OSTROWSKI AND TRAPEZOID TYPE INEQUALITIES FOR THE GENERALIZED k-g-FRACTIONAL INTEGRALS OF FUNCTIONS WITH BOUNDED VARIATION

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Let g be a strictly increasing function on (a,b), having a continuous derivative g' on (a,b). For the Lebesgue integrable function $f:(a,b)\to\mathbb{C}$, we define the k-g-left-sided fractional integral of f by

$$S_{k,g,a+}f(x) = \int_{a}^{x} k(g(x) - g(t))g'(t)f(t)dt, \ x \in (a,b]$$

and the k-g-right-sided fractional integral of f by

$$S_{k,g,b-}f(x) = \int_{x}^{b} k(g(t) - g(x))g'(t)f(t)dt, \ x \in [a,b),$$

where the kernel k is defined either on $(0, \infty)$ or on $[0, \infty)$ with complex values and integrable on any finite subinterval.

In this paper we establish some Ostrowski and trapezoid type inequalities for the k-g-fractional integrals of functions of bounded variation. Applications for mid-point and trapezoid inequalities are provided as well. Some examples for a general exponential fractional integral are also given.

1. Introduction

Assume that the kernel k is defined either on $(0, \infty)$ or on $[0, \infty)$ with complex values and integrable on any finite subinterval. We define the function $K : [0, \infty) \to \mathbb{C}$ by

$$K(t) := \begin{cases} \int_0^t k(s) ds & \text{if } 0 < t, \\ 0 & \text{if } t = 0. \end{cases}$$

As a simple example, if $k(t) = t^{\alpha-1}$ then for $\alpha \in (0,1)$ the function k is defined on $(0,\infty)$ and $K(t) := \frac{1}{\alpha}t^{\alpha}$ for $t \in [0,\infty)$. If $\alpha \geq 1$, then k is defined on $[0,\infty)$ and $K(t) := \frac{1}{\alpha}t^{\alpha}$ for $t \in [0,\infty)$.

Let g be a strictly increasing function on (a,b), having a continuous derivative g' on (a,b). For the Lebesgue integrable function $f:(a,b)\to\mathbb{C}$, we define the k-g-left-sided fractional integral of f by

(1.1)
$$S_{k,g,a+}f(x) = \int_{a}^{x} k(g(x) - g(t))g'(t)f(t)dt, \ x \in (a,b]$$

¹⁹⁹¹ Mathematics Subject Classification. 26D15, 26D10, 26D07, 26A33.

Key words and phrases. Generalized Riemann-Liouville fractional integrals, Hadamard fractional integrals, Functions of bounded variation, Ostrowski type inequalities, Trapezoid inequalities.

and the k-g-right-sided fractional integral of f by

(1.2)
$$S_{k,g,b-}f(x) = \int_{x}^{b} k(g(t) - g(x))g'(t)f(t)dt, \ x \in [a,b).$$

If we take $k(t) = \frac{1}{\Gamma(\alpha)}t^{\alpha-1}$, where Γ is the Gamma function, then

(1.3)
$$S_{k,g,a+}f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} \left[g(x) - g(t)\right]^{\alpha - 1} g'(t) f(t) dt$$
$$=: I_{a+a}^{\alpha} f(x), \ a < x \le b$$

and

(1.4)
$$S_{k,g,b-}f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} \left[g(t) - g(x) \right]^{\alpha-1} g'(t) f(t) dt$$
$$=: I_{b-,g}^{\alpha} f(x), \ a \le x < b,$$

which are the generalized left- and right-sided Riemann-Liouville fractional integrals of a function f with respect to another function g on [a, b] as defined in [21, p. 100]

For g(t) = t in (1.4) we have the classical Riemann-Liouville fractional integrals while for the logarithmic function $g(t) = \ln t$ we have the Hadamard fractional integrals [21, p. 111]

(1.5)
$$H_{a+}^{\alpha}f(x) := \frac{1}{\Gamma(\alpha)} \int_{-x}^{x} \left[\ln\left(\frac{x}{t}\right) \right]^{\alpha-1} \frac{f(t) dt}{t}, \ 0 \le a < x \le b$$

and

$$(1.6) H_{b-}^{\alpha}f(x) := \frac{1}{\Gamma(\alpha)} \int_{x}^{b} \left[\ln\left(\frac{t}{x}\right) \right]^{\alpha-1} \frac{f(t) dt}{t}, \ 0 \le a < x < b.$$

One can consider the function $g(t) = -t^{-1}$ and define the "Harmonic fractional integrals" by

$$(1.7) R_{a+}^{\alpha} f(x) := \frac{x^{1-\alpha}}{\Gamma(\alpha)} \int_{a}^{x} \frac{f(t) dt}{(x-t)^{1-\alpha} t^{\alpha+1}}, \ 0 \le a < x \le b$$

and

$$(1.8) R_{b-}^{\alpha}f(x) := \frac{x^{1-\alpha}}{\Gamma(\alpha)} \int_{x}^{b} \frac{f(t) dt}{(t-x)^{1-\alpha} t^{\alpha+1}}, \ 0 \le a < x < b.$$

Also, for $g(t) = \exp(\beta t)$, $\beta > 0$, we can consider the " β -Exponential fractional integrals"

(1.9)
$$E_{a+,\beta}^{\alpha} f(x) := \frac{\beta}{\Gamma(\alpha)} \int_{a}^{x} \left[\exp(\beta x) - \exp(\beta t) \right]^{\alpha - 1} \exp(\beta t) f(t) dt,$$

for $a < x \le b$ and

$$(1.10) E_{b-,\beta}^{\alpha} f(x) := \frac{\beta}{\Gamma(\alpha)} \int_{x}^{b} \left[\exp(\beta t) - \exp(\beta x) \right]^{\alpha - 1} \exp(\beta t) f(t) dt,$$

for $a \leq x < b$.

If we take g(t) = t in (1.1) and (1.2), then we can consider the following k-fractional integrals

(1.11)
$$S_{k,a+}f(x) = \int_{a}^{x} k(x-t) f(t) dt, \ x \in (a,b]$$

and

(1.12)
$$S_{k,b-}f(x) = \int_{x}^{b} k(t-x) f(t) dt, \ x \in [a,b).$$

In [24], Raina studied a class of functions defined formally by

(1.13)
$$\mathcal{F}_{\rho,\lambda}^{\sigma}\left(x\right) := \sum_{k=0}^{\infty} \frac{\sigma\left(k\right)}{\Gamma\left(\rho k + \lambda\right)} x^{k}, \ |x| < R, \text{ with } R > 0$$

for ρ , $\lambda > 0$ where the coefficients $\sigma(k)$ generate a bounded sequence of positive real numbers. With the help of (1.13), Raina defined the following left-sided fractional integral operator

$$(1.14) \mathcal{J}_{\rho,\lambda,a+;w}^{\sigma}f(x) := \int_{a}^{x} (x-t)^{\lambda-1} \mathcal{F}_{\rho,\lambda}^{\sigma}\left(w\left(x-t\right)^{\rho}\right) f(t) dt, \ x > a$$

where ρ , $\lambda > 0$, $w \in \mathbb{R}$ and f is such that the integral on the right side exists.

In [1], the right-sided fractional operator was also introduced as

(1.15)
$$\mathcal{J}_{\rho,\lambda,b-;w}^{\sigma}f(x) := \int_{x}^{b} (t-x)^{\lambda-1} \mathcal{F}_{\rho,\lambda}^{\sigma} \left(w \left(t-x\right)^{\rho}\right) f(t) dt, \ x < b$$

where ρ , $\lambda > 0$, $w \in \mathbb{R}$ and f is such that the integral on the right side exists. Several Ostrowski type inequalities were also established.

We observe that for $k(t) = t^{\lambda-1} \mathcal{F}^{\sigma}_{\rho,\lambda}(wt^{\rho})$ we re-obtain the definitions of (1.14) and (1.15) from (1.11) and (1.12).

In [22], Kirane and Torebek introduced the following exponential fractional integrals

(1.16)
$$\mathcal{T}_{a+}^{\alpha}f\left(x\right) := \frac{1}{\alpha} \int_{a}^{x} \exp\left\{-\frac{1-\alpha}{\alpha}\left(x-t\right)\right\} f\left(t\right) dt, \ x > a$$

and

(1.17)
$$\mathcal{T}_{b-}^{\alpha}f\left(x\right) := \frac{1}{\alpha} \int_{x}^{b} \exp\left\{-\frac{1-\alpha}{\alpha}\left(t-x\right)\right\} f\left(t\right) dt, \ x < b$$

where $\alpha \in (0,1)$.

We observe that for $k(t) = \frac{1}{\alpha} \exp\left(-\frac{1-\alpha}{\alpha}t\right)$, $t \in \mathbb{R}$ we re-obtain the definitions of (1.16) and (1.17) from (1.11) and (1.12).

Let g be a strictly increasing function on (a,b), having a continuous derivative g' on (a,b). We can define the more general exponential fractional integrals

$$(1.18) \qquad \mathcal{T}_{g,a+}^{\alpha}f\left(x\right) := \frac{1}{\alpha} \int_{a}^{x} \exp\left\{-\frac{1-\alpha}{\alpha}\left(g\left(x\right) - g\left(t\right)\right)\right\} g'\left(t\right) f\left(t\right) dt, \ x > a$$

and

$$(1.19) \qquad \mathcal{T}_{g,b-}^{\alpha}f\left(x\right):=\frac{1}{\alpha}\int_{x}^{b}\exp\left\{-\frac{1-\alpha}{\alpha}\left(g\left(t\right)-g\left(x\right)\right)\right\}g'\left(t\right)f\left(t\right)dt,\ x< b$$

where $\alpha \in (0,1)$.

Let g be a strictly increasing function on (a, b), having a continuous derivative g' on (a, b). Assume that $\alpha > 0$. We can also define the logarithmic fractional integrals

(1.20)
$$\mathcal{L}_{g,a+}^{\alpha} f(x) := \int_{a}^{x} (g(x) - g(t))^{\alpha - 1} \ln(g(x) - g(t)) g'(t) f(t) dt,$$

for $0 < a < x \le b$ and

$$(1.21) \qquad \mathcal{L}_{g,b-}^{\alpha}f\left(x\right) := \int_{x}^{b} \left(g\left(t\right) - g\left(x\right)\right)^{\alpha - 1} \ln\left(g\left(t\right) - g\left(x\right)\right) g'\left(t\right) f\left(t\right) dt,$$

for $0 < a \le x < b$, where $\alpha > 0$. These are obtained from (1.11) and (1.12) for the kernel $k(t) = t^{\alpha-1} \ln t$, t > 0.

For $\alpha = 1$ we get

$$\mathcal{L}_{g,a+}f\left(x\right) := \int_{a}^{x} \ln\left(g\left(x\right) - g\left(t\right)\right) g'\left(t\right) f\left(t\right) dt, \ 0 < a < x \le b$$

and

(1.23)
$$\mathcal{L}_{g,b-}f(x) := \int_{x}^{b} \ln(g(t) - g(x)) g'(t) f(t) dt, \ 0 < a \le x < b.$$

For g(t) = t, we have the simple forms

(1.24)
$$\mathcal{L}_{a+}^{\alpha} f(x) := \int_{a}^{x} (x-t)^{\alpha-1} \ln(x-t) f(t) dt, \ 0 < a < x \le b,$$

(1.25)
$$\mathcal{L}_{b-}^{\alpha} f(x) := \int_{x}^{b} (t-x)^{\alpha-1} \ln(t-x) f(t) dt, \ 0 < a \le x < b,$$

(1.26)
$$\mathcal{L}_{a+}f(x) := \int_{a}^{x} \ln(x-t) f(t) dt, \ 0 < a < x \le b$$

and

(1.27)
$$\mathcal{L}_{b-}f(x) := \int_{x}^{b} \ln(t-x) f(t) dt, \ 0 < a \le x < b.$$

In the recent paper [18] we obtained the following Ostrowski and trapezoid type inequalities for the *generalized left-* and *right-sided Riemann-Liouville fractional integrals* of a function f with respect to another function g on [a,b].

Theorem 1. Let $f:[a,b] \to \mathbb{C}$ be a function of bounded variation on [a,b]. Also let g be a strictly increasing function on (a,b), having a continuous derivative g'

on (a,b). Then we have

$$\begin{split} & (1.28) \quad \left| I_{x-,g}^{\alpha} f\left(a\right) + I_{x+,g}^{\alpha} f\left(b\right) \right. \\ & \left. - \frac{1}{\Gamma\left(\alpha+1\right)} \left[\left(g\left(x\right) - g\left(a\right)\right)^{\alpha} + \left(g\left(b\right) - g\left(x\right)\right)^{\alpha} \right] f\left(x\right) \right| \\ & \leq \frac{1}{\Gamma\left(\alpha\right)} \left[\int_{a}^{x} \left(g\left(t\right) - g\left(a\right)\right)^{\alpha-1} g'\left(t\right) \bigvee_{t}^{x} \left(f\right) dt + \int_{x}^{b} \left(g\left(b\right) - g\left(t\right)\right)^{\alpha-1} g'\left(t\right) \bigvee_{x}^{t} \left(f\right) dt \right] \\ & \leq \frac{1}{\Gamma\left(\alpha+1\right)} \left[\left(g\left(x\right) - g\left(a\right)\right)^{\alpha} \bigvee_{a}^{x} \left(f\right) + \left(g\left(b\right) - g\left(x\right)\right)^{\alpha} \bigvee_{x}^{b} \left(f\right) \right] \\ & \leq \frac{1}{\Gamma\left(\alpha+1\right)} \left\{ \left[\frac{1}{2} \left(g\left(b\right) - g\left(a\right)\right) + \left|g\left(x\right) - \frac{g\left(a\right) + g\left(b\right)}{2} \right| \right]^{\alpha} \bigvee_{a}^{b} \left(f\right); \\ & \leq \frac{1}{\Gamma\left(\alpha+1\right)} \left\{ \frac{\left(\left(g\left(x\right) - g\left(a\right)\right)^{\alpha p} + \left(g\left(b\right) - g\left(x\right)\right)^{\alpha p}\right)^{1/p} \left(\left(\bigvee_{a}^{x} \left(f\right)\right)^{q} + \left(\bigvee_{x}^{b} \left(f\right)\right)^{q}\right)^{1/q} \\ & \qquad \qquad \text{with } p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1; \\ & \left[\frac{1}{2} \bigvee_{a}^{b} \left(f\right) + \frac{1}{2} \left|\bigvee_{a}^{x} \left(f\right) - \bigvee_{x}^{b} \left(f\right)\right| \right] \left(\left(g\left(x\right) - g\left(a\right)\right)^{\alpha} + \left(g\left(b\right) - g\left(x\right)\right)^{\alpha}\right) \end{split}$$

and

$$(1.29) \quad \left| I_{a+,g}^{\alpha} f(x) + I_{b-,g}^{\alpha} f(x) - \frac{1}{\Gamma(\alpha+1)} \left[(g(x) - g(a))^{\alpha} f(a) + (g(b) - g(x))^{\alpha} f(b) \right] \right|$$

$$\leq \frac{1}{\Gamma(\alpha)} \left[\int_{a}^{x} (g(x) - g(t))^{\alpha-1} g'(t) \bigvee_{a}^{t} (f) dt + \int_{x}^{b} (g(t) - g(x))^{\alpha-1} g'(t) \bigvee_{t}^{b} (f) dt \right]$$

$$\leq \frac{1}{\Gamma(\alpha+1)} \left[(g(x) - g(a))^{\alpha} \bigvee_{a}^{x} (f) + (g(b) - g(x))^{\alpha} \bigvee_{x}^{b} (f) \right]$$

$$\leq \frac{1}{\Gamma(\alpha+1)} \left[\frac{1}{2} (g(b) - g(a)) + \left| g(x) - \frac{g(a) + g(b)}{2} \right| \right]^{\alpha} \bigvee_{a}^{b} (f);$$

$$\leq \frac{1}{\Gamma(\alpha+1)} \left\{ ((g(x) - g(a))^{\alpha p} + (g(b) - g(x))^{\alpha p})^{1/p} \left((\bigvee_{a}^{x} (f))^{q} + \left(\bigvee_{x}^{b} (f)\right)^{q} \right)^{1/q}$$

$$with p, q > 1, \frac{1}{p} + \frac{1}{q} = 1;$$

$$\left[\frac{1}{2} \bigvee_{a}^{b} (f) + \frac{1}{2} \left| \bigvee_{a}^{x} (f) - \bigvee_{x}^{b} (f) \right| \right] ((g(x) - g(a))^{\alpha} + (g(b) - g(x))^{\alpha})$$

for any $x \in (a, b)$.

For applications to the classical Riemann-Liouville fractional integrals, Hadamard fractional integrals and Harmonic fractional integrals see [18].

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals see [2]-[17], [19]-[32] and the references therein.

Motivated by the above results, in this paper we establish some Ostrowski and trapezoid type inequalities for the k-g-fractional integrals of functions of bounded

variation. Applications for mid-point and trapezoid inequalities are provided as well. Some examples for a general exponential fractional integral are also given.

2. Some Identities for the Operator $S_{k,q,a+,b-}$

For k and g as at the beginning of Introduction, we consider the mixed operator

$$(2.1) \quad S_{k,g,a+,b-}f(x)$$

$$:= \frac{1}{2} \left[S_{k,g,a+}f(x) + S_{k,g,b-}f(x) \right]$$

$$= \frac{1}{2} \left[\int_{a}^{x} k(g(x) - g(t)) g'(t) f(t) dt + \int_{x}^{b} k(g(t) - g(x)) g'(t) f(t) dt \right]$$

for the Lebesgue integrable function $f:(a,b)\to\mathbb{C}$ and $x\in(a,b)$.

The following two parameters representation for the operator $S_{k,g,a+,b-}$ holds:

Lemma 1. With the above assumptions for k, g and f we have

(2.2)
$$S_{k,g,a+,b-}f(x) = \frac{1}{2} \left[\gamma K(g(b) - g(x)) + \lambda K(g(x) - g(a)) \right]$$
$$+ \frac{1}{2} \int_{a}^{x} k(g(x) - g(t)) g'(t) [f(t) - \lambda] dt$$
$$+ \frac{1}{2} \int_{x}^{b} k(g(t) - g(x)) g'(t) [f(t) - \gamma] dt$$

for any $\lambda, \gamma \in \mathbb{C}$.

Proof. We have, by taking the derivative over t and using the chain rule, that

$$[K(g(x) - g(t))]' = K'(g(x) - g(t))(g(x) - g(t))' = -k(g(x) - g(t))g'(t)$$

for $t \in (a, x)$ and

$$[K(g(t) - g(x))]' = K'(g(t) - g(x))(g(t) - g(x))' = k(g(t) - g(x))g'(t)$$

for $t \in (x, b)$.

Therefore, for any λ , $\gamma \in \mathbb{C}$ we have

$$(2.3) \int_{a}^{x} k(g(x) - g(t)) g'(t) [f(t) - \lambda] dt$$

$$= \int_{a}^{x} k(g(x) - g(t)) g'(t) f(t) dt - \lambda \int_{a}^{x} k(g(x) - g(t)) g'(t) dt$$

$$= S_{k,g,a+} f(x) + \lambda \int_{a}^{x} [K(g(x) - g(t))]' dt$$

$$= S_{k,g,a+} f(x) + \lambda [K(g(x) - g(t))]|_{a}^{x} = S_{k,g,a+} f(x) - \lambda K(g(x) - g(a))$$

and

$$(2.4) \int_{x}^{b} k(g(t) - g(x)) g'(t) [f(t) - \gamma] dt$$

$$= \int_{x}^{b} k(g(t) - g(x)) g'(t) f(t) dt - \gamma \int_{x}^{b} k(g(t) - g(x)) g'(t) dt$$

$$= S_{k,g,b-} f(x) - \gamma \int_{x}^{b} [K(g(t) - g(x))]' dt$$

$$= S_{k,g,b-} f(x) - \gamma [K(g(t) - g(x))]|_{x}^{b} = S_{k,g,b-} f(x) - \gamma K(g(b) - g(x))$$

for $x \in (a, b)$.

If we add the equalities (2.3) and (2.4) and divide by 2 then we get the desired result (2.2).

Corollary 1. With the above assumptions for k, g and f we have the Ostrowski type identity

$$(2.5) S_{k,g,a+,b-}f(x) = \frac{1}{2} \left[K(g(b) - g(x)) + K(g(x) - g(a)) \right] f(x)$$

$$+ \frac{1}{2} \int_{a}^{x} k(g(x) - g(t)) g'(t) \left[f(t) - f(x) \right] dt$$

$$+ \frac{1}{2} \int_{x}^{b} k(g(t) - g(x)) g'(t) \left[f(t) - f(x) \right] dt$$

and the trapezoid type identity

$$(2.6) S_{k,g,a+,b-}f(x) = \frac{1}{2} \left[K(g(b) - g(x)) f(b) + K(g(x) - g(a)) f(a) \right]$$

$$+ \frac{1}{2} \int_{a}^{x} k(g(x) - g(t)) g'(t) \left[f(t) - f(a) \right] dt$$

$$+ \frac{1}{2} \int_{x}^{b} k(g(t) - g(x)) g'(t) \left[f(t) - f(b) \right] dt$$

for any $x \in (a, b)$.

For $x = \frac{a+b}{2}$ we can consider

$$(2.7) M_{k,g,a+,b-}f := S_{k,g,a+,b-}f\left(\frac{a+b}{2}\right)$$

$$= \frac{1}{2} \int_{a}^{\frac{a+b}{2}} k\left(g\left(\frac{a+b}{2}\right) - g\left(t\right)\right) g'\left(t\right) f\left(t\right) dt$$

$$+ \frac{1}{2} \int_{\frac{a+b}{2}}^{b} k\left(g\left(t\right) - g\left(\frac{a+b}{2}\right)\right) g'\left(t\right) f\left(t\right) dt.$$

By (2.5) we have the representation

$$(2.8) M_{k,g,a+,b-}f$$

$$= \frac{1}{2} \left[K \left(g \left(b \right) - g \left(\frac{a+b}{2} \right) \right) + K \left(g \left(\frac{a+b}{2} \right) - g \left(a \right) \right) \right] f \left(\frac{a+b}{2} \right)$$

$$+ \frac{1}{2} \int_{a}^{\frac{a+b}{2}} k \left(g \left(\frac{a+b}{2} \right) - g \left(t \right) \right) g' \left(t \right) \left[f \left(t \right) - f \left(\frac{a+b}{2} \right) \right] dt$$

$$+ \frac{1}{2} \int_{\frac{a+b}{2}}^{b} k \left(g \left(t \right) - g \left(\frac{a+b}{2} \right) \right) g' \left(t \right) \left[f \left(t \right) - f \left(\frac{a+b}{2} \right) \right] dt$$

and (2.6) we have

$$(2.9) M_{k,g,a+,b-}f$$

$$= \frac{1}{2} \left[K \left(g \left(b \right) - g \left(\frac{a+b}{2} \right) \right) f \left(b \right) + K \left(g \left(\frac{a+b}{2} \right) - g \left(a \right) \right) f \left(a \right) \right]$$

$$+ \frac{1}{2} \int_{a}^{\frac{a+b}{2}} k \left(g \left(\frac{a+b}{2} \right) - g \left(t \right) \right) g' \left(t \right) \left[f \left(t \right) - f \left(a \right) \right] dt$$

$$+ \frac{1}{2} \int_{\frac{a+b}{2}}^{b} k \left(g \left(t \right) - g \left(\frac{a+b}{2} \right) \right) g' \left(t \right) \left[f \left(t \right) - f \left(b \right) \right] dt.$$

If g is a function which maps an interval I of the real line to the real numbers, and is both continuous and injective then we can define the g-mean of two numbers $a, b \in I$ as

$$M_g(a,b) := g^{-1}\left(\frac{g(a) + g(b)}{2}\right).$$

If $I=\mathbb{R}$ and $g\left(t\right)=t$ is the identity function, then $M_g\left(a,b\right)=A\left(a,b\right):=\frac{a+b}{2}$, the arithmetic mean. If $I=\left(0,\infty\right)$ and $g\left(t\right)=\ln t$, then $M_g\left(a,b\right)=G\left(a,b\right):=\sqrt{ab}$, the geometric mean. If $I=\left(0,\infty\right)$ and $g\left(t\right)=\frac{1}{t}$, then $M_g\left(a,b\right)=H\left(a,b\right):=\frac{2ab}{a+b}$, the harmonic mean. If $I=\left(0,\infty\right)$ and $g\left(t\right)=t^p,\ p\neq 0$, then $M_g\left(a,b\right)=M_p\left(a,b\right):=\left(\frac{a^p+b^p}{2}\right)^{1/p}$, the power mean with exponent p. Finally, if $I=\mathbb{R}$ and $g\left(t\right)=\exp t$, then

$$M_g\left(a,b\right) = LME\left(a,b\right) := \ln\left(\frac{\exp a + \exp b}{2}\right),$$

the LogMeanExp function.

Using the q-mean of two numbers we can introduce

$$(2.10) P_{k,g,a+,b-}f := S_{k,g,a+,b-}f \left(M_g (a,b) \right)$$

$$= \frac{1}{2} \int_a^{M_g(a,b)} k \left(\frac{g(a) + g(b)}{2} - g(t) \right) g'(t) f(t) dt$$

$$+ \frac{1}{2} \int_{M_g(a,b)}^b k \left(g(t) - \frac{g(a) + g(b)}{2} \right) g'(t) f(t) dt.$$

Using (2.5) and (2.6) we have the representations

$$(2.11) P_{k,g,a+,b-}f$$

$$= K\left(\frac{g(b) - g(a)}{2}\right) f(M_g(a,b))$$

$$+ \frac{1}{2} \int_a^{M_g(a,b)} k\left(\frac{g(a) + g(b)}{2} - g(t)\right) g'(t) [f(t) - f(M_g(a,b))] dt$$

$$+ \frac{1}{2} \int_{M_g(a,b)}^b k\left(g(t) - \frac{g(a) + g(b)}{2}\right) g'(t) [f(t) - f(M_g(a,b))] dt$$

and

$$(2.12) P_{k,g,a+,b-}f$$

$$= K\left(\frac{g(b) - g(a)}{2}\right) \frac{f(b) + f(a)}{2}$$

$$+ \frac{1}{2} \int_{a}^{M_{g}(a,b)} k\left(\frac{g(a) + g(b)}{2} - g(t)\right) g'(t) [f(t) - f(a)] dt$$

$$+ \frac{1}{2} \int_{M_{g}(a,b)}^{b} k\left(g(t) - \frac{g(a) + g(b)}{2}\right) g'(t) [f(t) - f(b)] dt.$$

3. Some Identities for the Dual Operator $\check{S}_{k,g,a+,b-}$

Observe that

(3.1)
$$S_{k,g,x+} f(b) = \int_{x}^{b} k(g(b) - g(t)) g'(t) f(t) dt, \ x \in [a,b)$$

and

(3.2)
$$S_{k,g,x-}f(a) = \int_{a}^{x} k(g(t) - g(a))g'(t)f(t)dt, \ x \in (a,b].$$

Define also the mixed operator

$$(3.3) \quad \check{S}_{k,g,a+,b-}f(x) \\ := \frac{1}{2} \left[S_{k,g,x+}f(b) + S_{k,g,x-}f(a) \right] \\ = \frac{1}{2} \left[\int_{x}^{b} k(g(b) - g(t)) g'(t) f(t) dt + \int_{a}^{x} k(g(t) - g(a)) g'(t) f(t) dt \right]$$

for any $x \in (a, b)$.

Lemma 2. With the above assumptions for k, g and f we have

$$\tilde{S}_{k,g,a+,b-}f(x) = \frac{1}{2} \left[\lambda K(g(b) - g(x)) + \gamma K(g(x) - g(a)) \right]
+ \frac{1}{2} \int_{a}^{x} k(g(t) - g(a)) g'(t) [f(t) - \gamma] dt
+ \frac{1}{2} \int_{x}^{b} k(g(b) - g(t)) g'(t) [f(t) - \lambda] dt$$

for any $\lambda, \gamma \in \mathbb{C}$.

Proof. We have, by taking the derivative over t and using the chain rule, that

$$[K(g(b) - g(t))]' = K'(g(b) - g(t))(g(b) - g(t))' = -k(g(b) - g(t))g'(t)$$

for $t \in (x, b)$ and

$$[K(g(t) - g(a))]' = K'(g(t) - g(a))(g(t) - g(a))' = k(g(t) - g(a))g'(t)$$

for $t \in (a, x)$.

For any $\lambda, \gamma \in \mathbb{C}$ we have

(3.5)
$$\int_{x}^{b} k(g(b) - g(t)) g'(t) [f(t) - \lambda] dt$$

$$= \int_{x}^{b} k(g(b) - g(t)) g'(t) f(t) dt - \lambda \int_{x}^{b} k(g(b) - g(t)) g'(t) dt$$

$$= S_{k,g,x+} f(b) + \lambda \int_{x}^{b} [K(g(b) - g(t))]' dt$$

$$= S_{k,g,x+} f(b) - \lambda K(g(b) - g(x))$$

and

(3.6)
$$\int_{a}^{x} k(g(t) - g(a)) g'(t) [f(t) - \gamma] dt$$

$$= \int_{a}^{x} k(g(t) - g(a)) g'(t) f(t) dt - \gamma \int_{a}^{x} k(g(t) - g(a)) g'(t) dt$$

$$= \int_{a}^{x} k(g(t) - g(a)) g'(t) f(t) dt - \gamma \int_{a}^{x} [K(g(t) - g(a))]' dt$$

$$= \int_{a}^{x} k(g(t) - g(a)) g'(t) f(t) dt - \gamma K(g(x) - g(a))$$

for $x \in (a, b)$.

If we add the equalities (3.5) and (3.6) and divide by 2 then we get the desired result (3.4).

Corollary 2. With the assumptions of Lemma 2 we have the Ostrowski type identity

(3.7)
$$\check{S}_{k,g,a+,b-}f(x) = \frac{1}{2} \left[K(g(b) - g(x)) + K(g(x) - g(a)) \right] f(x)
+ \frac{1}{2} \int_{a}^{x} k(g(t) - g(a)) g'(t) \left[f(t) - f(x) \right] dt
+ \frac{1}{2} \int_{x}^{b} k(g(b) - g(t)) g'(t) \left[f(t) - f(x) \right] dt$$

and the trapezoid identity

(3.8)
$$\check{S}_{k,g,a+,b-}f(x) = \frac{1}{2} \left[K(g(b) - g(x)) f(b) + K(g(x) - g(a)) f(a) \right]$$

$$+ \frac{1}{2} \int_{a}^{x} k(g(t) - g(a)) g'(t) \left[f(t) - f(a) \right] dt$$

$$+ \frac{1}{2} \int_{x}^{b} k(g(b) - g(t)) g'(t) \left[f(t) - f(b) \right] dt$$

for $x \in (a, b)$.

For $x = \frac{a+b}{2}$ we can consider

(3.9)
$$\check{M}_{k,g,a+,b-}f := \check{S}_{k,g,a+,b-}f\left(\frac{a+b}{2}\right) \\
= \frac{1}{2} \int_{\frac{a+b}{2}}^{b} k\left(g\left(b\right) - g\left(t\right)\right) g'\left(t\right) f\left(t\right) dt \\
+ \frac{1}{2} \int_{a}^{\frac{a+b}{2}} k\left(g\left(t\right) - g\left(a\right)\right) g'\left(t\right) f\left(t\right) dt.$$

Using the equalities (3.7) and (3.8), we have

$$\begin{split} (3.10) \qquad & \check{M}_{k,g,a+,b-}f \\ & = \frac{1}{2} \left[K \left(g \left(b \right) - g \left(\frac{a+b}{2} \right) \right) + K \left(g \left(\frac{a+b}{2} \right) - g \left(a \right) \right) \right] f \left(\frac{a+b}{2} \right) \\ & + \frac{1}{2} \int_{a}^{\frac{a+b}{2}} k \left(g \left(t \right) - g \left(a \right) \right) g' \left(t \right) \left[f \left(t \right) - f \left(\frac{a+b}{2} \right) \right] dt \\ & + \frac{1}{2} \int_{\frac{a+b}{2}}^{b} k \left(g \left(b \right) - g \left(t \right) \right) g' \left(t \right) \left[f \left(t \right) - f \left(\frac{a+b}{2} \right) \right] dt \end{split}$$

and

$$\begin{split} (3.11) \qquad & \check{M}_{k,g,a+,b-}f \\ & = \frac{1}{2} \left[K \left(g \left(b \right) - g \left(\frac{a+b}{2} \right) \right) f \left(b \right) + K \left(g \left(\frac{a+b}{2} \right) - g \left(a \right) \right) f \left(a \right) \right] \\ & + \frac{1}{2} \int_{a}^{\frac{a+b}{2}} k \left(g \left(t \right) - g \left(a \right) \right) g' \left(t \right) \left[f \left(t \right) - f \left(a \right) \right] dt \\ & + \frac{1}{2} \int_{\frac{a+b}{2}}^{b} k \left(g \left(b \right) - g \left(t \right) \right) g' \left(t \right) \left[f \left(t \right) - f \left(b \right) \right] dt. \end{split}$$

Using the g-mean of two numbers we can introduce

Using the equalities (3.7) and (3.8), we have

$$(3.13) \breve{P}_{k,g,a+,b-}f = K\left(\frac{g(b) - g(a)}{2}\right) f(M_g(a,b))$$

$$+ \frac{1}{2} \int_a^{M_g(a,b)} k(g(t) - g(a)) g'(t) [f(t) - f(M_g(a,b))] dt$$

$$+ \frac{1}{2} \int_{M_g(a,b)}^b k(g(b) - g(t)) g'(t) [f(t) - f(M_g(a,b))] dt$$

and

$$(3.14) \check{P}_{k,g,a+,b-}f = K\left(\frac{g(b) - g(a)}{2}\right) \frac{f(b) + f(a)}{2}$$

$$+ \frac{1}{2} \int_{a}^{M_{g}(a,b)} k(g(t) - g(a)) g'(t) [f(t) - f(a)] dt$$

$$+ \frac{1}{2} \int_{M_{g}(a,b)}^{b} k(g(b) - g(t)) g'(t) [f(t) - f(b)] dt.$$

4. Trapezoid Functional $T_{k,q,a+,b-}$

We can also introduce the functional

$$(4.1) T_{k,g,a+,b-}f := \frac{1}{2} \left[S_{k,g,a+}f(b) + S_{k,g,b-}f(a) \right]$$

$$= \frac{1}{2} \int_{a}^{b} \left[k \left(g(b) - g(t) \right) + k \left(g(t) - g(a) \right) \right] g'(t) f(t) dt.$$

We have:

Lemma 3. With the assumption of Lemma 1, we have

$$(4.2) T_{k,g,a+,b-}f = K(g(b) - g(a)) \delta$$

$$+ \frac{1}{2} \int_{a}^{b} \left[k(g(b) - g(t)) + k(g(t) - g(a)) \right] g'(t) [f(t) - \delta] dt$$

for any $\delta \in \mathbb{C}$.

Proof. Observe that

$$\begin{split} & \int_{a}^{b} \left[k \left(g \left(b \right) - g \left(t \right) \right) + k \left(g \left(t \right) - g \left(a \right) \right) \right] g' \left(t \right) dt \\ & = \int_{a}^{b} k \left(g \left(b \right) - g \left(t \right) \right) g' \left(t \right) dt + \int_{a}^{b} k \left(g \left(t \right) - g \left(a \right) \right) g' \left(t \right) dt \\ & = - \int_{a}^{b} \left[K \left(g \left(b \right) - g \left(t \right) \right) \right]' dt + \int_{a}^{b} \left[K \left(g \left(t \right) - g \left(a \right) \right) \right]' dt \\ & = - K \left(g \left(b \right) - g \left(t \right) \right) \Big|_{a}^{b} + K \left(g \left(t \right) - g \left(a \right) \right) \Big|_{a}^{b} \\ & = K \left(g \left(b \right) - g \left(a \right) \right) + K \left(g \left(b \right) - g \left(a \right) \right) = 2K \left(g \left(b \right) - g \left(a \right) \right). \end{split}$$

Therefore

$$\begin{split} &\frac{1}{2} \int_{a}^{b} \left[k \left(g \left(b \right) - g \left(t \right) \right) + k \left(g \left(t \right) - g \left(a \right) \right) \right] g' \left(t \right) \left[f \left(t \right) - \delta \right] dt \\ &= \frac{1}{2} \int_{a}^{b} \left[k \left(g \left(b \right) - g \left(t \right) \right) + k \left(g \left(t \right) - g \left(a \right) \right) \right] g' \left(t \right) f \left(t \right) dt \\ &- \frac{1}{2} \delta \int_{a}^{b} \left[k \left(g \left(b \right) - g \left(t \right) \right) + k \left(g \left(t \right) - g \left(a \right) \right) \right] g' \left(t \right) dt \\ &= T_{k,g,a+,b-} f - \delta K \left(g \left(b \right) - g \left(a \right) \right), \end{split}$$

which proves the desired equality (4.2).

Corollary 3. With the assumptions of Lemma 3 we have the Ostrowski type identity

$$(4.3) T_{k,g,a+,b-}f$$

$$= K(g(b) - g(a)) f(x)$$

$$+ \frac{1}{2} \int_{a}^{b} \left[k(g(b) - g(t)) + k(g(t) - g(a)) \right] g'(t) [f(t) - f(x)] dt$$

for any $x \in [a, b]$ and the trapezoid identity

$$(4.4) \quad T_{k,g,a+,b-}f$$

$$= K(g(b) - g(a)) \frac{f(a) + f(b)}{2}$$

$$+ \frac{1}{2} \int_{a}^{b} \left[k(g(b) - g(t)) + k(g(t) - g(a)) \right] g'(t) \left[f(t) - \frac{f(a) + f(b)}{2} \right] dt.$$

We observe that for $x = \frac{a+b}{2}$ we obtain from (4.3) that

$$\begin{split} (4.5) & \quad T_{k,g,a+,b-}f \\ & = K\left(g\left(b\right) - g\left(a\right)\right)f\left(\frac{a+b}{2}\right) \\ & \quad + \frac{1}{2}\int_{a}^{b}\left[k\left(g\left(b\right) - g\left(t\right)\right) + k\left(g\left(t\right) - g\left(a\right)\right)\right]g'\left(t\right)\left[f\left(t\right) - f\left(\frac{a+b}{2}\right)\right]dt. \end{split}$$

5. Inequalities for Functions of Bounded Variation

We considered the cumulative function $K:[0,\infty)\to\mathbb{C}$ by

$$K(t) := \begin{cases} \int_0^t k(s) ds & \text{if } 0 < t, \\ 0 & \text{if } t = 0. \end{cases}$$

We also define the function $\mathbf{K}:[0,\infty)\to[0,\infty)$ by

$$\mathbf{K}(t) := \begin{cases} \int_0^t |k(s)| ds & \text{if } 0 < t, \\ 0 & \text{if } t = 0. \end{cases}$$

We observe that if k takes nonnegative values on $(0, \infty)$, as it does in some of the examples in Introduction, then $\mathbf{K}(t) = K(t)$ for $t \in [0, \infty)$.

Theorem 2. Assume that the kernel k is defined either on $(0, \infty)$ or on $[0, \infty)$ with complex values and integrable on any finite subinterval. Let $f : [a, b] \to \mathbb{C}$ be a function of bounded variation on [a, b] and g be a strictly increasing function on (a, b), having a continuous derivative g' on (a, b). Then we have the Ostrowski type

inequality

$$(5.1) \quad \left| S_{k,g,a+,b-} f(x) - \frac{1}{2} \left[K(g(b) - g(x)) + K(g(x) - g(a)) \right] f(x) \right|$$

$$\leq \frac{1}{2} \left[\int_{x}^{b} \left| k(g(t) - g(x)) \right| \bigvee_{x}^{t} (f) g'(t) dt + \int_{a}^{x} \left| k(g(x) - g(t)) \right| \bigvee_{t}^{x} (f) g'(t) dt \right]$$

$$\leq \frac{1}{2} \left[\mathbf{K}(g(b) - g(x)) \bigvee_{x}^{b} (f) + \mathbf{K}(g(x) - g(a)) \bigvee_{a}^{x} (f) \right]$$

$$\leq \frac{1}{2} \left\{ \mathbf{K}(g(b) - g(x)) + \mathbf{K}(g(x) - g(a)) \right\} \bigvee_{a}^{b} (f);$$

$$\leq \frac{1}{2} \left\{ \mathbf{K}^{p}(g(b) - g(x)) + \mathbf{K}^{p}(g(x) - g(a)) \right\}^{1/p} \left(\left(\bigvee_{a}^{x} (f) \right)^{q} + \left(\bigvee_{x}^{b} (f) \right)^{q} \right)^{1/q}$$

$$\text{with } p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1;$$

$$\left[\mathbf{K}(g(b) - g(x)) + \mathbf{K}(g(x) - g(a)) \right] \left[\frac{1}{2} \bigvee_{a}^{b} (f) + \frac{1}{2} \left| \bigvee_{a}^{x} (f) - \bigvee_{x}^{b} (f) \right| \right]$$

and the trapezoid type inequality

$$|S_{k,g,a+,b-}f(x) - \frac{1}{2} [K(g(b) - g(x)) f(b) + K(g(x) - g(a)) f(a)]|$$

$$\leq \frac{1}{2} \left[\int_{a}^{x} |k(g(x) - g(t))| \bigvee_{a}^{t} (f) g'(t) dt + \int_{x}^{b} |k(g(t) - g(x))| \bigvee_{t}^{b} (f) g'(t) dt \right]$$

$$\leq \frac{1}{2} \left[\mathbf{K} (g(b) - g(x)) \bigvee_{x}^{b} (f) + \mathbf{K} (g(x) - g(a)) \bigvee_{a}^{x} (f) \right]$$

$$\leq \frac{1}{2} \begin{cases} \max \{ \mathbf{K} (g(b) - g(x)), \mathbf{K} (g(x) - g(a)) \} \bigvee_{a}^{b} (f); \\ [\mathbf{K}^{p} (g(b) - g(x)) + \mathbf{K}^{p} (g(x) - g(a))]^{1/p} \\ \times \left((\bigvee_{a}^{x} (f))^{q} + \left(\bigvee_{x}^{b} (f)\right)^{q} \right)^{1/q} \\ \text{with } p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1; \\ [\mathbf{K} (g(b) - g(x)) + \mathbf{K} (g(x) - g(a))] \\ \times \left[\frac{1}{2} \bigvee_{a}^{b} (f) + \frac{1}{2} \left| \bigvee_{a}^{x} (f) - \bigvee_{x}^{b} (f) \right| \right]$$

for any $x \in (a, b)$.

Proof. Using the equality (2.5) we have

$$|S_{k,g,a+,b-}f(x) - \frac{1}{2} [K(g(b) - g(x)) + K(g(x) - g(a))] f(x)|$$

$$\leq \frac{1}{2} \left| \int_{a}^{x} k(g(x) - g(t)) g'(t) [f(t) - f(x)] dt \right|$$

$$+ \frac{1}{2} \left| \int_{x}^{b} k(g(t) - g(x)) g'(t) [f(t) - f(x)] dt \right|$$

$$\leq \frac{1}{2} \int_{a}^{x} |k(g(x) - g(t)) g'(t) [f(t) - f(x)]| dt$$

$$+ \frac{1}{2} \int_{x}^{b} |k(g(t) - g(x)) g'(t) [f(t) - f(x)]| dt$$

$$= \frac{1}{2} \int_{a}^{x} |k(g(x) - g(t))| |f(x) - f(t)| g'(t) dt$$

$$+ \frac{1}{2} \int_{x}^{b} |k(g(t) - g(x))| |f(t) - f(x)| g'(t) dt$$

$$= : B(x)$$

for $x \in (a, b)$.

Since f is of bounded variation, then

$$|f(x) - f(t)| \le \bigvee_{t=0}^{x} (f) \le \bigvee_{a=0}^{x} (f)$$
 for $a < t \le x \le b$

and

$$|f(t) - f(x)| \le \bigvee_{x=0}^{t} (f) \le \bigvee_{x=0}^{b} (f) \text{ for } a \le x \le t < b.$$

Therefore

$$B(x) \le \frac{1}{2} \int_{a}^{x} |k(g(x) - g(t))| \bigvee_{t}^{x} (f) g'(t) dt$$

$$+ \frac{1}{2} \int_{x}^{b} |k(g(t) - g(x))| \bigvee_{x}^{t} (f) g'(t) dt$$

$$\le \frac{1}{2} \bigvee_{a}^{x} (f) \int_{a}^{x} |k(g(x) - g(t))| g'(t) dt$$

$$+ \frac{1}{2} \bigvee_{x}^{b} (f) \int_{x}^{b} |k(g(t) - g(x))| g'(t) dt$$

$$=: C(x)$$

for $x \in (a, b)$.

We have, by taking the derivative over t and using the chain rule, that

$$[\mathbf{K}(g(x) - g(t))]' = \mathbf{K}'(g(x) - g(t))(g(x) - g(t))' = -|k(g(x) - g(t))|g'(t)$$
 for $t \in (a, x)$ and

$$[\mathbf{K}(g(t) - g(x))]' = \mathbf{K}'(g(t) - g(x))(g(t) - g(x))' = |k(g(t) - g(x))|g'(t)|$$

for $t \in (x, b)$.

Then

$$\int_{a}^{x} \left| k\left(g\left(x\right) - g\left(t\right)\right) \right| g'\left(t\right) dt = -\int_{a}^{x} \left[\mathbf{K}\left(g\left(x\right) - g\left(t\right)\right) \right]' dt = \mathbf{K}\left(g\left(x\right) - g\left(a\right)\right)$$

and

$$\int_{x}^{b} |k(g(t) - g(x))| g'(t) dt = \int_{x}^{b} [\mathbf{K}(g(t) - g(x))]' dt = \mathbf{K}(g(b) - g(x))$$

giving that

$$C(x) = \frac{1}{2} \left[\mathbf{K} \left(g(b) - g(x) \right) \bigvee_{x}^{b} (f) + \mathbf{K} \left(g(x) - g(a) \right) \bigvee_{a}^{x} (f) \right],$$

for $x \in (a, b)$, which proves the first and the second inequality in (5.1).

The last part of (4.2 is obvious by making use of the elementary Hölder type inequalities for positive real numbers $c, d, m, n \ge 0$

$$mc + nd \le \begin{cases} \max\{m, n\} (c + d); \\ (m^p + n^p)^{1/p} (c^q + d^q)^{1/q} \text{ with } p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1. \end{cases}$$

Further, by the identity (2.6) we have, as above,

$$\begin{aligned} &\left| S_{k,g,a+,b-} f\left(x\right) - \frac{1}{2} \left[K\left(g\left(b\right) - g\left(x\right)\right) f\left(b\right) + K\left(g\left(x\right) - g\left(a\right)\right) f\left(a\right) \right] \right| \\ &\leq \frac{1}{2} \int_{a}^{x} \left| k\left(g\left(x\right) - g\left(t\right)\right) \right| \left| f\left(t\right) - f\left(a\right) \right| g'\left(t\right) dt \\ &+ \frac{1}{2} \int_{x}^{b} \left| k\left(g\left(t\right) - g\left(x\right)\right) \right| \left| \bigvee_{a}^{t} \left(f\right) g'\left(t\right) dt \right| \\ &\leq \frac{1}{2} \int_{a}^{x} \left| k\left(g\left(x\right) - g\left(t\right)\right) \right| \bigvee_{a}^{t} \left(f\right) g'\left(t\right) dt \\ &+ \frac{1}{2} \int_{x}^{b} \left| k\left(g\left(t\right) - g\left(x\right)\right) \right| \bigvee_{t}^{b} \left(f\right) g'\left(t\right) dt \\ &\leq \frac{1}{2} \bigvee_{a}^{x} \left(f\right) \int_{a}^{x} \left| k\left(g\left(x\right) - g\left(t\right)\right) \right| g'\left(t\right) dt \\ &+ \frac{1}{2} \bigvee_{x}^{b} \left(f\right) \int_{x}^{b} \left| k\left(g\left(t\right) - g\left(x\right)\right) \right| g'\left(t\right) dt \\ &= \frac{1}{2} \mathbf{K} \left(g\left(x\right) - g\left(a\right)\right) \bigvee_{t}^{x} \left(f\right) + \frac{1}{2} \mathbf{K} \left(g\left(b\right) - g\left(x\right)\right) \bigvee_{t}^{b} \left(f\right), \end{aligned}$$

which proves (5.2).

The following particular case for the functional

$$\begin{split} P_{k,g,a+,b-}f &:= S_{k,g,a+,b-}f\left(M_g\left(a,b\right)\right) \\ &= \frac{1}{2} \int_{a}^{M_g\left(a,b\right)} k\left(\frac{g\left(b\right) + g\left(a\right)}{2} - g\left(t\right)\right) g'\left(t\right) f\left(t\right) dt \\ &+ \frac{1}{2} \int_{M_g\left(a,b\right)}^{b} k\left(g\left(t\right) - \frac{g\left(b\right) + g\left(a\right)}{2}\right) g'\left(t\right) f\left(t\right) dt. \end{split}$$

is of interest:

Corollary 4. With the assumptions of Theorem 2 we have

$$(5.4) \quad \left| P_{k,g,a+,b-} f - K \left(\frac{g(b) - g(a)}{2} \right) f \left(M_g(a,b) \right) \right|$$

$$\leq \frac{1}{2} \int_{M_g(a,b)}^{b} \left| k \left(g(t) - \frac{g(b) + g(a)}{2} \right) \right| \bigvee_{M_g(a,b)}^{t} (f) g'(t) dt$$

$$+ \frac{1}{2} \int_{a}^{M_g(a,b)} \left| k \left(\frac{g(b) + g(a)}{2} - g(t) \right) \right| \bigvee_{t}^{M_g(a,b)} (f) g'(t) dt$$

$$\leq \frac{1}{2} \mathbf{K} \left(\frac{g(b) - g(a)}{2} \right) \bigvee_{t}^{b} (f)$$

and

$$(5.5) \quad \left| P_{k,g,a+,b-} f - K \left(\frac{g(b) - g(a)}{2} \right) \frac{f(b) + f(a)}{2} \right|$$

$$\leq \frac{1}{2} \int_{a}^{M_{g}(a,b)} \left| k \left(\frac{g(b) + g(a)}{2} - g(t) \right) \right| \bigvee_{a}^{t} (f) g'(t) dt$$

$$+ \frac{1}{2} \int_{M_{g}(a,b)}^{b} \left| k \left(g(t) - \frac{g(b) + g(a)}{2} \right) \right| \bigvee_{t}^{b} (f) g'(t) dt$$

$$\leq \frac{1}{2} \mathbf{K} \left(\frac{g(b) - g(a)}{2} \right) \bigvee_{b}^{b} (f) .$$

We have:

Theorem 3. With the assumptions of Theorem 2 we have the Ostrowski type inequality

$$|\breve{S}_{k,g,a+,b-}f(x) - \frac{1}{2} [K(g(b) - g(x)) + K(g(x) - g(a))] f(x)|$$

$$\leq \frac{1}{2} \int_{a}^{x} |k(g(t) - g(a))| \bigvee_{t}^{x} (f) g'(t) dt + \frac{1}{2} \int_{x}^{b} |k(g(b) - g(t))| \bigvee_{x}^{t} (f) g'(t) dt$$

$$\leq \frac{1}{2} \left[\mathbf{K} (g(b) - g(x)) \bigvee_{x}^{b} (f) + \mathbf{K} (g(x) - g(a)) \bigvee_{x}^{x} (f) \right]$$

$$\leq \frac{1}{2} \begin{cases} \max \left\{ \mathbf{K} (g(b) - g(x)) , \mathbf{K} (g(x) - g(a)) \right\} \bigvee_{a}^{b} (f) ; \\ [\mathbf{K}^{p} (g(b) - g(x)) + \mathbf{K}^{p} (g(x) - g(a))]^{1/p} \left((\bigvee_{a}^{x} (f))^{q} + \left(\bigvee_{x}^{b} (f)\right)^{q} \right)^{1/q} \\ with p, q > 1, \frac{1}{p} + \frac{1}{q} = 1; \\ [\mathbf{K} (g(b) - g(x)) + \mathbf{K} (g(x) - g(a))] \left[\frac{1}{2} \bigvee_{a}^{b} (f) + \frac{1}{2} \left| \bigvee_{a}^{x} (f) - \bigvee_{x}^{b} (f) \right| \right]$$

and the trapezoid inequality

$$|\breve{S}_{k,g,a+,b-}f(x) - \frac{1}{2} [K(g(b) - g(x)) f(b) + K(g(x) - g(a)) f(a)]|$$

$$\leq \frac{1}{2} \int_{a}^{x} |k(g(t) - g(a))| \bigvee_{a}^{t} (f) g'(t) dt + \frac{1}{2} \int_{x}^{b} |k(g(b) - g(t))| \bigvee_{t}^{b} (f) g'(t) dt$$

$$\leq \frac{1}{2} \left[\mathbf{K} (g(b) - g(x)) \bigvee_{x}^{b} (f) + \mathbf{K} (g(x) - g(a)) \bigvee_{x}^{x} (f) \right]$$

$$\max \left\{ \mathbf{K} (g(b) - g(x)) , \mathbf{K} (g(x) - g(a)) \right\} \bigvee_{a}^{b} (f);$$

$$\leq \frac{1}{2} \begin{cases} [\mathbf{K}^{p} (g(b) - g(x)) + \mathbf{K}^{p} (g(x) - g(a))]^{1/p} \left((\bigvee_{a}^{x} (f))^{q} + \left(\bigvee_{x}^{b} (f)\right)^{q} \right)^{1/q} \\ with p, q > 1, \frac{1}{p} + \frac{1}{q} = 1;$$

$$[\mathbf{K} (g(b) - g(x)) + \mathbf{K} (g(x) - g(a))] \left[\frac{1}{2} \bigvee_{a}^{b} (f) + \frac{1}{2} \left| \bigvee_{a}^{x} (f) - \bigvee_{x}^{b} (f) \right| \right]$$

for any $x \in (a, b)$.

Proof. Using the identity (3.7) we have

$$\begin{split} & \left| \check{S}_{k,g,a+,b-} f(x) - \frac{1}{2} \left[K \left(g \left(b \right) - g \left(x \right) \right) + K \left(g \left(x \right) - g \left(a \right) \right) \right] f(x) \right| \\ & \leq \frac{1}{2} \int_{a}^{x} \left| k \left(g \left(t \right) - g \left(a \right) \right) \right| \left| f \left(t \right) - f \left(x \right) \right| g' \left(t \right) dt \\ & + \frac{1}{2} \int_{x}^{b} \left| k \left(g \left(b \right) - g \left(t \right) \right) \right| \left| f \left(t \right) - f \left(x \right) \right| g' \left(t \right) dt \\ & \leq \frac{1}{2} \int_{a}^{x} \left| k \left(g \left(t \right) - g \left(a \right) \right) \right| \bigvee_{t}^{x} \left(f \right) g' \left(t \right) dt \\ & + \frac{1}{2} \int_{x}^{b} \left| k \left(g \left(b \right) - g \left(t \right) \right) \right| \bigvee_{x}^{t} \left(f \right) g' \left(t \right) dt \\ & \leq \frac{1}{2} \bigvee_{a}^{x} \left(f \right) \int_{a}^{x} \left| k \left(g \left(t \right) - g \left(a \right) \right) \right| g' \left(t \right) dt \\ & + \frac{1}{2} \bigvee_{x}^{b} \left(f \right) \int_{x}^{b} \left| k \left(g \left(b \right) - g \left(t \right) \right) \right| g' \left(t \right) dt \\ & = \frac{1}{2} \left[\mathbf{K} \left(g \left(x \right) - g \left(a \right) \right) \bigvee_{x}^{x} \left(f \right) + \mathbf{K} \left(g \left(b \right) - g \left(x \right) \right) \bigvee_{x}^{b} \left(f \right) \right], \end{split}$$

for any $x \in (a, b)$, which proves (5.6).

By the identity (3.8) we have

$$\begin{split} & \left| \check{S}_{k,g,a+,b-} f\left(x\right) - \frac{1}{2} \left[K\left(g\left(b\right) - g\left(x\right)\right) f\left(b\right) + K\left(g\left(x\right) - g\left(a\right)\right) f\left(a\right) \right] \right| \\ & \leq \frac{1}{2} \int_{a}^{x} \left| k\left(g\left(t\right) - g\left(a\right)\right) \right| \left| f\left(t\right) - f\left(a\right) \right| g'\left(t\right) dt \\ & + \frac{1}{2} \int_{x}^{b} \left| k\left(g\left(b\right) - g\left(t\right)\right) \right| \left| \bigvee_{a}^{t} \left(f\right) g'\left(t\right) dt \\ & \leq \frac{1}{2} \int_{a}^{x} \left| k\left(g\left(t\right) - g\left(a\right)\right) \right| \bigvee_{a}^{t} \left(f\right) g'\left(t\right) dt \\ & + \frac{1}{2} \int_{x}^{b} \left| k\left(g\left(b\right) - g\left(t\right)\right) \right| \bigvee_{t}^{b} \left(f\right) g'\left(t\right) dt \\ & \leq \frac{1}{2} \bigvee_{a}^{x} \left(f\right) \int_{a}^{x} \left| k\left(g\left(t\right) - g\left(a\right)\right) \right| g'\left(t\right) dt \\ & + \frac{1}{2} \bigvee_{x}^{b} \left(f\right) \int_{x}^{b} \left| k\left(g\left(b\right) - g\left(t\right)\right) \right| g'\left(t\right) dt \\ & = \frac{1}{2} \left[\mathbf{K} \left(g\left(x\right) - g\left(a\right)\right) \bigvee_{a}^{x} \left(f\right) + \mathbf{K} \left(g\left(b\right) - g\left(x\right)\right) \bigvee_{x}^{b} \left(f\right) \right] \end{split}$$

for any $x \in (a, b)$, which proves (5.7).

Also, we have the particular inequalities for

$$\check{P}_{k,g,a+,b-}f := \check{S}_{k,g,a+,b-}f(M_g(a,b))
= \frac{1}{2} \int_{M_g(a,b)}^{b} k(g(b) - g(t)) g'(t) f(t) dt
+ \frac{1}{2} \int_{a}^{M_g(a,b)} k(g(t) - g(a)) g'(t) f(t) dt.$$

Corollary 5. With the assumptions of Theorem 2 we have

$$(5.8) \quad \left| \check{P}_{k,g,a+,b-} f - K \left(\frac{g(b) - g(a)}{2} \right) \frac{f(b) + f(a)}{2} \right|$$

$$\leq \frac{1}{2} \int_{a}^{M_{g}(a,b)} \left| k \left(g(t) - g(a) \right) \right| \bigvee_{t}^{M_{g}(a,b)} (f) g'(t) dt$$

$$+ \frac{1}{2} \int_{M_{g}(a,b)}^{b} \left| k \left(g(b) - g(t) \right) \right| \bigvee_{M_{g}(a,b)}^{t} (f) g'(t) dt$$

$$\leq \frac{1}{2} \mathbf{K} \left(\frac{g(b) - g(a)}{2} \right) \bigvee_{b}^{b} (f)$$

and

$$(5.9) \quad \left| \check{P}_{k,g,a+,b-} f - K \left(\frac{g(b) - g(a)}{2} \right) \frac{f(b) + f(a)}{2} \right|$$

$$\leq \frac{1}{2} \int_{a}^{M_{g}(a,b)} \left| k \left(g(t) - g(a) \right) \right| \bigvee_{a}^{t} (f) g'(t) dt$$

$$+ \frac{1}{2} \int_{M_{g}(a,b)}^{b} \left| k \left(g(b) - g(t) \right) \right| \bigvee_{t}^{b} (f) g'(t) dt$$

$$\leq \frac{1}{2} \mathbf{K} \left(\frac{g(b) - g(a)}{2} \right) \bigvee_{b}^{b} (f) .$$

Finally, we have the following result for the trapezoid functional

$$T_{k,g,a+,b-}f := \frac{1}{2} \left[S_{k,g,a+}f(b) + S_{k,g,b-}f(a) \right]$$
$$= \frac{1}{2} \int_{a}^{b} \left[k \left(g(b) - g(t) \right) + k \left(g(t) - g(a) \right) \right] g'(t) f(t) dt.$$

Theorem 4. With the assumptions of Theorem 2 we have the trapezoid type inequality

$$(5.10) \quad \left| T_{k,g,a+,b-}f - K\left(g\left(b\right) - g\left(a\right)\right) \frac{f\left(a\right) + f\left(b\right)}{2} \right| \leq \frac{1}{2} \mathbf{K} \left(g\left(b\right) - g\left(a\right)\right) \bigvee_{a=0}^{b} \left(f\right).$$

Proof. From the identity (4.4) we have

$$(5.11) \left| T_{k,g,a+,b-} f - K(g(b) - g(a)) \frac{f(a) + f(b)}{2} \right|$$

$$\leq \frac{1}{2} \int_{a}^{b} \left| k(g(b) - g(t)) + k(g(t) - g(a)) \right| \left| f(t) - \frac{f(a) + f(b)}{2} \right| g'(t) dt$$

$$\leq \frac{1}{2} \int_{a}^{b} \left[\left| k(g(b) - g(t)) \right| + \left| k(g(t) - g(a)) \right| \right] \left| f(t) - \frac{f(a) + f(b)}{2} \right| g'(t) dt$$

$$=: D$$

Since $f:[a,b]\to\mathbb{C}$ is of bounded variation, then for any $t\in[a,b]$ we have

$$\left| f(t) - \frac{f(a) + f(b)}{2} \right| = \left| \frac{f(t) - f(a) + f(t) - f(b)}{2} \right|$$

$$\leq \frac{1}{2} \left[|f(t) - f(a)| + |f(b) - f(t)| \right] \leq \frac{1}{2} \bigvee_{a}^{b} (f).$$

Therefore

$$D \leq \frac{1}{4} \bigvee_{a}^{b} (f) \int_{a}^{b} \left[|k(g(b) - g(t))| + |k(g(t) - g(a))| \right] g'(t) dt$$

$$= \frac{1}{4} \bigvee_{a}^{b} (f) \left[\mathbf{K} (g(b) - g(a)) + \mathbf{K} (g(b) - g(a)) \right] = \frac{1}{2} \mathbf{K} (g(b) - g(a)) \bigvee_{a}^{b} (f),$$

which proves the desired result (5.10).

6. Example for an Exponential Kernel

The above inequalities may be written for all the particular fractional integrals introduced in the introduction.

If we take, for instance $k(t) = \frac{1}{\Gamma(\alpha)}t^{\alpha-1}$, where Γ is the Gamma function, then we recapture the results for the generalized left- and right-sided Riemann-Liouville fractional integrals of a function f with respect to another function g on [a, b] as outlined in [18].

For $\alpha, \beta \in \mathbb{R}$ we consider the kernel $k(t) := \exp[(\alpha + \beta i) t], t \in \mathbb{R}$. We have

$$K(t) = \frac{\exp\left[\left(\alpha + \beta i\right)t\right] - 1}{\left(\alpha + \beta i\right)}, \text{ if } t \in \mathbb{R}$$

for α , $\beta \neq 0$.

Also, we have

$$|k(s)| := |\exp[(\alpha + \beta i) s]| = \exp(\alpha s)$$
 for $s \in \mathbb{R}$

and

$$\mathbf{K}(t) = \int_0^t \exp(\alpha s) \, ds = \frac{\exp(\alpha t) - 1}{\alpha} \text{ if } 0 < t,$$

for $\alpha \neq 0$.

Let $f:[a,b]\to\mathbb{C}$ be a function of bounded variation on [a,b] and g be a strictly increasing function on (a,b), having a continuous derivative g' on (a,b). We have

(6.1)
$$\mathcal{E}_{g,a+,b-}^{\alpha+\beta i}f(x) = \frac{1}{2} \int_{a}^{x} \exp\left[\left(\alpha+\beta i\right)\left(g\left(x\right)-g\left(t\right)\right)\right] g'(t) f(t) dt + \frac{1}{2} \int_{x}^{b} \exp\left[\left(\alpha+\beta i\right)\left(g\left(t\right)-g\left(x\right)\right)\right] g'(t) f(t) dt$$

for $x \in (a, b)$.

If $g = \ln h$ where $h : [a, b] \to (0, \infty)$ is a strictly increasing function on (a, b), having a continuous derivative h' on (a, b), then we can consider the following operator as well

$$(6.2) \qquad \kappa_{h,a+,b-}^{\alpha+\beta i} f(x)$$

$$:= \mathcal{E}_{\ln h,a+,b-}^{\alpha+\beta i} f(x)$$

$$= \frac{1}{2} \left[\int_{a}^{x} \left(\frac{h(x)}{h(t)} \right)^{\alpha+\beta i} \frac{h'(t)}{h(t)} f(t) dt + \int_{x}^{b} \left(\frac{h(t)}{h(x)} \right)^{\alpha+\beta i} \frac{h'(t)}{h(t)} f(t) dt \right],$$

for $x \in (a, b)$.

By using the inequality (5.1) we have for $x \in (a, b)$ that

$$(6.3) \quad \left| \mathcal{E}_{g,a+,b-}^{\alpha+\beta i} f\left(x\right) \right|$$

$$-\frac{1}{2} \left[\frac{\exp\left[\left(\alpha+\beta i\right)\left(g\left(b\right)-g\left(x\right)\right)\right]-1+\exp\left[\left(\alpha+\beta i\right)\left(g\left(x\right)-g\left(a\right)\right)\right]-1}{\left(\alpha+\beta i\right)} \right] f\left(x\right) \right|$$

$$\leq \frac{1}{2} \left[\int_{x}^{b} \exp\left(\alpha\left(g\left(t\right)-g\left(x\right)\right)\right) g'\left(t\right) \bigvee_{x}^{t} \left(f\right) dt + \int_{a}^{x} \exp\left(\alpha\left(g\left(x\right)-g\left(t\right)\right)\right) g'\left(t\right) \bigvee_{t}^{x} \left(f\right) dt \right]$$

$$\leq \frac{1}{2} \left[\frac{\exp\left(\alpha\left(g\left(b\right)-g\left(x\right)\right)\right)-1}{\alpha} \bigvee_{x}^{b} \left(f\right) + \frac{\exp\left(\alpha\left(g\left(x\right)-g\left(a\right)\right)\right)-1}{\alpha} \bigvee_{a}^{x} \left(f\right) \right]$$

$$\leq \frac{1}{2} \left[\frac{\exp\left(\alpha\left(g\left(b\right)-g\left(x\right)\right)\right)-1}{\alpha} , \frac{\exp\left(\alpha\left(g\left(x\right)-g\left(a\right)\right)\right)-1}{\alpha} \middle\} \bigvee_{a}^{b} \left(f\right);$$

$$\left[\left(\frac{\exp\left(\alpha\left(g\left(b\right)-g\left(x\right)\right)\right)-1}{\alpha} , \frac{1}{p} + \frac{1}{q} = 1;$$

$$\left[\frac{\exp\left(\alpha\left(g\left(b\right)-g\left(x\right)\right)\right)-1+\exp\left(\alpha\left(g\left(x\right)-g\left(a\right)\right)\right)-1}{\alpha} \right] \left[\frac{1}{2} \bigvee_{a}^{b} \left(f\right) + \frac{1}{2} \left| \bigvee_{a}^{x} \left(f\right) - \bigvee_{x}^{b} \left(f\right) \right| \right]$$

for α , $\beta \in \mathbb{R}$ with $\alpha \neq 0$.

By using the inequality (5.2) we also have for $x \in (a, b)$ that

$$\begin{aligned} (6.4) \quad & \left| \mathcal{E}_{g,a+,b-}^{\alpha+\beta i} f\left(x\right) \right. \\ & - \frac{1}{2} \left[\frac{\left(\exp\left[\left(\alpha + \beta i\right)\left(g\left(b\right) - g\left(x\right)\right)\right] - 1\right) f\left(b\right) + \left(\exp\left[\left(\alpha + \beta i\right)\left(g\left(x\right) - g\left(a\right)\right)\right] - 1\right) f\left(a\right)}{\left(\alpha + \beta i\right)} \right] \right| \\ & \leq \frac{1}{2} \left[\int_{a}^{x} \exp\left(\alpha \left(g\left(t\right) - g\left(x\right)\right)\right) g'\left(t\right) \bigvee_{a}^{t} \left(f\right) dt + \int_{x}^{b} \exp\left(\alpha \left(g\left(x\right) - g\left(t\right)\right)\right) g'\left(t\right) \bigvee_{t}^{b} \left(f\right) dt \right| \\ & \leq \frac{1}{2} \left[\frac{\exp\left(\alpha \left(g\left(b\right) - g\left(x\right)\right)\right) - 1}{\alpha} \bigvee_{x}^{b} \left(f\right) + \frac{\exp\left(\alpha \left(g\left(x\right) - g\left(a\right)\right)\right) - 1}{\alpha} \bigvee_{a}^{x} \left(f\right) \right] \\ & \leq \frac{1}{2} \left[\frac{\exp\left(\alpha \left(g\left(b\right) - g\left(x\right)\right)\right) - 1}{\alpha} \bigvee_{x}^{b} \left(f\right) + \frac{\exp\left(\alpha \left(g\left(x\right) - g\left(a\right)\right)\right) - 1}{\alpha} \bigvee_{a}^{b} \left(f\right) ; \\ & \left[\left(\frac{\exp\left(\alpha \left(g\left(b\right) - g\left(x\right)\right)\right) - 1}{\alpha} \bigvee_{x}^{b} \left(f\right) \right)^{q} \right]^{1/q} \\ & \times \left(\left(\bigvee_{a}^{x} \left(f\right)\right)^{q} + \left(\bigvee_{a}^{b} \left(f\right)\right)^{q} \right) \\ & \text{with } p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1; \\ & \left[\frac{\exp\left(\alpha \left(g\left(b\right) - g\left(x\right)\right)\right) - 1 + \exp\left(\alpha \left(g\left(x\right) - g\left(a\right)\right)\right) - 1}{\alpha} \right] \\ & \times \left[\frac{1}{2} \bigvee_{a}^{b} \left(f\right) + \frac{1}{2} \left|\bigvee_{a}^{x} \left(f\right) - \bigvee_{x}^{b} \left(f\right)\right| \right] \end{aligned}$$

for $\alpha, \beta \in \mathbb{R}$ with $\alpha \neq 0$.

If we denote

$$\begin{split} \overline{\mathcal{E}}_{g,a+,b-}^{\alpha+\beta i} f &:= \mathcal{E}_{g,a+,b-}^{\alpha+\beta i} f\left(M_g\left(a,b\right)\right) \\ &= \frac{1}{2} \int_a^x \exp\left[\left(\alpha+\beta i\right) \left(\frac{g\left(b\right)+g\left(a\right)}{2} - g\left(t\right)\right)\right] g'\left(t\right) f\left(t\right) dt \\ &+ \frac{1}{2} \int_x^b \exp\left[\left(\alpha+\beta i\right) \left(g\left(t\right) - \frac{g\left(b\right)+g\left(a\right)}{2}\right)\right] g'\left(t\right) f\left(t\right) dt \end{split}$$

then by (5.4) and (5.5) we have the simpler results

$$(6.5) \quad \left| \overline{\mathcal{E}}_{g,a+,b-}^{\alpha+\beta i} f - \frac{\exp\left[\left(\alpha + \beta i\right) \frac{g(b) - g(a)}{2} \right] - 1}{\left(\alpha + \beta i\right)} f\left(M_g\left(a, b\right)\right) \right|$$

$$\leq \frac{1}{2} \int_{M_g(a,b)}^{b} \exp\left(\alpha \left(g\left(t\right) - \frac{g\left(b\right) + g\left(a\right)}{2}\right)\right) g'\left(t\right) \bigvee_{M_g(a,b)}^{t} (f) dt$$

$$+ \frac{1}{2} \int_{a}^{M_g(a,b)} \exp\left(\alpha \left(\frac{g\left(b\right) + g\left(a\right)}{2} - g\left(t\right)\right)\right) g'\left(t\right) \bigvee_{t}^{M_g(a,b)} (f) dt$$

$$\leq \frac{1}{2} \frac{\exp\left(\alpha \left(\frac{g(b) - g(a)}{2}\right)\right) - 1}{\alpha} \bigvee_{t}^{b} (f)$$

and

$$(6.6) \quad \left| \overline{\mathcal{E}}_{g,a+,b-}^{\alpha+\beta i} f - \frac{\exp\left[(\alpha+\beta i) \frac{g(b)-g(a)}{2} \right] - 1}{(\alpha+\beta i)} \frac{f(b)+f(a)}{2} \right|$$

$$\leq \frac{1}{2} \int_{a}^{M_{g}(a,b)} \exp\left(\alpha \left(g(t) - \frac{g(b)+g(a)}{2} \right) \right) g'(t) \bigvee_{a}^{t} (f) dt$$

$$+ \frac{1}{2} \int_{M_{g}(a,b)}^{b} \exp\left(\alpha \left(\frac{g(b)+g(a)}{2} - g(t) \right) \right) g'(t) \bigvee_{t}^{b} (f) dt$$

$$\leq \frac{1}{2} \frac{\exp\left(\alpha \left(\frac{g(b)-g(a)}{2} \right) \right) - 1}{\alpha} \bigvee_{t}^{b} (f) .$$

In particular, if we take in (6.5) and (6.6) $g = \ln t$, $t \in [a, b] \subset (0, \infty)$, then by using the notation $G(\gamma, \delta) := \sqrt{\gamma \delta}$ for the geometric mean of the positive real numbers $\gamma, \delta > 0$ we have

$$(6.7) \quad \left| \overline{\kappa}_{a+,b-}^{\alpha+\beta i} f - \frac{\left(\frac{b}{a}\right)^{\alpha+\beta i} - 1}{(\alpha+\beta i)} f\left(G\left(a,b\right)\right) \right|$$

$$\leq \frac{1}{2} \int_{G(a,b)}^{b} \left(\frac{t}{G\left(a,b\right)}\right)^{\alpha} \frac{1}{t} \bigvee_{G(a,b)}^{t} (f) dt$$

$$+ \frac{1}{2} \int_{a}^{G(a,b)} \left(\frac{G\left(a,b\right)}{t}\right)^{\alpha} \frac{1}{t} \bigvee_{t}^{G(a,b)} (f) dt$$

$$\leq \frac{1}{2} \frac{\left(\frac{b}{a}\right)^{\alpha} - 1}{\alpha} \bigvee_{t}^{b} (f)$$

and

$$(6.8) \quad \left| \bar{\kappa}_{a+,b-}^{\alpha+\beta i} f - \frac{\left(\frac{b}{a}\right)^{\alpha+\beta i} - 1}{(\alpha+\beta i)} \frac{f\left(b\right) + f\left(a\right)}{2} \right|$$

$$\leq \frac{1}{2} \int_{G(a,b)}^{b} \left(\frac{G\left(a,b\right)}{t}\right)^{\alpha} \frac{1}{t} \bigvee_{t}^{b} \left(f\right) dt$$

$$+ \frac{1}{2} \int_{a}^{G(a,b)} \left(\frac{t}{G\left(a,b\right)}\right)^{\alpha} \frac{1}{t} \bigvee_{a}^{t} \left(f\right) dt$$

$$\leq \frac{1}{2} \frac{\left(\frac{b}{a}\right)^{\alpha} - 1}{\alpha} \bigvee_{t}^{b} \left(f\right),$$

where

$$\bar{\kappa}_{a+,b-}^{\alpha+\beta i}f:=\frac{1}{2}\int_{G\left(a,b\right)}^{b}\left(\frac{t}{G\left(a,b\right)}\right)^{\alpha+\beta i}\frac{1}{t}f\left(t\right)dt+\frac{1}{2}\int_{a}^{G\left(a,b\right)}\left(\frac{G\left(a,b\right)}{t}\right)^{\alpha+\beta i}\frac{1}{t}f\left(t\right)dt.$$

References

- R. P. Agarwal, M.-J. Luo and R. K. Raina, On Ostrowski type inequalities, Fasc. Math. 56 (2016), 5-27.
- [2] A. Aglić Aljinović, Montgomery identity and Ostrowski type inequalities for Riemann-Liouville fractional integral. J. Math. 2014, Art. ID 503195, 6 pp.
- T. M. Apostol, Mathematical Analysis, Second Edition, Addison-Wesley Publishing Company, 1975.
- [4] A. O. Akdemir, Inequalities of Ostrowski's type for m- and (α, m)-logarithmically convex functions via Riemann-Liouville fractional integrals. J. Comput. Anal. Appl. 16 (2014), no. 2, 375–383
- [5] G. A. Anastassiou, Fractional representation formulae under initial conditions and fractional Ostrowski type inequalities. *Demonstr. Math.* 48 (2015), no. 3, 357–378
- [6] G. A. Anastassiou, The reduction method in fractional calculus and fractional Ostrowski type inequalities. *Indian J. Math.* 56 (2014), no. 3, 333–357.
- [7] H. Budak, M. Z. Sarikaya, E. Set, Generalized Ostrowski type inequalities for functions whose local fractional derivatives are generalized s-convex in the second sense. J. Appl. Math. Comput. Mech. 15 (2016), no. 4, 11–21.
- [8] P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view. Handbook of analytic-computational methods in applied mathematics, 135–200, Chapman & Hall/CRC, Boca Raton, FL, 2000.
- [9] S. S. Dragomir, The Ostrowski's integral inequality for Lipschitzian mappings and applications. Comput. Math. Appl. 38 (1999), no. 11-12, 33-37.
- [10] S. S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation. Bull. Austral. Math. Soc. 60 (1999), No. 3, 495–508.
- [11] S. S. Dragomir, On the midpoint quadrature formula for mappings with bounded variation and applications. *Kragujevac J. Math.* **22** (2000), 13–19.
- [12] S. S. Dragomir, On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Ineq. Appl. 4 (2001), No. 1, 59-66. Preprint: RGMIA Res. Rep. Coll. 2 (1999), Art. 7, [Online: http://rgmia.org/papers/v2n1/v2n1-7.pdf]
- [13] S. S. Dragomir, Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation. Arch. Math. (Basel) 91 (2008), no. 5, 450–460.
- [14] S. S. Dragomir, Refinements of the Ostrowski inequality in terms of the cumulative variation and applications, Analysis (Berlin) 34 (2014), No. 2, 223-240. Preprint: RGMIA Res. Rep. Coll. 16 (2013), Art. 29 [Online:http://rgmia.org/papers/v16/v16a29.pdf].
- [15] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results, Australian J. Math. Anal. Appl., Volume 14, Issue 1, Article 1, pp. 1-287, 2017. [Online http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
- [16] S. S. Dragomir, Ostrowski type inequalities for Riemann-Liouville fractional integrals of bounded variation, Hölder and Lipschitzian functions, Preprint RGMIA Res. Rep. Coll. 20 (2017), Art. 48. [Online http://rgmia.org/papers/v20/v20a48.pdf].
- [17] S. S. Dragomir, Ostrowski type inequalities for generalized Riemann-Liouville fractional integrals of functions with bounded variation, RGMIA Res. Rep. Coll. 20 (2017), Art. 58. [Online http://rgmia.org/papers/v20/v20a58.pdf].
- [18] S. S. Dragomir, Further Ostrowski and trapezoid type inequalities for the generalized Riemann-Liouville fractional integrals of functions with bounded variation, RGMIA Res. Rep. Coll. 20 (2017), Art. 84. [Online http://rgmia.org/papers/v20/v20a84.pdf].
- [19] A. Guezane-Lakoud and F. Aissaoui, New fractional inequalities of Ostrowski type. Transylv. J. Math. Mech. 5 (2013), no. 2, 103–106
- [20] A. Kashuri and R. Liko, Ostrowski type fractional integral inequalities for generalized (s, m, φ) -preinvex functions. Aust. J. Math. Anal. Appl. 13 (2016), no. 1, Art. 16, 11 pp.
- [21] A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. xvi+523 pp. ISBN: 978-0-444-51832-3; 0-444-51832-0.
- [22] M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte type Inequalities for convex functions via fractional integrals, Preprint arXiv:1701.00092.

- [23] M. A. Noor, K. I. Noor and S. Iftikhar, Fractional Ostrowski inequalities for harmonic h-preinvex functions. Facta Univ. Ser. Math. Inform. 31 (2016), no. 2, 417–445
- [24] R. K. Raina, On generalized Wright's hypergeometric functions and fractional calculus operators, East Asian Math. J., 21(2)(2005), 191-203.
- [25] M. Z. Sarikaya and H. Filiz, Note on the Ostrowski type inequalities for fractional integrals. Vietnam J. Math. 42 (2014), no. 2, 187–190
- [26] M. Z. Sarikaya and H. Budak, Generalized Ostrowski type inequalities for local fractional integrals. Proc. Amer. Math. Soc. 145 (2017), no. 4, 1527–1538.
- [27] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 63 (2012), no. 7, 1147–1154.
- [28] M. Tunç, On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat 27:4 (2013), 559–565.
- [29] M. Tunç, Ostrowski type inequalities for m- and (α, m) -geometrically convex functions via Riemann-Louville fractional integrals. Afr. Mat. 27 (2016), no. 5-6, 841–850.
- [30] H. Yildirim and Z. Kirtay, Ostrowski inequality for generalized fractional integral and related inequalities, Malaya J. Mat., 2(3)(2014), 322-329.
- [31] C. Yildiz, E, Özdemir and Z. S. Muhamet, New generalizations of Ostrowski-like type inequalities for fractional integrals. *Kyungpook Math. J.* **56** (2016), no. 1, 161–172.
- [32] H. Yue, Ostrowski inequality for fractional integrals and related fractional inequalities. Transylv. J. Math. Mech. 5 (2013), no. 1, 85–89.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E\text{-}mail\ address{:}\ \mathtt{sever.dragomir@vu.edu.au}$

URL: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE, IN THE MATHEMATICAL AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA