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OSTROWSKI AND TRAPEZOID TYPE INEQUALITIES FOR
THE GENERALIZED k-g-FRACTIONAL INTEGRALS OF
FUNCTIONS WITH BOUNDED VARIATION

SILVESTRU SEVER DRAGOMIR1!:2

ABSTRACT. Let g be a strictly increasing function on (a,b), having a continu-
ous derivative g’ on (a,b) . For the Lebesgue integrable function f : (a,b) — C,
we define the k-g-left-sided fractional integral of f by

xT
Staar @ = [ k@ -g(0)g O Odt, 2 € (0,1
a
and the k-g-right-sided fractional integral of f by

b
Stan-1 @) = [ K@) =g @) 011 O dt, 2 € [a,b)

where the kernel k is defined either on (0, 00) or on [0, co) with complex values
and integrable on any finite subinterval.

In this paper we establish some Ostrowski and trapezoid type inequalities
for the k-g-fractional integrals of functions of bounded variation. Applications
for mid-point and trapezoid inequalities are provided as well. Some examples
for a general exponential fractional integral are also given.

1. INTRODUCTION

Assume that the kernel k is defined either on (0, c0) or on [0, 00) with complex
values and integrable on any finite subinterval. We define the function K : [0, 00) —

C by
fotk(s)ds if 0 <t,
K(t):=
0ift=0.

As a simple example, if k (t) = t*~! then for o € (0,1) the function k is defined on
(0,00) and K (t) := 1t for t € [0,00). If & > 1, then k is defined on [0, c0) and
K (t) == Lt> for t € [0,00).

Let g be a strictly increasing function on (a,b), having a continuous derivative
g on (a,b). For the Lebesgue integrable function f : (a,b) — C, we define the

k-g-left-sided fractional integral of f by

(L1) Sugard (0)= [ k(@) —g () g () f (W) dt, z € (al
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and the k-g-right-sided fractional integral of f by
b

(1.2) Sk,gp—f (2) =/ k(g(t)—g(2)g () f{t)dt, x € [a,b).

If we take k (t) = ﬁto‘*l, where I' is the Gamma function, then
(13) Skgard (@) = s [ @ =g @01 g (0 F (@)
=1, f(2), a<x <D
and
(1.4) Stai 1) = g [ 90~ 9@ g @) F 0
: k,g,b— x_F(OZ) . g g\z g

—Ip @), a<a<b,

which are the generalized left- and right-sided Riemann-Liouville fractional integrals
of a function f with respect to another function g on [a, b] as defined in [21, p. 100]

For g (t) =t in (1.4) we have the classical Riemann-Liouville fractional integrals
while for the logarithmic function ¢ (¢t) = Int we have the Hadamard fractional
integrals [21, p. 111]

(L5)  HEf() = 1/; n (5)]" LY g caca <

I'(a) t t

and
(1.6) H"‘f(x)'_l/b (L BRI 0<a<z<b

' b= o I'(a) J, T t ’
One can consider the function g (¢t) = —t~! and define the "Harmonic fractional
integrals” by

e f(t)dt

1.7 Ry f(z) = / ,0<a<2<b
( ) + ( ) F(Oé) " (:L-ft)lfatOHrl
and
(1.8) Ry f(x)~—x1a/b St 0<a<z<b

' TN ), e '

Also, for g (t) = exp (Bt), § > 0, we can consider the "3-Exponential fractional
integrals”

(L) B f(x) = Ffa) / " fexp (B) — exp (88)]" " exp (B1) f (1) dt,

fora < x <band

b
(110) B f(e) = s [ lexn(80) - exp (8] exp (51) £ ()
for a <z <b.

If we take ¢g(t) = ¢ in (1.1) and (1.2), then we can consider the following k-

fractional integrals

(1.11) Skatf () = /Lk(x —t) f(t)dt, z € (a,b]
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and
b
(1.12) Sep—f(x) = / kE(t—2x)f(t)dt, = € [a,b).
In [24], Raina studied a class of functions defined formally by
o — - o (k) k .
(1.13) oa(z) = 2T ok + /\)x , |z < R, with R >0

for p, A > 0 where the coefficients o (k) generate a bounded sequence of positive real
numbers. With the help of (1.13), Raina defined the following left-sided fractional
integral operator

(1.14) Tgrnarwl () = /m (x— t))‘_1 o (w(z— ) f(t)dt, > a

where p, A > 0, w € R and f is such that the integral on the right side exists.
In [1], the right-sided fractional operator was also introduced as

b
(115) Ty d @)= [ -2 T E it 2)) O < b

where p, A > 0, w € R and f is such that the integral on the right side exists.
Several Ostrowski type inequalities were also established.

We observe that for k (t) = t* ' F7 , (wt”) we re-obtain the definitions of (1.14)
and (1.15) from (1.11) and (1.12).

In [22], Kirane and Torebek introduced the following exponential fractional in-
tegrals

o) TEi@e s [

a

xexp{—laa(x—t)}f(t)dt, r>a

and

(1.17) T f () :=;/:exp{—l;a(t—m)}f(t)dt,x<b

where o € (0,1).

We observe that for k (t) = L exp (—1=2¢), ¢ € R we re-obtain the definitions of
(1.16) and (1.17) from (1.11) and (1.12).

Let g be a strictly increasing function on (a,b), having a continuous derivative
g’ on (a,b). We can define the more general exponential fractional integrals

119 Tf@ =g {2t 6@ g0} 07O > a

a (67

and

19 T @)= e {200 g} O f 0 o <o

z [e%

where a € (0,1).
Let g be a strictly increasing function on (a,b), having a continuous derivative ¢’
on (a,b). Assume that o > 0. We can also define the logarithmic fractional integrals

(1.20) Ly oy f (x) = /L (9(x) = g(#)* " In(g(x) — g (1) g’ () f (1) dt,
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for 0 <a <z <band

b

(1.21) Loy f(z) = / (9(1) =g (x)* " In(g(t) — g () g () f (1) dt,

x

for 0 < a <z < b, where o > 0. These are obtained from (1.11) and (1.12) for the
kernel k (t) =t 1lnt, t > 0.
For a = 1 we get

(12) Ly @)= [ W) =g @)g (00 0<a<w <t
and

b
(1.23) Lop—f(x):= / In(g(t)—g(z)g &) f(t)dt, 0<a<z<b.

For g (t) = t, we have the simple forms

(1.24) Lo f(x):= /z (=) "In(z—t)f(t)dt, 0<a<z<b,
b
(1.25) Ly f(x):= / (t—z)* '"In(t—z)f(t)dt, 0 <a<xz<b,
(1.26) £a+f(at)::/xln(x—t)f(t)dt,O<a<m§b
and
b
(1.27) Ly f (x) ::/ In(t—z)f@)dt, 0 <a<z<b.

In the recent paper [18] we obtained the following Ostrowski and trapezoid type
inequalities for the generalized left- and right-sided Riemann-Liouville fractional
integrals of a function f with respect to another function g on [a, b] .

Theorem 1. Let f : [a,b] — C be a function of bounded variation on [a,b]. Also
let g be a strictly increasing function on (a,b), having a continuous derivative g’
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on (a,b). Then we have

(1.28) |13 of (a) + I3y o f (b)
—ﬁ (9(2) = 9.(a)* + (9 (6) — 9 (2)°] £ (&)

1 v a 1 / b 1 t
Sml/ (9(t) —9 AVA®) dt+/x (9(b) = g (1)) g(t)\m/(f)dt]

[L(9(0) = g(@) + |g () — 2222 1"

L | @ =g@)r+ e® - g @ (e + (Vn))

with p, ¢ > 1, lJr =1;

1
q

Vo +3{Vi D= Vo] (e @) — g (@) + (g (1) — g (@)))

[$0®) —g(@) +|g (@) - 2220 "V (5);

L] @ g @) m g @ (vE e+ (Vi)
(a+1)

IN
—

withp, ¢>1, X+

1_ 9.
,71,
p q

VLD +3{VE D= VE || (e @)~ g (@) + (g (1) — g (@))")
for any z € (a,b).

For applications to the classical Riemann-Liouville fractional integrals, Hadamard
fractional integrals and Harmonic fractional integrals see [18].

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals
see [2]-[17], [19]-[32] and the references therein.

Motivated by the above results, in this paper we establish some Ostrowski and
trapezoid type inequalities for the k-g-fractional integrals of functions of bounded
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variation. Applications for mid-point and trapezoid inequalities are provided as
well. Some examples for a general exponential fractional integral are also given.

2. SOME IDENTITIES FOR THE OPERATOR Sk g .a+ b—

For k£ and g as at the beginning of Introduction, we consider the mixed operator
(21)  Skga+rp-f(z)

= % [Sk',g,a—i-f (.Z‘) + Sk,g,b—f (.T)]

1

i b
—QVG k(g(x)*g(t))g’(t)f(t)dw/z k(g (t) —g(x)g () f(t)dt

for the Lebesgue integrable function f : (a,b) — C and z € (a,b).
The following two parameters representation for the operator Sy 4.+ »— holds:

Lemma 1. With the above assumptions for k, g and f we have

22 Suguesf @)= 50K 00) - @) + MK (9() - 9 (@)
+;/jk(g($) —g®))d @O [f (t) — A dt
b
3 [ RO —a@)g 017 0~

for any A\, v € C.

Proof. We have, by taking the derivative over ¢ and using the chain rule, that

(K (9(x) =g )] =K' (9(z) =g () (9 (2) =g (1)) =~k (g(z) =g (1)) g (1)

for ¢t € (a,z) and

[K(g(t)—g @) =K (g(t)—g (@) (g(t) —g () =k(g(t) —g(x) g (t)

for t € (x,b).
Therefore, for any A, v € C we have

@) [ ko@-s®)g OO -
:/Ikcq(x)—g(t))g’(t)f(t)dH/ k(g (x) — g (8) g (£)dt
g

= Stgarf (242 [ K (g () — g ()] dt
= Stgarf (@) + ALK (g (1) — g O = Stgar f (2) = AK (9.(2) - g (a))
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and

b
20 [ blg@) g g 01 © -]
b
:/ k(g(t)—g(w))g’(t)f(t)dm/ k(g (t) — g (2) g (1) dt

x

b

= Spgof (@) — 7 / K (g(t) — g ()] dt

x

= Skgo-f (@) =7 [K (9(8) = g (@))]l; = Skg-] (@) = 7K (9 (b) — g ()

for x € (a,b).
If we add the equalities (2.3) and (2.4) and divide by 2 then we get the desired
result (2.2). O

Corollary 1. With the above assumptions for k, g and f we have the Ostrowski
type identity

(25)  Segurs 1) = 5 (K (9(0) ~ (@) + K (9 () ~ g @)] ] (2)
3 [ Ra@ g )d W1 @)~ f @)
b
+3 [ R =g@)g OO F @l

and the trapezoid type identity

(26)  Segarsetf (@) = LK (a(8) ~ 9() F )+ K (9(x) ~ 9 (@) f )
3 | Ka@-g@)d 10 f @l
b
3 [ RO =9@)g O O f o)

for any z € (a,b).

For x = ‘%b we can consider
a+b
@1 Mugassf = Suparat (257

+

(o (M) s s s
+;/;k(g<t>g(“;”))g'u)f(t)dt-

2
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By (2.5) we have the representation

(2.8)  Miga+p—f
() ) 5)
+;/aa;bk(g<a;_b)—g(t)>9/(t) -7 (4] a
+;/;k<g(t)—g<a;b>>g'(t) 01 (5]

and (2.6) we have

(2.9) My g.at+p-f
< (0o (557)) 105 (o (57) o) 0]
A6 e0) s oo - s

+;/ab+bk(g(t)g(a2 ))g’(t)[f(t)f(b)]dt,

2

If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can define the g-mean of two numbers

a,bel as
M (ah) g (g(a) ;g(@) |

If I =R and g (t) =t is the identity function, then M, (a,b) = A(a,b) := £,
the arithmetic mean. If I = (0,00) and g (t) = Int, then M, (a,b) = G (a,b) := Vab,
the geometric mean. If I = (0,00) and g (¢) = 1, then M, (a,b) = H (a,b) :=

%, the harmonic mean. If I = (0,00) and g (t) = t?, p # 0, then M, (a,b) =

M, (a,b) := (W)l/p7 the power mean with exponent p. Finally, if I = R and
g (t) = expt, then

expa + exp b)

M, (a,b) = LME (a,b) := ln< 5

the LogMeanEzxp function.
Using the g-mean of two numbers we can introduce

(2.10) Pr.garv—f = Sk.gats—f (Mg (a,b))

Myg(a,b) a
S [0 ) g s wa
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Using (2.5) and (2.6) we have the representations
(211)  Prgasp-f

e (20599 o, )

Mgy (a,b) a
w2 [ <9“+9“’) g<t>) o O () = £ (M, (a,))] dt

2 2
1/ gla)+g@®)Y ,
. /Mg(mb)k<g e e IR UA O
and
(2.12) Pr.gatb-T
g(b)—g(a)) £ () +f (a)
- (Lol L0
Mg(a,b) a
=y (2520 o) 010 f @]
b a
= b)k(g(t)—g();rg(b)> J O (@)~ f ) dt

3. SOME IDENTITIES FOR THE DUAL OPERATOR §k7g7a+,b,

Observe that
(3.1) St )= [ k(o) — g @) () F O dt, 7€ b
and
32 Supef@= [ KeO 9@ 0 @ 2 (@]
Define also the mixed operator
(3.3)  Skgatsf (@)
= 5 [Skgas S () + Sy f (@)

= % [/ k(g<b)—g(t))g’(t)f(t)dt+/jk(g<t)—g(a))g'(t>f(t>dt

for any x € (a,b).

Lemma 2. With the above assumptions for k, g and f we have

(3.4) Skgatp—f (z) = % K (g (b) — g (2)) + 1K (g (z) — g (a))]
3 [ Ra®-g@)g O © -Na
b
3 [ Ha® 9@ O1F (0= a

for any A, v € C.
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Proof. We have, by taking the derivative over ¢t and using the chain rule, that

[K(g(b)—g(t)] =K' (g(b)—g(t)(g(b)—g(t) =—k(g(b)—g(t)d (t)
for ¢t € (x,b) and

(K (9(t) —g(@)) =K' (g() —g(a)) (g(t) —g(a) =k(g(t) —g(a)) g (1)
for t € (a,z).
For any A, v € C we have

b
65 [ ke®-g®)g O1f 0 - N
— [ kg ®) - g@)g @£ Ot -2 [ ka®) - g0)g Bt

b
= Sppif (B) £ A / K (g (b) — g (£))] dt
= Spyeat (b) — AE (g (D) — g ()

=/Ik(g(t)—g(a))g’(t)f(t)dt—VK(Q(J«“)—g(a))

for x € (a,b).
If we add the equalities (3.5) and (3.6) and divide by 2 then we get the desired
result (3.4). O

Corollary 2. With the assumptions of Lemma 2 we have the Ostrowski type iden-
tity

1
(3.7) Skgatio—f () == [K(g(b) —g(2)) + K (9 () - g(a))] f (z)

/ k(g O (t) — f ()] dt
+§L k(g () — g () g () F (t) — f ()] dt

and the trapezoid identity

(38)  Skgass-f(z) =

+
N = N = o

+

for x € (a,b).
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For z = % we can consider

o 9 a+b
(3.9) My.g,a+0-f = Sk,gat,b—f ( )

—_

+3 [ Ee g O F O
Using the equalities (3.7) and (3.8), we have

(3.10)  Myga+p-f

(om0 (“50)) +x (o (S52) o) (222
+;/a2bk(g(t)—g<a>>g’<t> -1 (7))
+;/;k(g(b)g(t))g'(t) {f(t)f(a;bﬂ «

and

(3.11) My gatv—f

+1/Tk(9(f)—g(a))g'(t) [ (t) — f (a)] dt

2 a
b
+;/Tk(9(b)—g(t))g’(t) [f (t) — f (b)) dt.

Using the g-mean of two numbers we can introduce

(3.12) Progativ—f = Skga+o—f (M (a,b))

1[0 ,
T2 /Mg oy IO g W S (Bt
Mg(a,b)
+ %/a k(g (t)—g(a) g (t) f (t)dt.

Using the equalities (3.7) and (3.8), we have

(313)  Prigarsf=K (W) f (Mg (a,b))

11
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b
5 HOO =90 OU O~ S Ol

4. TRAPEZOID FUNCTIONAL T} g at b—

We can also introduce the functional

(4.1) Ty,g,a+,0—f = % [Sk.g.at f (b) + Sk f (a)]

b
= % / k(g (D) =g () +k(g(t) —g(a)]g (t) f(t)dt.
We have:

Lemma 3. With the assumption of Lemma 1, we have

(42)  Thga+s-f =K (g(b) —g(a))d

b
+ %/ [k (g (0) —g(t) +k(g(t) —g(a))lg () [f (t) —d]dt
for any 6 € C.

Proof. Observe that

b
/ [k (g (b) =g (1) + k(g (t) — g(a))]g (t)dt
b

b
:/ k(g(b)—g(t))g'(t)dt+/ k(g(t) — g(a) g (t)dt

a

b

b
_— / K (9.(b) — g (&))) dit + / K (g (t) — g ()] dt

=—K(gb)—g @), + K (g(t) = g(a));
=K (g(b) — g(a)) + K (9(b) — g (a)) = 2K (9.(b) — g (a)).
Therefore
1 b
3 / [ (g (b) — g (£) + K (g (t) — g (a))] o' (£) [£ (¢) — 0] dt
b
5 [ e ®) @)+ kg ® - g (@) () Bde
b
~ 50 [ Bra® -9 0) + ko0 -9 (@) 0
=Tk,g,a+b—f — dK (g(b) —g(a)),
which proves the desired equality (4.2).
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Corollary 3. With the assumptions of Lemma 3 we have the Ostrowski type iden-
tity

(43) Tk,g,a+,b7f
=K(g()—g(a)f(z)
1

b
+ §/a [k (g(®) =g () +E(g(t) —g(a)]lg () [f (t) — f ()] dt

for any z € [a,b] and the trapezoid identity

(4.4) Trga+rp—f

— K(g(t) - g () LTI
+ é/b (g (5) — g () + k(o ()~ g @)]g' ® |70 - LT O gy
We observe that for 2 = %2 we obtain from (4.3) that
(4.5)  Thgarsf
K0 -9 (*5)
+;/ab[mg(b)—g<t>>+k<g<t>—g(a))]g’(t) [f(t)-f(azbﬂdt'

5. INEQUALITIES FOR FUNCTIONS OF BOUNDED VARIATION

We considered the cumulative function K : [0,00) — C by

[ k(s)dsif 0 <,
K (t) =
0ift =0.

We also define the function K : [0, 00) — [0, 00) by

[k (s)| ds it 0 < ¢,
K(t):=
0ift=0.

We observe that if k takes nonnegative values on (0,00), as it does in some of the
examples in Introduction, then K (¢t) = K (t) for t € [0, 00) .

Theorem 2. Assume that the kernel k is defined either on (0,00) or on [0,00)
with complex values and integrable on any finite subinterval. Let f : [a,b] — C be
a function of bounded variation on [a,b] and g be a strictly increasing function on
(a,b) , having a continuous derivative g’ on (a,b). Then we have the Ostrowski type
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inequality

1

(5.1) | Skga+o-f (@) =5 [K (g () —g(2)) + K (g(z) — g(a))] f (2)

1| t z
<2[/ \k(g(t)—g(w))l\/(f)g’(t)dt+/ |k(g(x)—g(t))|\/(f)g'(t)dt]

b xT
s% K (g(b)—g(@)\ (f) +K(g(a:)—g(a))\/(f)]
max {K (g (b) — g (x)),K (g (z) 79(“))}\/2 ()
< 1) K (g(b) —g(2) + K (g(x) g ()] ((\/i (N + (Vi( )q)l/q
~ 2| withp, ¢>1, 14+1=1;

and the trapezoid type inequality

1

(52) | Skga+o-f (@) =5 [K(g(b) —g(2)) f(0) + K (g(z) —g(a)) f(a))

K (9 () g () + K (9 a
< (Ve "+ (Vo)
+ 1;

1
2 with p, ¢ > 1, %

1_
K (g(b) —g(z)) +K(g(z) —g(a))]
A ERIVAGEARI

for any x € (a,b).
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Proof. Using the equality (2.5) we have

(5:3) Skgata—t () = 5 K (9(0) =g (@) + K (9 () — g (a)] f ()
<3| [ Fe@-o)d OO - @)
b
3| [ O -s@)g OO - @]
<5 [ he@ =90 OO~ s @]l
1 /° ,
3 [ e =g@)d O1f 0) = f @) a
5 [ k@ =g @If @~ f@ld @
b
3 [ K@@l ®-F@Ig 0
=: B(x)
for « € (a,b).

Since f is of bounded variation, then

<\/(f) fora<t<z<b

a

~*<

and
t b
£ )<\ )<V () fora<az<t<b
Therefore ‘ N
B(@S%/ﬂk(g |\/
b t
*%/ k(g (8) = g @)\ () g (1) dt
<3V [ ko (0 dt
b
+;\x/ /|’€ g (t)dt
=:C(x)
for x € (a,b).

We have, by taking the derivative over ¢ and using the chain rule, that

K (g(z) =g @) =K (g(2) =g (t) (9(2) —g(#))" =~ |k (g(x) =g ()] g’ (2)

for t € (a,z) and

K (g(t) =g (@) =K' (g(t) =g (@) (g(t) =g (2)) = k(g (t) =g (2))| ¢ (1)
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for t € (x,b).
Then
/\k Mo ()=~ [ K (g @) =g ()] e = K (g (2) — g @)
b
/Mr mﬁ:/ﬁK@m—ﬂwWﬁ:K@@—gm>

giving that

C(m):;[K NV () +K(g D\ ()

for x € (a,b), which proves the first and the second inequality in (5.1).
The last part of (4.2 is obvious by making use of the elementary Holder type
inequalities for positive real numbers ¢, d, m, n > 0

max {m,n} (c+d);
me + nd <
(m? +nP) P (¢t + d)Y with p, ¢ > 1, % +1i=1

Further, by the identity (2.6) we have, as above,

LK (9(6) — 9.(@) £ (5) + K (9.(2) — 9 () f (@)

Skga+ b—f(-T) - 2

_2/|k T ()~ (a)l o' (1) dt

which proves (5.2). O
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The following particular case for the functional

Pk,g,aJr,bff = Sk,g,a‘l*,b*f (Mg (aa b))

1! /M““’b) 5 <g<b>+g<>

. RO FCHOL:

is of interest:

Corollary 4. With the assumptions of Theorem 2 we have

(54)  |Prgatp—f— K (g(b);g(a)) f (M, (a, b))‘
1t ~g()+g(a) ' ,
<3 /Mg(a,b) k (g (t) 5 )'Mg\(éb) () g (t)dt
EASY My (a,b)
1 B — a(a)\ .\’
<1k <g< )=s! >>\b/(f)
and
(55) |Pegaro f—K <g(b) 29((1)> f(b);f(a)
Mg (a,b) a
S%/ k(g(b);g()—g(ﬂ) (f)g (&) dt

‘We have:
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Theorem 3. With the assumptions of Theorem 2 we have the Ostrowski type in-
equality

1) I 0) - g @)+ (o @) g @) (v 0+ (VE))
~ 2| withp, g>1, 1+1=1

and the trapezoid inequality

(5.7)

Skgua+s—t () = 5 K (9(b) = g (2)) f (b) + K (9 (z) = g (a)) f (a)]

[\

1 [ t b b
<5 [ Be®-s@IV g O [ ) =9 )Y (1 W

= % lK@ (1) =g @)\ () +K(g () —g(a»\/(f)]

max {K (g (b) — ¢ (2)). K (g (z) — g (@)} V2 ()

1) B0 9@ K 0@ - g @) (Va0 (V))
~2 withp,q>1,%+%:1.

[K (g/(6) — 9 (2) + K (g (z) — g (@)] [1 V5 () +

for any z € (a,b).
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Proof. Using the identity (3.7) we have

Sk.gatsf (@) = % [K (9 (b) — g () + K (g9(z) —g(a))] f (2)

<5 [ RO -9@)IF 0~ @I W
/\k IS0~ 7 @)l (0
sg/ (o) =g @)1 V(g 0

1 t

L ka8 — g )1\ (1) o (1)
N
/\k<g<b>—g<t>>|g'<t>dt

T b
[K (9(2) =g @)\ (/) +K(g(b) —g () \/ (f)] ,

a

[\)

—g(a))lg (t)dt

l\')\»—l

+
N | =

3V
Vo

N |

for any x € (a,b), which proves (5.6).
By the identity (3.8) we have

1

gkga+ b—f(x) - 5

/ k(g DIIf () — f (@) g (1) dt

[K (g (b) —g(2)) f(b) + K (g(z) —g(a)) f(a)]

for any x € (a,b), which proves (5.7).
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Also, we have the particular inequalities for

pk,g,aJr,bff = S'k,g,ajt,bff (Mg (a'7 b))

1 /b ,
T2 /Mg(a,b) k(g (b)—g@®) g (t)f(t)dt
Mg(a,b)
i %/a k(g(t)—g(a)g (t) f(t)dt.

Corollary 5. With the assumptions of Theorem 2 we have

(5.8) |Prgasnf—K (9 (b) ! (a)> f (b) ; f (a)
<3 /aMg(aﬁb) [k (g (8) = g (@) Mg\?’b) () g () dt
;/J\;(a,m Ik (g (b _g(thg\Z ; (f) g (t)dt
< K <g<b> 2g<a>> \:/(f)
and
(5.9) |Prgarof - K (9 (b) = (a>> f () : f (@)

Mg (a,b)
S%/a |k'(g(t)—g(a))|\a/(f)g/(t)dt
1 [ b /
+§/M " \k(g(b)*g(tm\t/(f)g (1) dt

< %K (W)\Z/m.

Finally, we have the following result for the trapezoid functional

1
Tk,g,aJr,bff = 5 [Sk,g,aJrf (b) + Sk,g,bff (a)]
1

b
= §/a [k (g (b) — g (£)) + k(g (t) — g (a))] g (t) f(t)dt.

Theorem 4. With the assumptions of Theorem 2 we have the trapezoid type in-
equality

b
(6:10) | Tigars-f K (g 0) ~ 9 (@) T TIO < Axe g0y g @)V (1)
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Proof. From the identity (4.4) we have

(6:11) [Tigrit — K (g (6) g (a)) LTI ‘
_2/|k )+ k(g (t) |‘f wg’(t)dt
<3 [ Irem 901+ k6w (a))n‘f(t)_@;f@ SO

=:D.

Since f : [a,b] — C is of bounded variation, then for any ¢ € [a, b] we have

fl@+f@)| _[f@#)—fla)+f()—f®)
R e R \
1.0
<SIF O~ F@I+1F0) ~ F O <5V ()
Therefore

/ )~ g )] + k(g ()~ g @)l o' ()t

»&M—‘

.JM»—*

b
iV
b 1 b

=V —9(a)) +K(g(b) —g(a))] = 5K (g (0) = g(a) \/ ().

which proves the desired result (5.10). O

6. EXAMPLE FOR AN EXPONENTIAL KERNEL

The above inequalities may be written for all the particular fractional integrals
introduced in the introduction.

If we take, for instance k (t) = ﬁto‘_l, where I' is the Gamma function, then
we recapture the results for the generalized left- and right-sided Riemann-Liouville
fractional integrals of a function f with respect to another function g on [a,b] as
outlined in [18].

For a, 8 € R we consider the kernel k (t) := exp [(a + (i) t], t € R. We have

exp [(a+ Bi)t] — 1
(a + i)

K(t)= , ifteR

for a, 8 # 0.

Also, we have
|k (s)] := |exp [(a + Bi) s]| = exp (as) for s € R

and

! t)—1
K(t):/o exp(as)ds:%if0<t,

for v # 0.
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Let f : [a,b] — C be a function of bounded variation on [a,b] and g be a strictly
increasing function on (a,b), having a continuous derivative ¢’ on (a, b). We have

60 et f@ =g [ evlets)s@ g0 0O

b
+%/L exp[(oz+ﬁi) (g(t)ig(x))}g/(t)f(t)dt

for x € (a,b).

If g = Inh where h : [a,b] — (0,00) is a strictly increasing function on (a,b),
having a continuous derivative h’ on (a,b), then we can consider the following
operator as well

(6.2) R tY, S (@)

= gﬁZ{jai+,b— (2)

_ } “(h (x) atp h (t) b h (t) a+Bi B (t)

_2[/a (h(t)) h(t)f(t)d”/z (h(@) h(t)f(t)dt ,
for z € (a,b) .

By using the inequality (5.1) we have for z € (a,b) that

(6.3)  |Egaty [ ()
1 {exp [(a+ Bi) (g (b) — g (2))] = 1+ exp [(a + Bi) (9 (x) — g ()] — 1] f(2)
92 (o + i)

IN

a

« 67

1 b t T T
. [ / exp (g (t) — g (@) g (B (F)dt + / exp (@ (g (2) — 9 (1) g OV (F) dt]

1l exp(a(g(h) —g () 1\’ exp(a(g(@) —g (@) — 1\
2[ Vi = V£

a

exp(a —g(x - exp(a x)—gla — b
{ p( (g(b)a 9(x))) 17 p( (g(zxg( ) I}Va(f)§

max

IA
N | =

Kexpm(g(b)a—g(x)))—l)p n (exp<a<g<zg—g<a>>>—1)p} l/p ((\/2 () + (VZ (f))q)l/q

. 1 _ .
with p, ¢ > 1, 5—1—5—1,

{exp(a(g(b)*g(l’)))*1Zexp(a(g(ﬂ:)*g(a)))*1] [% VZ (f) + % ’\/Z (f) — \/1; (f)H

for a, f € R with « # 0.
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By using the inequality (5.2) we also have for x € (a,b) that

(6.4)

5;:;?1; f(z)
1 {(exp [(a+Bi) (g (b) —g ()] = 1) f (b) + (exp[(a + Bi) (g (x) —g(a)] = 1) f (a)}
(o + Bi)

1 x t b b
=3 l [ ewtals®-g@)g OV i+ [ ewals@-g@)d OV () dt]

a

[\)

« «
T a

L [exp(a(g(b) —g (@)~ 1\’ exp (a9 (#) —g(a)) =1y
< 2[ Vi + \/(f)]

max { exp(a(g(b)—g(2))) =1 exp(a(g(z)—g(a)))—1 } \/b f);

a ’ o

[(expm( (b)w(w)))fl)”

e

< (Va0 + (Vi

N (exp<a< <w§g<a>>>71>”} /p
q\ 1/a

)

exp(ag(b)—g())) —1+exp(alg(z)—g(a))~1

[ : }

S EAGEE LA EAGI

IA
N |

Wlthp q>1

»Q\»—-

for a, B € R with a # 0.
If we denote

Eol f = €00 F (M, (a,b))
=3 [Cew|@rmn (C051 g 0) g 00w

+;/:exp [(a+5i) (g(t) - g(b);g(a))] g’ (t) f(t)dt

then by (5.4) and (5.5) we have the simpler results

ot Bi exp | (o + Bi) 2g@ | g
©9) s - [ (o + 6z’)2 } f (Mg (a,b))
b " .
<3J, <ab>exp( (g(t) e )>) g0 N (Ha
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and

—a+Bi exp [(a + f7) M] L)+ £ (a)

(66) gg,a+}b7 - (a T 52) 2

N | =

/Ajgm,b) o ( (g >> g (

N O] g(a) _
e Yo
b

(0%

l\DM—l

In particular, if we take in (6.5) and (6.6) ¢ = Int, t € [a,b] C (0,00), then
by using the notation G (v, d) := /79 for the geometric mean of the positive real
numbers 7, § > 0 we have

(6.7) |"ayhif - %f(cv‘ (a,b))
L ()
L ()
S;(Z)(;—l\:/(f)
and
(6.8) |ROSf - (3()(:6;5”(1));]“(@)
< é/:(a,,) <G(?’b))a1\i/<f>dt
+%/ (a.b) (G(;b))ai\:/(f)dt
<1 -t \:/(f),
where

1 b t atpi g 1 [Glab) G (a,b) at+Bi |
—a+pi 7
T2 RACE A ~f(t)dt.
Fata-t 2~/G(a7b)<G(a7b)> 0 +2/a ( ; ) -f(®)
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