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means of some weighted classes. This operator becomes to many well known
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1. Introduction

In the last years, many specialists of several fields have found different results about

some well-know inequalities and applications by means of the generalization of the

Riemann-Liouville fractional derivative, Riemann-Liouville fractional integral opera-

tor, Saigo fractional integral operator, Hadamard integral operator and some other,

see [1, 5, 8, 13, 17]. Recently, it has grew up the interest to get new results and

interesting relations about fractional integral inequalities using the above operators.

In this paper, we integrate all these operators and give a general results by means of

weighed classes. Besides, our results become to many well known integral inequalities

for the most simples cases, just considering some suitable weights.

Everywhere below, we assume that λ is said to be of the class ∆, if the function

λ : [0,∞) × [0,∞) → [0,∞) is continuous respect one of their variables in [0,∞).

Now, if λ ∈ ∆ and f(τ ) is a real-valued continuous function given in [0,∞), we define
1
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a weighted operator:

(1.1) Iλ[f(t)] =
∫ t

a

λ(α,β,κ)(τ, t)f(τ )dτ, a ≤ t ≤ +∞,

where a ≥ 0 and the weight λ depends on some complex parameters α, β, κ. This

operator is in a sense the same used in [1], but the weighted classes ∆ used to evaluate

the operator are most general than the class Ω introduced in [1]. Besides, one can

prove easily that Ω is a subset of ∆. Hence, the operator introduced in this paper

shall arise more applications and results in differential equations, integral inequalities,

special functions, fractional calculus, etc. (see [18, 16, 24]).

Remark 1.1. Note that the integral operator 1.1 could have as an endpoint +∞ of

the interval of integration approaches, in this case we shall understand this like an

improper integral.

2. preliminary

We recall a definition about the generalized gamma function. After that some facts

are established.

Definition 2.1. Let k > 0, then the generalized k-gamma function defined by [9]

(2.1) Γk(x) = lim
n→∞

n!kn(nk)
x
k−1

(x)n,k

where (x)n,k is the Pochhammer k-symbol defined by

(x)n,k = x(x + k)(x + 2k) . . . (x + (n − 1)k) (n ≥ 1).

Now, we shall present some of the most important and interesting remarks about

several applications of our weighted classes and operator Iλ. These remarks show

that we can become the results of this paper in many different type of fractional

calculus.

Remark 2.1. If λc,α,η(τ, t) = tη
(
1 − τ

t

) η
1−α where η ∈ C, Re η > 0, c > 0 and

α < 1. Then, Iλ[f
(

t
c(1−α)

)
] becomes to the pathway fractional integral operator in

[21], for a = 0 and f(t) ∈ L(c, b).

Remark 2.2. If λ(t, τ ) = 1
τ

(
log t

τ

)α−1 where α > 0 and t ≥ τ ∈ [a, b] (a ≥ 1), then

Iλ becomes to the classical left-sided Hadamard integral of fractional order α in [20],

i.e.

Iλ[f(t)] =
∫ t

a

(
log

t

τ

)α−1
f(τ )

τ
dτ, t ∈ [a, b].
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Remark 2.3. If λ(t, τ ) = [h(t)−h(τ)]α−1h′(τ)
Γ(α) with α > 0 and τ ∈ (a, t), h(τ ) is an

increasing and a positive monotone function on (a, b], having a continuous derivative

h′(τ ) on (a, b). Then, Iλ[f(t)] becomes to Jα
a+,hf in [15].

Remark 2.4. If λ(α,k,r)(t, τ ) = (1+r)1−
α
k

kΓk(α)
(tr+1 − τ r+1)

α
k −1τ r for a ≤ τ ≤ t, k > 0

and r ∈ R\{−1}, we get the generalized Riemann-Liouville k-fractional integral Rα,r
a,k

of order α > 0 introduced in [24], i.e. Iλ[f(t)] = Rα,r
a,k{f(t)}. Besides, this definition

coincide with the (k; r)-Riemann-Liouville fractional integral of f of order α > 0 in

[24]. Moreover, setting r = 0, Iλ[f(t)] is the Riemann-Liouville k-fractional integral

defined in [19].

Remark 2.5. If λ(t, τ ) = t−η−α

Γ(α) (t − τ )α−1τ−η where α > 0 and η is a complex

parameter. Then, for a = 0

Iλ[f(t)] =
t−η−α

Γ(α)

∫ t

0

(t − τ )α−1τ−ηf(τ )dτ,

is the Erdélyi-Kober fractional integral of [17, 10] which generalizes the Riemann

fractional integral and the Weyl integral (see [22]).

Remark 2.6. If λα,ρ(t, τ ) = ρ1−α

Γ(α)
τρ−1

(tρ−τρ)1−α where Re α > 0 and ρ ∈ R 6= {−1}.
Then, the operator

Iλ[f(t)] =
ρ1−α

Γ(α)

∫ t

a

τρ−1

(tρ − τρ)1−α
f(τ )dτ = (ρIα

a+f)(t), t > a,

is called the left-sided Katugampola fractional integral (see [12, 13]). Analogously, it

is defined right-sided fractional integral with a little bit changes.

Remark 2.7. If λ(x,y,k)(t, τ ) = τ
x
k

−1(1−τ)
y
k

−1

kf(τ) for t ≥ τ ≥ 0, Re x > 0, Re y > 0,

k > 0 and f is a positive and continuous function on [0, 1], then

Iλ[f(t)] =
1
k

∫ t

0

τ
x
k −1(1 − τ )

y
k−1dτ = β

[0,t]
k (x, y).

And, β
[0,t]
k (x, y) becomes to the k-beta function in [9] when t = 1. Besides, if λ(t, τ ) =

τx−1 (1−τ)y−1

k
, then

Iλ[1(t)] = β
[0,t]
k (x, y).

Remark 2.8. If λ(α,β,η)(τ, t) = t−α−β

Γ(α) (t− τ )α−1
2F 1

(
α + β,−η; α; 1− τ

t

)
where α >

0, t ≥ τ ≥ 0 and β, η ∈ C \ Z−. Then the operator Iλ[f(t)] becomes to the Saigo

generalized fractional integral Iα,β,η
0,x [f(t)] (see [23]).
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Remark 2.9. If λα(τ, t) = τ1−α for α ∈ (0, 1), then Iλ[f(t)] = Ia
α(f)(t), i.e. the

conformal fractional integral defined in [14].

3. Weighted Minkowski’s Reverse fractional integral inequalities

In this section we prove some theorems on Minkowski’s reverse fractional integral

inequality.

Theorem 3.1. Let p ≥ 1, λ ∈ ∆ and let f , g be two positive functions on [0, +∞)

such that for all t > 0, Iλ[fp(t)] < ∞, Iλ[gp(t)] < ∞. If 0 < m ≤ f(τ)
g(τ) ≤ M , τ ∈ [a, t]

(a ≥ 0), then

(3.1)
(
Iλ[fp(t)]

)1/p + (Iλ[gp(t)])1/p ≤ 1 + M (m + 2)
(m + 1)(M + 1)

(Iλ[(f + g)p(t)])1/p.

Proof. By the condition f(τ)
g(τ) ≤ M , τ ∈ [a, t] (t > a), it follows

(3.2) (M + 1)pfp(τ ) ≤ Mp(f + g)p(τ ).

Multiplying both sides of (3.2) by λ(τ, t) and integrating respect to τ over (a, t), we

get

(M + 1)p

∫ t

a

λ(τ, t)fp(τ )dτ ≤ Mp

∫ t

a

λ(τ, t)(f + g)p(τ )dτ,

This imply,

(3.3) (Iλ[fp(t)])1/p ≤ M

M + 1
Iλ[(f + g)p(t)])1/p.

Besides, by the condition m ≤ f(τ)
g(τ) , we obtain

(
1 +

1
m

)
g(τ ) ≤

1
m

(f(τ ) + g(τ )).

Thus,

(3.4)
(

1 +
1
m

)p

gp(τ ) ≤ 1
mp

(f(τ ) + g(τ ))p.

Hence, multiplying both sides of (3.4) by λ(τ, t) and integrating respect to τ over

(a, t), we get

(3.5) (Iλ[gp(t)])1/p ≤ 1
m + 1

(Iλ[(f + g)p(t)])1/p.

By (3.2) and (3.5), we get the desired result (3.1). �

Remark 3.1. For the most simple case, taking λ ≡ 1, Theorem 3.1 becomes to [3,

Theorem 1.2] on [0, t]. Besides, if λα(τ, t) = (t−τ )α−1, for α > 0 and t > 0, Theorem

3.1 becomes to [8, Theorem 2.1] on (0, t).



WEIGHTED INEQUALITIES... 5

Theorem 3.2. Let p ≥ 1, λ ∈ ∆ and let f , g be two positive functions on [0, +∞)

such that for all t > 0, Iλ[fp(t)] < ∞, Iλ[gp(t)] < ∞. If 0 < c < m ≤ f(τ)
g(τ)

≤ M ,

τ ∈ [a, t] (a ≥ 0), then

(3.6)
M + 1
M − c

(Iλ[(f−cg)p(t)])1/p ≤ (Iλ[fp(t)])1/p+(Iλ[gp(t)])1/p ≤ m + 1
m − c

(Iλ[(f−cg)p(t)])1/p.

Proof. By hipothesis, we get

m − c ≤ f(τ )
g(τ )

− c ≤ M − c, τ ∈ [a, t], a ≥ 0,

or what this the same
f(τ ) − cg(τ )

M − c
≤ g(τ ) ≤ f(τ ) − cg(τ )

m − c
.

Hence, multiplying by λ(τ, t) and integrating respect τ over (a, t) in the last inequality,

we get

1
M − c

(∫ t

a

λ(τ, t)(f(τ ) − cg(τ ))pdτ

)1/p

≤
(∫ t

a

λ(τ, t)gp(τ )dτ

)1/p

≤ 1
m − c

(∫ t

a

λ(τ, t)(f(τ ) − cg(τ ))pdτ

)1/p

.(3.7)

On the other hand, we have

− 1
m

≤ − g(τ )
f(τ )

≤ − 1
M

, τ ∈ [a, t],

Thus,
1
c
− 1

m
≤ 1

c
− g(τ )

f(τ )
≤ 1

c
− 1

M
,

i.e.
m − c

cm
≤ f(τ ) − cg(τ )

cf(τ )
≤ M − c

cM
.

Hence,
M

M − c
(f(τ ) − cg(τ )) ≤ f(τ ) ≤

m

m − c
(f(τ ) − cg(τ )).

Then, multiplying by λ(τ, t) and integrating respect to τ over (a, t), we obtain

M

M − c

(∫ t

a

λ(τ, t)(f(τ ) − cg(τ ))pdτ

)1/p

≤
(∫ t

a

λ(τ, t)fp(τ )dτ

)1/p

≤ m

m − c

(∫ t

a

λ(τ, t)(f(τ ) − cg(τ ))pdτ

)1/p

.(3.8)

Finally, by (3.7) and (3.8) follow (3.6). �

Remark 3.2. If λ ≡ 1, Theorem 3.2 becomes to Theorem 2.2 in [25]. Moreover, if

c = 1, then we get an integral inequality presented by Sulaiman in [26].
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4. Weighted Hölder’s Reverse fractional integral inequality

In what follows, are two results in which we intend to establish the Hölder’s reverse

fractional integral inequality using the weighted integral operator.

Theorem 4.1. Let p > 1, 1
p + 1

q = 1, λ ∈ ∆ and let f , g be two positive functions

on [0,∞[, such that for all t > a, Iλ[f(t)] < ∞, Iλ[g(t)] < ∞. If 0 < m ≤ f(τ)
g(τ)

≤
M < ∞, τ ∈ [a, t], then we have the following

(4.1) [Iλf(t)]
1
p [Iλg(t)]

1
q ≤

(
M

m

) 1
pq

Iλ

[
(f(t))

1
p (g(t))

1
q

]
.

Proof. Since f(τ)
g(τ)

≤ M , τ ∈ [a, t], a ≥ 0, we have

(4.2) [g(τ )]
1
q ≥ M

−1
q [f(τ )]

1
q

and

[f(τ )]
1
p [g(τ )]

1
q ≥ M

−1
q [f(τ )]

1
q [f(τ )]

1
p

≥ M
−1
q [f(τ )]

1
q + 1

q ≥ M
−1
q [f(τ )].

(4.3)

Then, multiplying (4.3) by λ(τ, t) and integrating respect to τ over (a, t), we obtain

(4.4) Iλ

[
[f(t)]

1
p [g(x)]

1
q

]
≥ M

−1
q [Iλ[f(t)]] .

hence, we can write

(4.5)
(
Iλ

[
[f(t)]

1
p [g(t)]

1
q

]) 1
p ≥ M

−1
pq [Iλ[f(t)]]

1
p .

Notice that m g(τ ) ≤ f(τ ), τ ∈ [0, t], t > 0. It follows that

(4.6) [f(τ )]
1
p ≥ m

1
p [g(τ )]

1
p .

Multiplying the equation (4.6) by [g(τ )]
1
q , we arrive at

(4.7) [f(τ )]
1
p [g(τ )]

1
q ≥ m

1
p [g(τ )]

1
q [g(τ )]

1
p = m

1
p [g(τ )]

Multiplying both sides of (4.7) by λ(τ, t) and integrating respect to τ over (a, t), we

obtain

(4.8) Iλ

[
[f(t)]

1
p [g(t)]

1
q

]
≥ m

1
p [Iλ[g(t)]] .

Hence we have

(4.9)
(
Iλ

[
[f(t)]

1
p [g(t)]

1
q

]) 1
q ≥ m

1
pq [Iλ[g(t)]]

1
q .

Multiplying the equation (4.5) and (4.9), we can draw the desired conclusion easily.

�
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Also, replacing f(τ ) and g(τ ) by f(τ )p and g(τ )q , τ ∈ [a, t], a ≥ 0 in Theorem 4.1,

we obtain the following weighted Hölder’s reverse fractional integral inequality:

Corollary 4.1. Let p > 1, 1
p + 1

q = 1, λ ∈ ∆ and f and g be two positive function

on [0,∞[, such that for all t > a, Iλ[fp(t)] < ∞, Iλ[gq(t)] < ∞. If 0 < m ≤ f(τ)p

g(τ)q ≤
M < ∞, τ ∈ [a, t]. Then

[Iλ[fp(t)]]
1
p [Iλ[gq(t)]]

1
q ≤

(
M

m

) 1
pq

[Iλ[f(t)g(t)]] .

5. Some other weighted integral inequalities

Now, some integral inequalities of arithmetic and geometric means are proved.

Theorem 5.1. Let p ≥ 1, λ ∈ ∆ and let f , g be two positive functions on [0, +∞)

such that for all t > 0, Iλ[fp(t)] < ∞, Iλ[gp(t)] < ∞. If 0 < m ≤ f(τ)
g(τ) ≤ M , τ ∈ [a, t]

(a ≥ 0), then

(5.1)(
(M + 1)(m + 1)

M
− 2
)

(Iλ[fp(t)])1/p(Iλ[gp(t)])1/p ≤
(
Iλ[fp(t)]

)2/p + (Iλ[gp(t)])2/p.

Proof. Multiplying inequalities (3.3) and (3.5), we get

(5.2)
(M + 1)(m + 1)

M
(Iλ[fp(t)])1/p(Iλ[gp(t)])1/p ≤ Iλ[(f + g)p(t)])2/p,

Besides, applying Minkowski inequality to the right hand side of the last inequality,

we get

(5.3) Iλ[(f + g)p(t)])2/p ≤
(
(Iλ[fp(t)])1/p + (Iλ[gp(t)])1/p

)2

.

Then, by (5.2) and (5.3), with a straightforward calculation follows (5.1). �

Remark 5.1. Theorems 3.1 and 5.1 become to Theorem 3.1 and 3.2 of [4] in virtue

of remark 2.8.

Theorem 5.2. Let p > 1, 1
p

+ 1
q

= 1, λ ∈ ∆ and f and g be two integrable functions

on [0,∞] such that 0 < m < f(τ)
g(τ) < M, τ ∈ [a, t]. Then

(5.4) Iλ[fg(t)] ≤ 2p−1Mp

p(M + 1)p
(Iλ[fp + gp](t)) +

2q−1

q(m + 1)q
(Iλ[fq + gq ](t)) ,

Proof. Since, f(τ)
g(τ) < M, τ ∈ (a, t), a ≥ 0, we have

(5.5) (M + 1)f(τ ) ≤ M (f + g)(τ ).
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Taking pth power on both side, multiplying resulting identity by λ(τ, t) and integrat-

ing respect τ over (a, t), we get

(5.6) Iλ[fp(t)] ≤ Mp

(M + 1)p
Iλ[(f + g)p(t)].

On other hand, 0 < m < f(τ)
g(τ) , τ ∈ (a, t), we can write

(5.7) (m + 1)g(τ ) ≤ (f + g)(τ ),

Again, multiplying equation (5.7) by λ(τ, t) and integrating respect τ over (a, t), we

get

(5.8) Iλ[gq(t)] ≤ 1
(m + 1)q

Iλ[(f + g)q(t)].

Now, using Young inequality

(5.9) [f(τ )g(τ )] ≤ fp(τ )
p

+
gq(τ )

q
.

Multiplying both side of (5.9) by λ(τ, t) and integrating respect τ over (a, t), we get

(5.10) Iλ[f(t)g(t))] ≤ 1
p

Iλ[fp(t)] +
1
q

Iλ[gq(t)],

from equation (5.6), (5.8) and (5.10) we get

(5.11) Iλ[f(t)g(t))] ≤ Mp

p(M + 1)p
Iλ[(f + g)p(t)] +

1
q(m + 1)q

Iλ[(f + g)q(t)],

now using the inequality (a + b)r ≤ 2r−1(ar + br), r > 1, a, b ≥ 0, we have

(5.12) Iλ[(f + g)p(t)] ≤ 2p−1Iλ[(fp + gp)(t)],

and

(5.13) Iλ[(f + g)q(t)] ≤ 2q−1Iλ[(fq + gq)(t)].

Injecting (5.12), (5.13) in (5.11) we get required inequality (5.4). �

6. Applications and further results

The following result is on Clarkson’s type inequality. He established some inequalities

for proving the uniform convexity of Lp and lp spaces with 1 < p < +∞ (see [6]). And,

many specialist have used their results in several branches of mathematics, engeniery,

etc (see e.g. [2, 7]). This statement is established using the weighted Minkowski’s

reverse fractional integral inequalities.
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Theorem 6.1. Let p ≥ 1, λ ∈ ∆ and let f , g be two positive functions on [0, +∞)

such that for all t > 0, Iλ[fp(t)] < ∞, Iλ[gp(t)] < ∞. If 0 < 1 < m ≤ f(τ)
g(τ)

≤ M ,

τ ∈ [a, t] (a ≥ 0), then

(6.1) Iλ[fp(t)] + Iλ[gp(t)] ≤ CM,mIλ[(f + g)p(t)] + CmIλ[(f − g)p(t)].

where CM,m = Mp(m+1)p+(M+1)p

2(M+1)p(m+1)p and Cm = 1+mp

2(m−1)p .

Proof. By (3.3) and (3.5), we get

(6.2) Iλ[fp(t)] + Iλ[gp(t)] ≤
(

1
(m + 1)p

+
Mp

(M + 1)p

)
Iλ[(f + g)p(t)].

Besides, by (3.7) and (3.8), we have for c = 1

(6.3) Iλ[fp(t)] + Iλ[gp(t)] ≤
(

1
(m − 1)p

+
mp

(m − 1)p

)
Iλ[(f − g)p(t)].

Thus, the desired inequality (6.1) follows by (6.2) and (6.3). �

Now, another application on a weighted Randon’s reverse integral inequality. Here,

we use the Holder’s reverse fractional integral inequality established in Theorem 4.1.

Theorem 6.2. Let λ ∈ ∆ and let f(x) and g(x) be positive and continuous functions.

If n > 0 and 0 < m ≤
(

f(τ)
g(τ)

)n+1

≤ M , τ ∈ [a, t], then

(6.4)
∫ t

a

fn+1(x)
gn(x)

λ(x, t)dx ≤
(

M

m

)n/(n+1)

(∫ t

a
f(x)λ(x, t)dx

)n+1

(∫ t

a g(x)λ(x, t)dx
)n , a < t.

Proof. By the condition 0 < m ≤
(

f(τ)
g(τ)

)n+1

≤ M , τ ∈ [a, t], p = n+1, q = (n+1)/n,

taking u(x) = f(x)
[g(x)]n/(n+1) and v(x) = [g(x)]n/(n+1) and corollary 4.1, we obtain
(∫ t

a

fn+1(x)
gn(x)

λ(x, t)dx

)1/(n+1)(∫ t

a

g(x)λ(x, t)dx

)n/(n+1)

≤
(

M

m

)n/(n+1)2 ∫ t

a

f(x)λ(x, t)dx

and the inequality (6.4) follows by traightforward calculation in the above inequality.

�

Some interesting examples shall be shown for looking the many relations that we

could find just considering some special functions and weights. For this reason, we

consider the following inequality in the below two examples:
t

1 + t
≤ 1 − e−t ≤ 4

3
t

1 + t
, 0 ≤ t ≤ +∞.
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Example 1. Setting λ(τ, t) = e−τ on (0,∞) we get
∫ +∞

0

(1 − e−τ )pe−τ dτ < +∞ and
∫ +∞

0

(
t

1 + t

)p

e−τ dτ < +∞.

Then, by Theorem 5.1

3
2
(Ie−x [(1 − e−x)p])1/p

(
Ie−x

[(
x

1 + x

)p])1/p

≤
(
Ie−x [(1 − e−x)p]

)2/p +
(

Ie−x

[(
x

1 + x

)p])2/p

.

Example 2. Also, we can consider λ(τ, t) = (1 + τ )α−1 where α < 0 and p = 1 for

getting
∫ +∞

0

(1 − e−τ )(1 + τ )α−1dτ < +∞ and
∫ +∞

0

(
t

1 + t

)
(1 + τ )α−1dτ < +∞.

Thus, by Theorem 3.1

I(1+x)α−1 [1 − e−x] + I(1+x)α−1

(
x

1 + x

)
≤ 5

7
I(1+x)α−1

(
1 − e−x +

x

1 + x

)
.

Moreover, if we consider some particular p, it is possible to get sharp inequalities and

bounds.

Example 3. If we consider the recently inequalities found by F. Qi and M. Mahmoud

in [11, Theorem 1], we have

tan
(

π
4x
)

αx
≤ Γ(x + 1) <

tan
(

π
4x
)

βx
, 0 < x ≤ 1,

where Γ is the gamma function and the constants α = 1 and β = π/4 are the best

possible. Thus, for λ(t, x) = x2

(Γ(x+1))2
on [0, 1] we obtain

∫ 1

0

tan2
(

π
4x
)

(Γ(x + 1))2
dx < +∞.

Hence, by Theorem 4.1 for p = q = 2 we get

1√
3

(∫ 1

0

tan2
(

π
4x
)

(Γ(x + 1))2
dx

)1/2

≤
(

4
π

)1/4 ∫ 1

0

x tan
(

π
4x
)

Γ(x + 1)
dx < +∞.

Example 4. Also, by Theorem 3 in [11], we have for any constant τ

µ exp
(

x2

6 − x2

)
≤ Γ(x + 1) ≤ λ exp

(
x2

6 − x2

)
, 0 ≤ x ≤ τ <

√
6,
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where the constans λ = 1 and µ = Γ(τ +1) exp
(

τ2

τ2−6

)
are the best possible. Besides,

setting λ(x, τ ) = exp
{
− x2

6−x2

}
/Γ(x + 1) for 0 ≤ x ≤ τ , we get by Theorem 6.2

∫ τ

0

Γn(x + 1)
(
exp

{
x2

6−x2

})n+1dx ≤ 1
µn

(∫ τ

0
exp

{
− x2

6−x2

}
dx
)n+1

(∫ τ

0
dx

Γ(x+1)

)n ,

where n > 0 and 0 ≤ x ≤ τ <
√

6.

7. conclusion

Many works on integral inequalities have been obtained using particular functions

without using weighted classes due to they could find close form and simple represen-

tations of these inequalities, now in this paper we give a general close form of many

reverse inequalities that becomes in several results in the literature just taking some

particular and simples weights. Furthermore, this kind of works shall lead to the

specialist think about the power to consider suitable weighted clasess, it can no be

so general than we are considering here but decreasing functions, bounded functions,

and some other like their weighted class for getting more fruitful results.
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