h on an interval and any distinct numbers c; d in

that interval, we have, by the change of variable t = (1� s) c+ sd; s 2 [0; 1] thatZ d

c

h (t) dt = (d� c)
Z 1

0

h ((1� s) c+ sd) ds:

Therefore, Z y

x

f (n+1) (t) (y � t)n dt

= (y � x)
Z 1

0

f (n+1) ((1� s)x+ sy) (y � (1� s)x� sy)n ds

= (y � x)n+1
Z 1

0

f (n+1) ((1� s)x+ sy) (1� s)n ds

= (y � x)n+1
Z 1

0

f (n+1) (sx+ (1� s) y) snds;

where for the last equality we replaced s by 1� s:
We can then write the equality (2.3) as

f (y) =
nX
k=0

1

k!
f (k) (x) (y � x)k(2.4)

+
1

n!
(y � x)n+1

Z 1

0

f (n+1) (sx+ (1� s) y) snds;

for any y 2 [a; b] :
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Now, for x 2 (a; b) ; if we integrate (2.4) on [a; x] over y; then we getZ x

a

f (y) dy =
nX
k=0

1

k!
f (k) (x)

Z x

a

(y � x)k dy

+
1

n!

Z x

a

(y � x)n+1
�Z 1

0

f (n+1) (sx+ (1� s) y) snds
�
dy;

=
nX
k=0

(�1)k

(k + 1)!
f (k) (x) (x� a)k+1

+
1

n!

Z x

a

(y � x)n+1
�Z 1

0

f (n+1) (sx+ (1� s) y) snds
�
dy;

which gives

(2.5)
1

x� a

Z x

a

f (y) dy =

nX
k=0

(�1)k

(k + 1)!
f (k) (x) (x� a)k

+
1

n!

1

x� a

Z x

a

(y � x)n+1
�Z 1

0

f (n+1) (sx+ (1� s) y) snds
�
dy:

Also, if we integrate (2.4) on [x; b] over y; then we getZ b

x

f (y) dy =
nX
k=0

1

k!
f (k) (x)

Z b

x

(y � x)k dy

+
1

n!

Z b

x

(y � x)n+1
�Z 1

0

f (n+1) (sx+ (1� s) y) snds
�
dy

=
nX
k=0

1

(k + 1)!
f (k) (x) (b� x)k+1

+
1

n!

Z b

x

(y � x)n+1
�Z 1

0

f (n+1) (sx+ (1� s) y) snds
�
dy;

which gives

(2.6)
1

b� x

Z b

x

f (y) dy =
nX
k=0

1

(k + 1)!
f (k) (x) (b� x)k

+
1

n!

1

b� x

Z b

x

(y � x)n+1
�Z 1

0

f (n+1) (sx+ (1� s) y) snds
�
dy:

Now, if we make the change of variable y = (1� u) a+ ux; u 2 [0; 1] ; thenZ x

a

(y � x)n+1
�Z 1

0

f (n+1) (sx+ (1� s) y) snds
�
dy:

= (�1)n+1 (x� a)n+2

�
Z 1

0

(1� u)n+1
�Z 1

0

f (n+1) (sx+ (1� s) [(1� u) a+ ux]) snds
�
du

= (�1)n+1 (x� a)n+2
Z 1

0

un+1
�Z 1

0

f (n+1) (sx+ (1� s) [ua+ (1� u)x]) snds
�
du
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and by (2.5) we get

(2.7)
1

x� a

Z x

a

f (y) dy =
nX
k=0

(�1)k

(k + 1)!
f (k) (x) (x� a)k

+
1

n!
(�1)n+1 (x� a)n+1

Z 1

0

Z 1

0

un+1snf (n+1) (sx+ (1� s) [ua+ (1� u)x]) dsdu;

for x 2 (a; b) :
Also, if we make the change of variable y = (1� u)x+ ub; u 2 [0; 1] thenZ b

x

(y � x)n+1
�Z 1

0

f (n+1) (sx+ (1� s) y) snds
�
dy

= (b� x)n+2
Z 1

0

un+1
�Z 1

0

f (n+1) (sx+ (1� s) [(1� u)x+ ub]) snds
�
du

and by (2.6) we get

(2.8)
1

b� x

Z b

x

f (y) dy =
nX
k=0

1

(k + 1)!
f (k) (x) (b� x)k

+
1

n!
(b� x)n+1

Z 1

0

Z 1

0

un+1snf (n+1) (sx+ (1� s) [(1� u)x+ ub]) dsdu

for x 2 (a; b) :
Therefore, by (2.7) and (2.8) we get

Da+;b�f (x) =
1

2

"
1

x� a

Z x

a

f (t) dt+
1

b� x

Z b

x

f (t) dt

#

=

nX
k=0

1

(k + 1)!
f (k) (x)

(b� x)k + (�1)k (x� a)k

2

+
1

2n!
(b� x)n+1

Z 1

0

Z 1

0

un+1snf (n+1) (sx+ (1� s) [(1� u)x+ ub]) dsdu

+
1

2n!
(�1)n+1 (x� a)n+1

Z 1

0

Z 1

0

un+1snf (n+1) (sx+ (1� s) [ua+ (1� u)x]) dsdu;

which proves the desired result (2.1). �

Remark 1. For n = 0 we get

(2.9) Da+;b�f (x)

= f (x) +
1

2
(b� x)

Z 1

0

Z 1

0

uf 0 (sx+ (1� s) [(1� u)x+ ub]) dsdu

� 1
2
(x� a)

Z 1

0

Z 1

0

uf 0 (sx+ (1� s) [ua+ (1� u)x]) dsdu;

where x 2 (a; b) :
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In particular,

(2.10)
1

b� a

Z b

a

f (t) dt

= f

�
a+ b

2

�
+
b� a
4

Z 1

0

Z 1

0

u

�
f 0
�
s
a+ b

2
+ (1� s)

�
(1� u) a+ b

2
+ ub

��
�f 0

�
s
a+ b

2
+ (1� s)

�
ua+ (1� u) a+ b

2

���
dsdu:

For n = 1 we get

(2.11) Da+;b�f (x) = f (x) +
1

2

�
a+ b

2
� x
�
f 0 (x)

+
1

2
(b� x)2

Z 1

0

Z 1

0

u2sf 00 (sx+ (1� s) [(1� u)x+ ub]) dsdu

+
1

2
(x� a)2

Z 1

0

Z 1

0

u2sf 00 (sx+ (1� s) [ua+ (1� u)x]) dsdu

where x 2 (a; b) :
In particular,

(2.12)
1

b� a

Z b

a

f (t) dt = f

�
a+ b

2

�
+
1

8
(b� a)2

Z 1

0

Z 1

0

u2s

�
f 00
�
s
a+ b

2
+ (1� s)

�
(1� u) a+ b

2
+ ub

��
+ f 00

�
s
a+ b

2
+ (1� s)

�
ua+ (1� u) a+ b

2

���
dsdu:

In [8] the �rst author obtained the following equality:

Lemma 1. Assume that the function f : (a; b)! C is Lebesgue integrable on (a; b)
and f (a+) ; f (b�) exists and are �nite. Then we have

(2.13)
Z b

a

Da+;b�f (x) dx =

Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx:

By taking the integral mean in the equality (2.1) we can state the following
corollary as well:
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Corollary 1. With the assumptions of Theorem 4 we have

(2.14)
1

b� a

Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx

=
nX
k=0

1

2 (k + 1)!

1

b� a

Z b

a

h
(b� x)k + (�1)k (x� a)k

i
f (k) (x) dx

+
1

2n!

1

b� a

Z b

a

(b� x)n+1

�
�Z 1

0

Z 1

0

un+1snf (n+1) (sx+ (1� s) [(1� u)x+ ub]) dsdu
�
dx

+
(�1)n+1

2n!

1

b� a

Z b

a

(x� a)n+1

�
�Z 1

0

Z 1

0

un+1snf (n+1) (sx+ (1� s) [ua+ (1� u)x]) dsdu
�
dx:

Remark 2. By taking the integral mean in (2.9) we get

(2.15)
1

b� a

Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx =

1

b� a

Z b

a

f (x) dx

+
1

2

1

b� a

Z b

a

�
(b� x)

Z 1

0

Z 1

0

uf 0 (sx+ (1� s) [(1� u)x+ ub]) dsdu
�
dx

� 1
2

1

b� a

Z b

a

(x� a)
�Z 1

0

Z 1

0

uf 0 (sx+ (1� s) [ua+ (1� u)x]) dsdu
�
dx;

where f : [a; b]! C is absolutely continuous.
Also, by taking the integral mean in (2.11) we get

(2.16)
1

b� a

Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx

=
1

2

 
3

b� a

Z b

a

f (x)� f (a) + f (b)
2

!

+
1

2

1

b� a

Z b

a

(b� x)2
�Z 1

0

Z 1

0

u2sf 00 (sx+ (1� s) [(1� u)x+ ub]) dsdu
�
dx

+
1

2

1

b� a

Z b

a

(x� a)2
�Z 1

0

Z 1

0

u2sf 00 (sx+ (1� s) [ua+ (1� u)x]) dsdu
�
dx:

3. Some Ostrowski and HH-Type Inequalities

The following integral inequality

(3.1) f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt � f (a) + f (b)

2
;

which holds for any convex function f : [a; b] ! R; is well known in the literature
as the Hermite-Hadamard (HH) inequality.
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There is an extensive amount of literature devoted to this simple and nice result
which has many applications in the Theory of Special Means and in Information
Theory for divergence measures, from which we would like to refer the reader to
the monograph [11], the recent survey paper [7], the research papers [1]-[2], [14]-[27]
and the references therein.
The following result provides an inequality related to the �rst Hermite-Hadamard

inequality in (3.1).

Theorem 5. Let I � R be an interval, [a; b] � I and f : I �! C is such that
the 2m+ 2-derivative f (2m+2) is nonnegative on [a; b] ; where m � 0; then for any
x 2 (a; b) we have the trapezoid type inequality

(3.2) Da+;b�f (x) �
2m+1X
k=0

(b� x)k + (�1)k (x� a)k

2 (k + 1)!
f (k) (x) :

In particular, we have

(3.3)
1

b� a

Z b

a

f (t) dt �
2m+1X
k=0

1 + (�1)k

2k+1 (k + 1)!
f (k)

�
a+ b

2

�
(b� a)k

that was obtained in [22].

Proof. By the representation (2.1) we have

Da+;b�f (x) =
2m+1X
k=0

(b� x)k + (�1)k (x� a)k

2 (k + 1)!
f (k) (x)

+
1

2 (2m+ 1)!
(b� x)2m+2

�
Z 1

0

Z 1

0

u2m+2s2m+1f (2m+2) (sx+ (1� s) [(1� u)x+ ub]) dsdu

+
1

2n!
(x� a)2m+2

�
Z 1

0

Z 1

0

u2m+2s2m+1f (n+1) (sx+ (1� s) [ua+ (1� u)x]) dsdu

�
2m+1X
k=0

(b� x)k + (�1)k (x� a)k

2 (k + 1)!
f (k) (x)

since the last two integrals are nonnegative due to the fact that f (2m+2) is nonneg-
ative on [a; b] : �
Remark 3. For m = 0 we obtain from Theorem 5 that

(3.4) Da+;b�f (x) � f (x) +
1

2

�
a+ b

2
� x
�
f 0 (x)

for any x 2 (a; b) ; where f is di¤erentiable and convex on [a; b] ; which for x = a+b
2

reduces to the �rst Hermite-Hadamard inequality in (3.1).

We use the 1-norm of an essentially bounded function f on the interval [c; d]
de�ned by

kfk[c;d];1 := essup
t2[c;d]

jf (t)j <1, f 2 L1 [c; d] :
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Theorem 6. Let I � R be an interval, [a; b] � I and f : I �! C is such that the
n-derivative f (n) is absolutely continuous on [a; b] and f (n+1) 2 L1 [a; b] : Then for
any x 2 (a; b) we have the inequality

(3.5)

�����Da+;b�f (x)�
nX
k=0

(b� x)k + (�1)k (x� a)k

2 (k + 1)!
f (k) (x)

�����
� 1

2 (n+ 2)!

�
(x� a)n+1




f (n+1)



[a;x];1

+ (b� x)n+1



f (n+1)




[x;b];1

�
� 1

2 (n+ 2)!

h
(x� a)n+1 + (b� x)n+1

i 


f (n+1)



[a;b];1

:

In particular,

(3.6)

����� 1

b� a

Z b

a

f (t) dt�
2m+1X
k=0

1 + (�1)k

2k+1 (k + 1)!
f (k)

�
a+ b

2

�
(b� a)k

�����
� 1

2n+2 (n+ 2)!

�


f (n+1)



[a; a+b2 ];1

+



f (n+1)




[ a+b2 ;b];1

�
(b� a)n+1

� 1

2n+1 (n+ 2)!




f (n+1)



[a;b];1

(b� a)n+1 :

Proof. By taking the modulus in the equality (2.1) we get

(3.7)

�����Da+;b�f (x)�
nX
k=0

(b� x)k + (�1)k (x� a)k

2 (k + 1)!
f (k) (x)

�����
+

1

2n!
(x� a)n+1

Z 1

0

Z 1

0

un+1sn
���f (n+1) (sx+ (1� s) [ua+ (1� u)x])��� dsdu

1

2n!
(b� x)n+1

Z 1

0

Z 1

0

un+1sn
���f (n+1) (sx+ (1� s) [(1� u)x+ ub])��� dsdu

=: C (x; n) :

Observe that sx+ (1� s) [ua+ (1� u)x] 2 [a; x] for any u; s 2 [0; 1] : Therefore

sup
(s;u)2[0;1]2

���f (n+1) (sx+ (1� s) [ua+ (1� u)x])��� � 


f (n+1)



[a;x];1

and Z 1

0

Z 1

0

un+1sn
���f (n+1) (sx+ (1� s) [ua+ (1� u)x])��� dsdu

�



f (n+1)




[a;x];1

Z 1

0

Z 1

0

un+1sndsdu

=
1

(n+ 1) (n+ 2)




f (n+1)



[a;x];1

:

Similarly, we haveZ 1

0

Z 1

0

un+1sn
���f (n+1) (sx+ (1� s) [(1� u)x+ ub])��� dsdu

� 1

(n+ 1) (n+ 2)




f (n+1)



[x;b];1

:



SOME OSTROWSKI TYPE INEQUALITIES 11

Therefore

C (x; n)

� 1

2n!
(x� a)n+1 1

(n+ 1) (n+ 2)




f (n+1)



[a;x];1

+
1

2n!
(b� x)n+1 1

(n+ 1) (n+ 2)




f (n+1)



[x;b];1

=
1

2 (n+ 2)!

�
(x� a)n+1




f (n+1)



[a;x];1

+ (b� x)n+1



f (n+1)




[x;b];1

�
� 1

2 (n+ 2)!

h
(x� a)n+1 + (b� x)n+1

i
max

�


f (n+1)



[a;x];1

;



f (n+1)




[x;b];1

�
=

1

2 (n+ 2)!

h
(x� a)n+1 + (b� x)n+1

i 


f (n+1)



[a;b];1

and the inequality (3.5) is thus proved. �

We note that the inequality between the �rst and last term in (3.6) was obtained
in a di¤erent way in [3].

Remark 4. If we take in (3.5) n = 0; then we get

jDa+;b�f (x)� f (x)j(3.8)

� 1

4

h
(x� a) kf 0k[a;x];1 + (b� x) kf 0k[x;b];1

i
� 1

4
(b� a) kf 0k[a;b];1

for any x 2 (a; b) ; and in particular [6]����� 1

b� a

Z b

a

f (t) dt� f
�
a+ b

2

������(3.9)

� 1

8

h
kf 0k[a; a+b2 ];1 + kf 0k[ a+b2 ;b];1

i
(b� a) � 1

4
(b� a) kf 0k[a;b];1 :

If we take in (3.5) n = 1; then we get

(3.10)

����Da+;b�f (x)� f (x)� 12
�
a+ b

2
� x
�
f 0 (x)

����
� 1

12

h
(x� a)2 kf 00k[a;x];1 + (b� x)2 kf 00k[x;b];1

i
� 1

6

"
1

4
(b� a)2 +

�
x� a+ b

2

�2#
kf 00k[a;b];1

for any x 2 (a; b) ; and in particular

(3.11)

����� 1

b� a

Z b

a

f (t) dt� f
�
a+ b

2

������
� 1

48

h
kf 00k[a; a+b2 ];1 + kf 00k[ a+b2 ;b];1

i
(b� a)2 � 1

24
(b� a)2 kf 00k[a;b];1 :
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If we take the integral mean in (3.8), we get����� 1

b� a

Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx� 1

b� a

Z b

a

f (x) dx

�����(3.12)

� 1

4

"
1

b� a

Z b

a

(x� a) kf 0k[a;x];1 dx+
1

b� a

Z b

a

(b� x) kf 0k[x;b];1 dx
#

� 1

4
(b� a) kf 0k[a;b];1 :

Also, if we take the integral mean in (3.10) we get

(3.13)

����� 1

b� a

Z b

a

ln

 
b� ap

(x� a) (b� x)

!
f (x) dx

�1
2

 
3

b� a

Z b

a

f (x)� f (a) + f (b)
2

!�����
� 1

12

"
1

b� a

Z b

a

(x� a)2 kf 00k[a;x];1 dx+
1

b� a

Z b

a

(b� x)2 kf 00k[x;b];1 dx
#

� 1

18
kf 00k[a;b];1 (b� a)

2
:
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