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Abstract. In this paper, we introduce a new class of harmonically convex

functions to establish some interesting Hermite-Hadamard type inequalities.

Results obtained are extensions and generalizations of known results in liter-
ature. Applications to special means of real numbers are also given.

1. Introduction and Preliminaries

The role played by inequalities in mathematics cannot be undermined. Infact,
most mathematical inequalities are basic tools for constructing analytic proofs of
many important theorems. Over the years, the study of convex inequalities has
steadily gained the attention of many researchers. Also, many classes of convex
functions have been introduced to extend several known inequalities in literature
(see [1], [11], [4] and the references therein). An important extension of convex
function, the class of h-convex functions, was introduced by Varosanec in [12]. This
was further generalized in [8] when the φh−s convex function was introduced by the
authors. In [1], the class of harmonically convex functions was introduced and was
significantly extended in [1] by the class of harmonically h-convex functions.
In this paper, we further extend the class of harmonically h convex functions and
establish some Hermite-Hadamard type inequalities.

Theorem 1.1 (Hermite-Hadamard inequality, [2]). Let f : I ⊆ R→ R be a convex
function and a, b ∈ I with a < b. Then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
.

Definition 1.2. [4] A function f : I → R is said to be harmonically convex if for
every x, y ∈ I, t ∈ [0, 1],

f

(
xy

tx+ (1− t)y

)
≤ (1− t)f(x) + tf(x).

Definition 1.3. [1] A function f : I → R is said to be harmonically Breckner
s-convex where 0 < s ≤ 1, if for every x, y ∈ I, t ∈ [0, 1],

f

(
xy

tx+ (1− t)y

)
≤ (1− t)sf(x) + tsf(y).
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Definition 1.4. [1] A function f : I → R is said to be harmonically s-Godunova-
Levin of the second kind if for every x, y ∈ I, t ∈ (0, 1) and s ∈ [0, 1],

f

(
xy

tx+ (1− t)y

)
≤ 1

(1− t)s
f(x) +

1

ts
f(y).

Definition 1.5. [1] A function f : I → R is said to be harmonically Godunova-
Levin of the second kind if for every x, y ∈ I, t ∈ (0, 1),

f

(
xy

tx+ (1− t)y

)
≤ 1

(1− t)
f(x) +

1

t
f(y).

Definition 1.6. [1] A function f : I → R is said to be harmonically P -function if
for every x, y ∈ I, t ∈ [0, 1],

f

(
xy

tx+ (1− t)y

)
≤ f(x) + f(y).

Definition 1.7. [1] Let h : [0, 1] ⊆ J → R be a non-negative function. A function
f : I ⊆ R+ → R is said to be harmonically h-convex if for all x, y ∈ I and t ∈ (0, 1),

f

(
xy

tx+ (1− t)y

)
≤ h(1− t)f(x) + h(t)f(y).

2. The class of harmonically φh−s convex functions

We introduce the following definition in order to unify the classes of harmonically
convex functions given in the previous section.

Definition 2.1. Let h : [0, 1] ⊆ J → (0,∞), s ∈ [0, 1], t ∈ (0, 1) and φ be a given
real valued function. Let I ⊆ R\{0}, then f : I → R is an harmonically φh−s
convex if for all x, y ∈ I,

(1) f

(
φ(x)φ(y)

tφ(x) + (1− t)φ(y)

)
≤
(
h(t)

t

)−s
f(φ(y)) +

(
h(1− t)

1− t

)−s
f(φ(x)).

Remark. We discuss the special cases of the harmonically φh−s convex function.
Denote by HSX(φh−s, I), HSX(h, I), HSX(I), HQs(I), HQ(I) and HP (I) the
class of all harmonically φh−s convex functions, harmonically h-convex functions,
harmonically convex functions, harmonically s-Godunova-Levin functions, harmon-
ically Godunova-Levin functions and harmonically P -functions.

(i). Then for φ(x) = x, h(t) ≤ t, we have

HP (I) = HQ0(I) = HSX(φh−0, I) ⊆ HSX(φh−s1 , I)

⊆ HSX(φh−s2 , I) ⊆ HSX(φh−1, I).

(ii). Let φ be the identity function. Observe that
(i). if s = 0, then f ∈ HP (I)

(ii). if h(t) = 1 and s = 1, then f ∈ HSX(I)

(iii). if h(t) = t
s

s+1 , then f ∈ HSX(h, I)
(iv). if h(t) = 1, then f is harmonically Breckner s-convex
(v). if h(t) = t2, then f ∈ HQs(I)

(vi). if h(t) = t2 and s = 1, then f ∈ HQ(I).
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(iii). For t = 1
2 , we obtain the Jensen’s type harmonically φh−s convex function

or the harmonically-arithmetically (HA) φh−s convex function

(2) f

(
2φ(x)φ(y)

φ(x) + φ(y)

)
≤
(

2h

(
1

2

))−s
(f(φ(x)) + f(φ(y))).

Example 2.2. (i). For h(t) ≤ t1−
1
s and φ(x) = x, all known examples of har-

monically convex functions are φh−s harmonically convex.
(ii). Let I = [a, b] ⊆ R\{0}. Consider the function g :

[
1
b ,

1
a

]
→ R defined by

g(x) = f
(
1
x

)
, then f ∈ HSX(φh−s, I) if and only if g ∈ SX(φh−s, J) where

φ(x) = x, I = [a, b] and J =
[
1
b ,

1
a

]
.

(iii). Let I ⊂ R\{0} be a real interval and f : I → R be a function,
(a) if I ⊂ (0,∞) and f ∈ SX(φh−s, I) where f is nondecreasing on I then

f ∈ HSX(φh−s, I).
(b) if I ⊂ (0,∞), f ∈ HSX(φh−s, I) where f is nonincreasing on I, then

f ∈ SX(I).
(c) if I ⊂ (−∞, 0), f ∈ HSX(φh−s, I) where f is nondecreasing on I then

f ∈ SX(I).
(d) if I ⊂ (−∞, 0), f ∈ SX(I) where f is nonincreasing on I, then f ∈
HSX(φh−s, I).

Definition 2.3. The functions f, g : R→ R are said to be similarly ordered if for
every x, y ∈ R,

(f(x)− f(y))(g(x)− g(y)) ≥ 0.

Proposition 2.4. Let f, g ∈ HSX(φh−s, I). If f and g are similarly ordered and

H(t, s) =
(
h(t)
t

)−s
+
(
h(1−t)
1−t

)−s
≤ 1, then the product fg ∈ HSX(φh−s, I).

Proof. Since f, g ∈ HSX(φh−s, I), then

f

(
φ(x)φ(y)

tφ(x) + (1− t)φ(y)

)
g

(
φ(x)φ(y)

tφ(x) + (1− t)φ(y)

)
≤

(
h(t)

t

)−2s
f(φ(y))g(φ(y)) +

(
h(1− t)

1− t

)−2s
f(φ(x))g(φ(x))

+

(
h(t)

t

h(1− t)
1− t

)−s(
f(φ(y))g(φ(x)) + f(φ(x))g(φ(y))

)
≤

(
h(t)

t

)−2s
f(φ(y))g(φ(y)) +

(
h(1− t)

1− t

)−2s
f(φ(x))g(φ(x))

+

(
h(t)

t

h(1− t)
1− t

)−s(
f(φ(x))g(φ(x)) + f(φ(y))g(φ(y))

)
= H(t, s)

(
f(φ(y))g(φ(y))

(
h(t)

t

)−s
+ f(φ(x))g(φ(x))

(
h(1− t)

1− t

)−s)

≤
(
h(t)

t

)−s
f(φ(y))g(φ(y)) +

(
h(1− t)

1− t

)−s
f(φ(x))g(φ(x)).

�
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3. Hermite-Hadamard type inequalities for HSX(φh−s, I)

Theorem 3.1. Let f ∈ HSX(φh−s, I). Suppose that f ∈ L[a, b] where a, b ∈ I
with a < b and φ is the identity function, then
(3)

1

21−s
(
h
(
1
2

))−s f ( 2ab

a+ b

)
≤ ab

b− a

∫ b

a

f(x)

x2
dx ≤ (f(a) + f(b))

∫ 1

0

(
h(t)

t

)−s
dt.

Proof. Since f ∈ HSX(φh−s, I), then by setting t = 1
2 we obtain (2). Set x =

ab
ta+(1−t)b and y = ab

(1−t)a+tb , then

f

(
2ab

a+ b

)
≤

(
2h

(
1

2

))−s(
f

(
ab

ta+ (1− t)b

)
+ f

(
ab

(1− t)a+ tb

))
=

(
2h

(
1

2

))−s(∫ 1

0

f

(
ab

ta+ (1− t)b

)
dt+

∫ 1

0

f

(
ab

(1− t)a+ tb

)
dt

)
≤

(
2h

(
1

2

))−s ∫ 1

0

((
h(t)

t

)−s
f(b) +

(
h(1− t)

1− t

)−s
f(a)

+

(
h(t)

t

)−s
f(a) +

(
h(1− t)

1− t

)−s
f(b)

)
dt

= 2

(
2h

(
1

2

))−s
(f(a) + f(b))

∫ 1

0

(
h(t)

t

)−s
dt.

But,∫ 1

0

f

(
ab

ta+ (1− t)b

)
dt =

∫ 1

0

f

(
ab

(1− t)a+ tb

)
dt =

ab

b− a

∫ b

a

f(x)

x2
dx.

Thus, we have that

f

(
2ab

a+ b

)
≤ 2

(
2h

(
1

2

))−s
ab

b− a

∫ b

a

f(x)

x2
dx

and

2

(
2h

(
1

2

))−s
ab

b− a

∫ b

a

f(x)

x2
dx ≤ 2

(
2h

(
1

2

))−s
(f(a) + f(b))

∫ 1

0

(
h(t)

t

)−s
dt.

This gives (3), hence the proof. �

Theorem 3.2. Let f, g ∈ HSX(φh−s, I) be two non-negative functions where a, b ∈
I with a < b. If fg ∈ L[a, b], then

φ(a)φ(b)

φ(b)− φ(a)

∫ φ(b)

φ(a)

f(x)g(x)

x2
dx ≤ M(φ(a), φ(b))

∫ 1

0

(
h(t)

t

)−2s
dt

+N(φ(a), φ(b))

∫ 1

0

(
h(t)h(1− t)
t(1− t)

)−s
dt

where

M(φ(a), φ(b)) = f(φ(a))g(φ(a)) + f(φ(b))g(φ(b))

N(φ(a), φ(b)) = f(φ(b))g(φ(a)) + f(φ(a))g(φ(b)).
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Proof. Since f, g ∈ HSX(φh−s, I), then

(4) f

(
φ(a)φ(b)

tφ(a) + (1− t)φ(b)

)
≤
(
h(t)

t

)−s
f(φ(b)) +

(
h(1− t)

1− t

)−s
f(φ(a))

(5) g

(
φ(a)φ(b)

(1− t)φ(b) + tφ(a)

)
≤
(
h(t)

t

)−s
g(φ(b)) +

(
h(1− t)

1− t

)−s
g(φ(a))

Multiplying (4) by (5) and integrating with respect to t over (0, 1), we obtain

∫ 1

0

f

(
φ(a)φ(b)

tφ(a) + (1− t)φ(b)

)
g

(
φ(a)φ(b)

tφ(a) + (1− t)φ(b)

)
dt

≤ (f(φ(b))g(φ(b)) + f(φ(a))g(φ(a)))

∫ 1

0

(
h(t)

t

)−2s
dt

+(f(φ(b))g(φ(a)) + f(φ(a))g(φ(b)))

∫ 1

0

(
h(t)

t

h(1− t)
1− t

)−s
dt

By using the substitution x = φ(a)φ(b)
tφ(a)+(1−t)φ(b) , we have

φ(a)φ(b)

φ(b)− φ(a)

∫ φ(b)

φ(a)

f(x)g(x)

x2
dx ≤ M(φ(a), φ(b))

∫ 1

0

(
h(t)

t

)−2s
+N(φ(a), φ(b))

∫ 1

0

(
h(t)h(1− t)
t(1− t)

)−s
dt.

�

Corollary 3.3. Under the conditions of Theorem 3.2, suppose that f and g are

similarly ordered and
(
h(t)
t

)−s
+
(
h(1−t)
1−t

)−s
≤ 1, then

φ(a)φ(b)

φ(b)− φ(a)

∫ φ(b)

φ(a)

f(x)g(x)

x2
dx ≤ 2M(φ(a), φ(b))

∫ 1

0

(
h(t)

t

)−s
dt.

Remark. Theorem 3.1 reduces to Theorem 2.4 in [4] when h(t) = s = 1. By

setting φ(x) = x, h(t) = t
1
2 , s = 1 in Theorem 3.2, we obtain Theorem 3.6 in [1].

By setting φ(x) = x, h(t) = t
s

s+1 in Theorem 3.1, we obtain Theorem 3.2 in [1]
and by applying Remark 2(ii) accordingly, we obtain Corollaries 3.3 – 3.5 in [1].
Corollary 3.3 reduces to Theorem 3.7 in [1] when φ(x) = x.

4. Inequalities for HSX(φh−s, I) via fractional integration

Let f ∈ L[a, b], the Riemann-Liouville integrals Jαa+f and Jαb− of order α > 0 are
defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t) dt, x > a and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t) dt, x < b

respectively where Γ(α) is the Gamma function defined by Γ(α) =
∫∞
0
e−ttα−1 dt

and J0
a+f(x) = J0

b−f(x) = f(x). Fractional integral reduces to the classical integral
for α = 1.
Hermite-Hadamard type inequalities have been proved for fractional integrals which
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naturally extends the classical integrals (see for example, [3], [5], [9], [10], [13], [14]).
Infact, M. Z. Sarikaya et. al.[9] proved the following Hermite-Hadamard inequalities
for convex functions via fractional integrals.

Theorem 4.1. Let f : I → R be a positive function with 0 ≤ a < b and f ∈
L[a, b]. If f is a convex function on [a, b], then the following inequality for fractional
integrals holds.

f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α
(
Jαa+f(b) + Jαb−f(a)

)
≤ f(a) + f(b)

2
.

In this section, we establish Hermite-Hadamard type inequalities for harmoni-
cally φh−s via fractional integrals.

Theorem 4.2. Let f : I ⊆ R\{0} → R be a function such that f ∈ L[a, b] where
a, b ∈ I with a < b. If f, (f ◦ φ) ∈ HSX(φh−s, I), then the following holds.(

2h

(
1

2

))s
f

(
2ab

a+ b

)
≤
(

ab

b− a

)α
Γ(α+ 1)

(
Jα1/a−(f ◦ φ)(1/b) + Jα1/b+(f ◦ φ)(1/a)

)
≤ 2((f ◦ φ)2(x) + (f ◦ φ2)(y))

∫ 1

0

tα−1

((
h(t)

t

)−s
+

(
h(1− t)

1− t

)−s)
dt

Proof. Set x = ab
tb+(1−t)a and y = ab

ta+(1−t)b in (2), then

(6)

f

(
2ab

a+ b

)
≤
(

2h

(
1

2

))−s(
(f ◦ φ)

(
ab

tb+ (1− t)a

)
+ (f ◦ φ)

(
ab

ta+ (1− t)b

))
Multiplying both sides of (6) by tα−1 and integrating the result with respect to t
over (0, 1)

f

(
2ab

a+ b

)
≤

(
2h

(
1

2

))−s
αΓ(α)

(∫ 1

0

tα−1(f ◦ φ)

(
ab

tb+ (1− t)a

)
dt

+ tα−1(f ◦ φ)

(
ab

ta+ (1− t)b

)
dt

)
=

(
2h

(
1

2

))−s(
ab

b− a

)α
αΓ(α)

(∫ 1
a

1
b

(
u− 1

b

)α−1
(f ◦ φ)

(
1

u

)
du

+

∫ 1
a

1
b

(
1

a
− v
)α−1

(f ◦ φ)

(
1

v

)
dv

)

=

(
2h

(
1

2

))−s(
ab

b− a

)α
Γ(α+ 1)

(
Jα1/a−(f ◦ φ)(1/b) + Jα1/b+(f ◦ φ)(1/a)

)
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This proves the first inequality. Since (f ◦φ) ∈ HSX(φh−s, I), then for a, b ∈ I, we
have

(f ◦ φ)

(
ab

tb+ (1− t)a

)
+ (f ◦ φ)

(
ab

ta+ (1− t)b

)
≤
(
h(t)

t

)−s
(f ◦ φ2)(y) +

(
h(1− t)

1− t

)−s
(f ◦ φ2)(x)

+

(
h(1− t)

1− t

)−s
(f ◦ φ2)(y) +

(
h(t)

t

)−s
(f ◦ φ2)(x)

The remaining part of the proof follows by multiplying both sides by tα−1 and
integrating the result with respect to t over (0, 1).

�

Corollary 4.3. [6] Let f : I ⊆ (0,∞) → R be a function such that f ∈ L[a, b],
where a, b ∈ I with a < b. If f is a harmonically convex function on [a, b], then the
following inequalities for fractional integral holds

f

(
2ab

a+ b

)
≤ Γ(α+ 1)

2

(
ab

b− a

)α (
Jα1/a−(f ◦ g)(1/b) + Jα1/b+(f ◦ g)(1/a)

)
≤ f(a) + f(b)

2
with α > 0.

Proof. The result follows by setting h(t) = 1, s = 1 and φ(x) = x in Theorem
4.2. �

5. Application to special means of real numbers

We recall the following definitions of some special means of two non-negative
real numbers which are quite important for numerical approximations and compu-
tations.

Definition 5.1. (1) The Arithmetic mean A = A(a, b) := a+b
2 .

(2) The Geometric mean G = G(a, b) :=
√
ab.

(3) The Harmonic mean H = H(a, b) := 2ab
a+b .

(4) The Logarithmic mean L = L(a, b) := b−a
ln b−ln a .

(5) The p-logarithmic mean Lp = Lp(a, b) :=
(
bp+1−ap+1

(p+1)(b−a)

) 1
p

, p 6= −1, 0.

Proposition 5.2. Let h(t) = t1−
1
2s , s ∈ (0, 1), φ(x) = x and 0 < a < b, then

(i). 1√
2
H(a, b) ≤ G2(a,b)

L(a,b) ≤
4
3A(a, b).

(ii). 1√
2
H2(a, b) ≤ G2(a, b) ≤ 4

3A(a2, b2).

(iii). 1√
2
Hn(a, b) ≤ p+3

p+1G
2Lpp(a, b) ≤ 4

3A(an, bn)

where p = n− 2, p 6= −1, 0

Proof. Define f : (0,∞)→ R by f(x) = x, clearly f ∈ HSX(I) and so by Example

2.2, f ∈ HSX(φh−s, I) since h(t) ≤ t1−
1
s . The remaining part of the proof then

follows from Theorem 3.1. The proofs of (ii) and (iii) similarly follow by setting
f(x) = x2 and f(x) = xn respectively. �
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