
TRAPEZOID TYPE INEQUALITIES FOR THE GENERALIZED
k-g-FRACTIONAL INTEGRALS OF ABSOLUTELY CONTINUOUS

FUNCTIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let g be a strictly increasing function on (a; b) ; having a continu-
ous derivative g0 on (a; b) : For the Lebesgue integrable function f : (a; b)! C,
we de�ne the k-g-left-sided fractional integral of f by

Sk;g;a+f (x) =

Z x

a
k (g (x)� g (t)) g0 (t) f (t) dt; x 2 (a; b]

and the k-g-right-sided fractional integral of f by

Sk;g;b�f (x) =

Z b

x
k (g (t)� g (x)) g0 (t) f (t) dt; x 2 [a; b);

where the kernel k is de�ned either on (0;1) or on [0;1) with complex values
and integrable on any �nite subinterval.

In this paper we establish some trapezoid type inequalities for the k-g-
fractional integrals of absolutely continuous functions. Some examples for
general exponential fractional integrals are also given.

1. Introduction

Assume that the kernel k is de�ned either on (0;1) or on [0;1) with complex
values and integrable on any �nite subinterval. We de�ne the function K : [0;1)!
C by

K (t) :=

8<:
R t
0
k (s) ds if 0 < t;

0 if t = 0:

As a simple example, if k (t) = t��1 then for � 2 (0; 1) the function k is de�ned on
(0;1) and K (t) := 1

� t
� for t 2 [0;1) : If � � 1, then k is de�ned on [0;1) and

K (t) := 1
� t
� for t 2 [0;1) :

Let g be a strictly increasing function on (a; b) ; having a continuous derivative
g0 on (a; b) : For the Lebesgue integrable function f : (a; b) ! C, we de�ne the
k-g-left-sided fractional integral of f by

(1.1) Sk;g;a+f (x) =

Z x

a

k (g (x)� g (t)) g0 (t) f (t) dt; x 2 (a; b]

and the k-g-right-sided fractional integral of f by

(1.2) Sk;g;b�f (x) =

Z b

x

k (g (t)� g (x)) g0 (t) f (t) dt; x 2 [a; b):
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If we take k (t) = 1
�(�) t

��1; where � is the Gamma function, then

Sk;g;a+f (x) =
1

� (�)

Z x

a

[g (x)� g (t)]��1 g0 (t) f (t) dt(1.3)

=: I�a+;gf(x); a < x � b

Sk;g;b�f (x) =
1

� (�)

Z b

x

[g (t)� g (x)]��1 g0 (t) f (t) dt(1.4)

=: I�b�;gf(x); a � x < b;

which are the generalized left- and right-sided Riemann-Liouville fractional integrals
of a function f with respect to another function g on [a; b] as de�ned in [22, p. 100]
For g (t) = t in (1.4) we have the classical Riemann-Liouville fractional integrals

while for the logarithmic function g (t) = ln t we have the Hadamard fractional
integrals [22, p. 111]

(1.5) H�
a+f(x) :=

1

� (�)

Z x

a

h
ln
�x
t

�i��1 f (t) dt
t

; 0 � a < x � b

and

(1.6) H�
b�f(x) :=

1

� (�)

Z b

x

�
ln

�
t

x

����1
f (t) dt

t
; 0 � a < x < b:

One can consider the function g (t) = �t�1 and de�ne the "Harmonic fractional
integrals" by

(1.7) R�a+f(x) :=
x1��

� (�)

Z x

a

f (t) dt

(x� t)1�� t�+1
; 0 � a < x � b

and

(1.8) R�b�f(x) :=
x1��

� (�)

Z b

x

f (t) dt

(t� x)1�� t�+1
; 0 � a < x < b:

Also, for g (t) = exp (�t) ; � > 0; we can consider the "�-Exponential fractional
integrals"

(1.9) E�a+;�f(x) :=
�

� (�)

Z x

a

[exp (�x)� exp (�t)]��1 exp (�t) f (t) dt;

for a < x � b and

(1.10) E�b�;�f(x) :=
�

� (�)

Z b

x

[exp (�t)� exp (�x)]��1 exp (�t) f (t) dt;

for a � x < b:
If we take g (t) = t in (1.1) and (1.2), then we can consider the following k-

fractional integrals

(1.11) Sk;a+f (x) =

Z x

a

k (x� t) f (t) dt; x 2 (a; b]

and

(1.12) Sk;b�f (x) =

Z b

x

k (t� x) f (t) dt; x 2 [a; b):
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In [25], Raina studied a class of functions de�ned formally by

(1.13) F��;� (x) :=
1X
k=0

� (k)

� (�k + �)
xk; jxj < R; R > 0

for �; � > 0 where the coe¢ cients � (k) generate a bounded sequence of positive real
numbers. With the help of (1.13), Raina de�ned the following left-sided fractional
integral operator

(1.14) J �
�;�;a+;wf (x) :=

Z x

a

(x� t)��1 F��;� (w (x� t)
�
) f (t) dt; x > a

where �; � > 0, w 2 R and f is such that the integral on the right side exists.
In [1], the right-sided fractional operator was also introduced as

(1.15) J �
�;�;b�;wf (x) :=

Z b

x

(t� x)��1 F��;� (w (t� x)
�
) f (t) dt; x < b

where �; � > 0, w 2 R and f is such that the integral on the right side exists.
Several Ostrowski type inequalities were also established.
We observe that for k (t) = t��1F��;� (wt�) we re-obtain the de�nitions of (1.14)

and (1.15) from (1.11) and (1.12).
In [23], Kirane and Torebek introduced the following exponential fractional in-

tegrals

(1.16) T �a+f (x) :=
1

�

Z x

a

exp

�
�1� �

�
(x� t)

�
f (t) dt; x > a

and

(1.17) T �b�f (x) :=
1

�

Z b

x

exp

�
�1� �

�
(t� x)

�
f (t) dt; x < b

where � 2 (0; 1) :
We observe that for k (t) = 1

� exp
�
� 1��

� t
�
; t 2 R we re-obtain the de�nitions of

(1.16) and (1.17) from (1.11) and (1.12).
Let g be a strictly increasing function on (a; b) ; having a continuous derivative

g0 on (a; b) : We can de�ne the more general exponential fractional integrals

(1.18) T �g;a+f (x) :=
1

�

Z x

a

exp

�
�1� �

�
(g (x)� g (t))

�
g0 (t) f (t) dt; x > a

and

(1.19) T �g;b�f (x) :=
1

�

Z b

x

exp

�
�1� �

�
(g (t)� g (x))

�
g0 (t) f (t) dt; x < b

where � 2 (0; 1) :
Let g be a strictly increasing function on (a; b) ; having a continuous derivative g0

on (a; b) : Assume that � > 0:We can also de�ne the logarithmic fractional integrals

(1.20) L�g;a+f (x) :=
Z x

a

(g (x)� g (t))��1 ln (g (x)� g (t)) g0 (t) f (t) dt;

for 0 < a < x � b and

(1.21) L�g;b�f (x) :=
Z b

x

(g (t)� g (x))��1 ln (g (t)� g (x)) g0 (t) f (t) dt;
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for 0 < a � x < b; where � > 0: These are obtained from (1.11) and (1.12) for the
kernel k (t) = t��1 ln t; t > 0:
For � = 1 we get

(1.22) Lg;a+f (x) :=
Z x

a

ln (g (x)� g (t)) g0 (t) f (t) dt; 0 < a < x � b

and

(1.23) Lg;b�f (x) :=
Z b

x

ln (g (t)� g (x)) g0 (t) f (t) dt; 0 < a � x < b:

For g (t) = t; we have the simple forms

(1.24) L�a+f (x) :=
Z x

a

(x� t)��1 ln (x� t) f (t) dt; 0 < a < x � b;

(1.25) L�b�f (x) :=
Z b

x

(t� x)��1 ln (t� x) f (t) dt; 0 < a � x < b;

(1.26) La+f (x) :=
Z x

a

ln (x� t) f (t) dt; 0 < a < x � b

and

(1.27) Lb�f (x) :=
Z b

x

ln (t� x) f (t) dt; 0 < a � x < b:

We also de�ne the function K : [0;1)! [0;1) by

K (t) :=

8<:
R t
0
jk (s)j ds if 0 < t;

0 if t = 0:

We observe that if k takes nonnegative values, as it does in some of the examples
in Introduction, then K (t) = K (t) for t 2 [0;1) :
In the recent paper [19] we obtained amongst other the following Ostrowski and

trapezoid type inequalities for functions of bounded variation:

Theorem 1. Assume that the kernel k is de�ned either on (0;1) or on [0;1)
with complex values and integrable on any �nite subinterval. Let f : [a; b] ! C be
a function of bounded variation on [a; b] and g be a strictly increasing function on
(a; b) ; having a continuous derivative g0 on (a; b) : Then we have the Ostrowski type
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inequality

(1.28)

����Sk;g;a+;b�f (x)� 12 [K (g (b)� g (x)) +K (g (x)� g (a))] f (x)
����

� 1

2

"Z b

x

jk (g (t)� g (x))j
t_
x

(f) g0 (t) dt+

Z x

a

jk (g (x)� g (t))j
x_
t

(f) g0 (t) dt

#

� 1

2

"
K (g (b)� g (x))

b_
x

(f) +K (g (x)� g (a))
x_
a

(f)

#

� 1

2

8>>>>>>>>><>>>>>>>>>:

max fK (g (b)� g (x)) ;K (g (x)� g (a))g
Wb
a (f) ;

[Kp (g (b)� g (x)) +Kp (g (x)� g (a))]1=p
�
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;

[K (g (b)� g (x)) +K (g (x)� g (a))]
h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
and the trapezoid type inequality

(1.29)

����Sk;g;a+;b�f (x)� 12 [K (g (b)� g (x)) f (b) +K (g (x)� g (a)) f (a)]
����

� 1

2

"Z x

a

jk (g (x)� g (t))j
t_
a

(f) g0 (t) dt+

Z b

x

jk (g (t)� g (x))j
b_
t

(f) g0 (t) dt

#

� 1

2

"
K (g (b)� g (x))

b_
x

(f) +K (g (x)� g (a))
x_
a

(f)

#

� 1

2

8>>>>>>>>><>>>>>>>>>:

max fK (g (b)� g (x)) ;K (g (x)� g (a))g
Wb
a (f) ;

[Kp (g (b)� g (x)) +Kp (g (x)� g (a))]1=p
�
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;

[K (g (b)� g (x)) +K (g (x)� g (a))]
h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
for any x 2 (a; b) :

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals
see [2]-[17], [20]-[33] and the references therein.
Motivated by the above results, we establish in this paper some trapezoid type

inequalities for k-g-fractional integrals in the case of functions f : [a; b] ! C that
are absolutely continuous on [a; b] and g a strictly increasing function on (a; b) ;
having a continuous derivative g0 on (a; b) : Some examples for a general exponential
fractional integral are also given.
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2. Some Identities for the Operator Sk;g;a+;b�

For k and g as at the beginning of Introduction, we consider the mixed operator

Sk;g;a+;b�f (x)(2.1)

:=
1

2
[Sk;g;a+f (x) + Sk;g;b�f (x)]

=
1

2

"Z x

a

k (g (x)� g (t)) g0 (t) f (t) dt+
Z b

x

k (g (t)� g (x)) g0 (t) f (t) dt
#

for the Lebesgue integrable function f : (a; b)! C and x 2 (a; b) :
We have:

Lemma 1. With the above assumptions for k; g and if f : [a; b]! C is absolutely
continuous on [a; b] ; then we have for x 2 (a; b) that

(2.2) Sk;g;a+;b�f (x) =
1

2
[K (g (x)� g (a)) f (a) + [K (g (b)� g (x))] f (b)]

+
1

2
�

Z x

a

K (g (x)� g (t)) dt� 1
2


Z b

x

K (g (t)� g (x)) dt

+
1

2

Z x

a

K (g (x)� g (t)) [f 0 (t)� �] dt+ 1
2

Z b

x

K (g (t)� g (x)) [ � f 0 (t)] dt

for any �;  2 C.
In particular, we have the simple identity

(2.3) Sk;g;a+;b�f (x) =
1

2
[K (g (x)� g (a)) f (a) + [K (g (b)� g (x))] f (b)]

+
1

2

Z x

a

K (g (x)� g (t)) f 0 (t) dt� 1
2

Z b

x

K (g (t)� g (x)) f 0 (t) dt

for x 2 (a; b) :

Proof. We have, by taking the derivative over t and using the chain rule, that

[K (g (x)� g (t))]0 = K 0 (g (x)� g (t)) (g (x)� g (t))0 = �k (g (x)� g (t)) g0 (t)

for t 2 (a; x) and

[K (g (t)� g (x))]0 = K 0 (g (t)� g (x)) (g (t)� g (x))0 = k (g (t)� g (x)) g0 (t)

for t 2 (x; b) :
Using the integration by parts formula, we haveZ x

a

k (g (x)� g (t)) g0 (t) f (t) dt(2.4)

= �
Z x

a

[K (g (x)� g (t))]0 f (t) dt

= �
�
K (g (x)� g (t)) f (t)jxa �

Z x

a

K (g (x)� g (t)) f 0 (t) dt
�

= K (g (x)� g (a)) f (a) +
Z x

a

K (g (x)� g (t)) f 0 (t) dt
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and Z b

x

k (g (t)� g (x)) g0 (t) f (t) dt(2.5)

=

Z b

x

[K (g (t)� g (x))]0 f (t) dt

= [K (g (t)� g (x))] f (t)jbx �
Z b

x

[K (g (t)� g (x))] f 0 (t) dt

= [K (g (b)� g (x))] f (b)�
Z b

x

[K (g (t)� g (x))] f 0 (t) dt

for any x 2 (a; b) :
From (2.4) and (2.5) we getZ x

a

k (g (x)� g (t)) g0 (t) f (t) dt(2.6)

= K (g (x)� g (a)) f (a) + �
Z x

a

K (g (x)� g (t)) dt

+

Z x

a

K (g (x)� g (t)) [f 0 (t)� �] dt

and Z b

x

k (g (t)� g (x)) g0 (t) f (t) dt(2.7)

= [K (g (b)� g (x))] f (b)� 
Z b

x

K (g (t)� g (x)) dt

�
Z b

x

K (g (t)� g (x)) [f 0 (t)� ] dt

for any x 2 (a; b) :
If we add the equalities (2.6) and (2.7) and divide by 2 then we get the desired

result (2.2). �

The above lemma provides several identities of interest, out of which we can
mention the following:

Corollary 1. With the assumption of Lemma 1 we have

(2.8) Sk;g;a+;b�f (x) =
1

2
[K (g (x)� g (a)) f (a) + [K (g (b)� g (x))] f (b)]

+
1

2

 Z x

a

K (g (x)� g (t)) dt�
Z b

x

K (g (t)� g (x)) dt
!
f 0 (x)

+
1

2

Z x

a

K (g (x)� g (t)) [f 0 (t)� f 0 (x)] dt

+
1

2

Z b

x

K (g (t)� g (x)) [f 0 (x)� f 0 (t)] dt
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and

(2.9) Sk;g;a+;b�f (x) =
1

2
[K (g (x)� g (a)) f (a) + [K (g (b)� g (x))] f (b)]

+
1

2
f 0 (a)

Z x

a

K (g (x)� g (t)) dt� 1
2
f 0 (b)

Z b

x

K (g (t)� g (x)) dt

+
1

2

Z x

a

K (g (x)� g (t)) [f 0 (t)� f 0 (a)] dt

+
1

2

Z b

x

K (g (t)� g (x)) [f 0 (b)� f 0 (t)] dt

for x 2 (a; b) :

If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can de�ne the g-mean of two numbers
a; b 2 I as

Mg (a; b) := g
�1
�
g (a) + g (b)

2

�
:

If I = R and g (t) = t is the identity function, then Mg (a; b) = A (a; b) :=
a+b
2 ;

the arithmetic mean. If I = (0;1) and g (t) = ln t; thenMg (a; b) = G (a; b) :=
p
ab,

the geometric mean. If I = (0;1) and g (t) = 1
t ; then Mg (a; b) = H (a; b) :=

2ab
a+b ; the harmonic mean. If I = (0;1) and g (t) = tp; p 6= 0; then Mg (a; b) =

Mp (a; b) :=
�
ap+bp

2

�1=p
; the power mean with exponent p. Finally, if I = R and

g (t) = exp t; then

Mg (a; b) = LME (a; b) := ln

�
exp a+ exp b

2

�
;

the LogMeanExp function.
Using the g-mean of two numbers we can introduce

Pk;g;a+;b�f := Sk;g;a+;b�f (Mg (a; b))(2.10)

=
1

2

Z Mg(a;b)

a

k

�
g (a) + g (b)

2
� g (t)

�
g0 (t) f (t) dt

+
1

2

Z b

Mg(a;b)

k

�
g (t)� g (a) + g (b)

2

�
g0 (t) f (t) dt:
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Using (2.2) and (2.3) we have the representations

(2.11) Pk;g;a+;b�f = K

�
g (b)� g (a)

2

�
f (a) + f (b)

2

+
1

2
�

Z Mg(a;b)

a

K

�
g (a) + g (b)

2
� g (t)

�
dt

� 1
2


Z b

Mg(a;b)

K

�
g (t)� g (a) + g (b)

2

�
dt

+
1

2

Z Mg(a;b)

a

K

�
g (a) + g (b)

2
� g (t)

�
[f 0 (t)� �] dt

+
1

2

Z b

Mg(a;b)

K

�
g (t)� g (a) + g (b)

2

�
[ � f 0 (t)] dt

for any �;  2 C and

(2.12) Pk;g;a+;b�f = K

�
g (b)� g (a)

2

�
f (a) + f (b)

2

+
1

2

Z Mg(a;b)

a

K

�
g (a) + g (b)

2
� g (t)

�
f 0 (t) dt

� 1
2

Z b

Mg(a;b)

K

�
g (t)� g (a) + g (b)

2

�
f 0 (t) dt:

3. Inequalities in Terms of p-Norms of the Derivative

We use the Lebesgue p-norms de�ned as

khk[c;d];1 := essup
t2[c;d]

jh (t)j <1 provided h 2 L1 [c; d]

and

khk[c;d];p :=
 Z d

c

jh (t)jp dt
!1=p

<1 provided h 2 Lp [c; d] ; p � 1:

Theorem 2. Assume that the kernel k is de�ned either on (0;1) or on [0;1)
with complex values and integrable on any �nite subinterval. Let f : [a; b] ! C be
an absolutely continuous on [a; b] and g be a strictly increasing function on (a; b) ;
having a continuous derivative g0 on (a; b) : Then for any x 2 (a; b) we have the
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trapezoid type inequality

(3.1)

����Sk;g;a+;b�f (x)� 12 [K (g (x)� g (a)) f (a) + [K (g (b)� g (x))] f (b)]
����

� 1

2

"Z x

a

jK (g (x)� g (t))j jf 0 (t)j dt+
Z b

x

jK (g (t)� g (x))j jf 0 (t)j dt
#

� 1

2

8>>>>>>>>>><>>>>>>>>>>:

kf 0k[a;x];1 kK (g (x)� g)k[a;x];1 + kf 0k[x;b];1 kK (g � g (x))k[x;b];1
if f 0 2 L1 [a; b] ;

kf 0k[a;x];p kK (g (x)� g)k[a;x];q + kf 0k[x;b];p kK (g � g (x))k[x;b];q
if f 0 2 Lp [a; b] ; and p; q > 1 with 1

p +
1
q = 1;

kf 0k[a;x];1 kK (g (x)� g)k[a;x];1 + kf 0k[x;b];1 kK (g � g (x))k[x;b];1
if f 0 2 L1 [a; b] ;

� 1

2

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

kf 0k[a;b];1
�
kK (g (x)� g)k[a;x];1 + kK (g � g (x))k[x;b];1

�
if f 0 2 L1 [a; b] ;

kf 0k[a;b];p
�
kK (g (x)� g)kq[a;x];q + kK (g � g (x))k

q
[x;b];q

�1=q
if f 0 2 Lp [a; b] ; and p; q > 1 with 1

p +
1
q = 1;

kf 0k[a;b];1max
n
kK (g (x)� g)k[a;x];1 ; kK (g � g (x))k[x;b];1

o
if f 0 2 L1 [a; b] :

Proof. Using the identity (2.3) we have

����Sk;g;a+;b�f (x)� 12 [K (g (x)� g (a)) f (a) + [K (g (b)� g (x))] f (b)]
����

� 1

2

����Z x

a

K (g (x)� g (t)) f 0 (t) dt
����+ 12

�����
Z b

x

K (g (t)� g (x)) f 0 (t) dt
�����

� 1

2

"Z x

a

jK (g (x)� g (t)) f 0 (t)j dt+
Z b

x

jK (g (t)� g (x)) f 0 (t)j dt
#
;

which proves the �rst inequality in (3.1).
By Hölder�s integral inequality

�����
Z d

c

u (t) v (t) dt

����� �
 Z d

c

ju (t)jp dt
!1=p Z d

c

jv (t)jq dt
!1=q
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where p; q > 1 with 1
p +

1
q = 1; and the sup-norm inequality we also have

Z x

a

jK (g (x)� g (t)) f 0 (t)j dt

�

8>>>>>><>>>>>>:

kf 0k[a;x];1 kK (g (x)� g)k[a;x];1 if f 0 2 L1 [a; b] ;

kf 0k[a;x];p kK (g (x)� g)k[a;x];q ; if f 0 2 Lp [a; b] ;
if p; q > 1 with 1

p +
1
q = 1;

kf 0k[a;x];1 kK (g (x)� g)k[a;x];1 if f 0 2 L1 [a; b] ;

and Z b

x

jK (g (t)� g (x)) f 0 (t)j dt

�

8>>>>>><>>>>>>:

kf 0k[x;b];1 kK (g � g (x))k[x;b];1 if f 0 2 L1 [a; b] ;

kf 0k[x;b];p kK (g � g (x))k[x;b];q ; if f 0 2 Lp [a; b] ;
if p; q > 1 with 1

p +
1
q = 1;

kf 0k[x;b];1 kK (g � g (x))k[x;b];1 if f 0 2 L1 [a; b] ;

which proves the second part of (3.1).
The last part follows by making use of the elementary Hölder type inequalities

for positive real numbers c; d; u; v � 0

(3.2) uc+ vd �

8<:
max fu; vg (c+ d) ;

(um + vm)
1=m

(cn + dn)
1=n with m; n > 1; 1

m +
1
n = 1:

�

Remark 1. Since

jK (t)j =
����Z t

0

k (s) ds

���� � Z t

0

jk (s)j ds = K (t) for t 2 [0;1) ;

then

1

2

"Z x

a

jK (g (x)� g (t))j jf 0 (t)j dt+
Z b

x

jK (g (t)� g (x))j jf 0 (t)j dt
#

� 1

2

"Z x

a

K (g (x)� g (t)) jf 0 (t)j dt+
Z b

x

K (g (t)� g (x)) jf 0 (t)j dt
#
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and by using a similar argument to the one in the proof of Theorem 2 we get the
chain of inequalities

(3.3)

����Sk;g;a+;b�f (x)� 12 [K (g (x)� g (a)) f (a) + [K (g (b)� g (x))] f (b)]
����

� 1

2

"Z x

a

K (g (x)� g (t)) jf 0 (t)j dt+
Z b

x

K (g (t)� g (x)) jf 0 (t)j dt
#

� 1

2

8>>>>>>>>>><>>>>>>>>>>:

kf 0k[a;x];1 kK (g (x)� g)k[a;x];1 + kf 0k[x;b];1 kK (g � g (x))k[x;b];1
if f 0 2 L1 [a; b] ;

kf 0k[a;x];p kK (g (x)� g)k[a;x];q + kf 0k[x;b];p kK (g � g (x))k[x;b];q
if f 0 2 Lp [a; b] ; and p; q > 1 with 1

p +
1
q = 1;

kf 0k[a;x];1 kK (g (x)� g)k[a;x];1 + kf 0k[x;b];1 kK (g � g (x))k[x;b];1
if f 0 2 L1 [a; b] ;

� 1

2

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

kf 0k[a;b];1
h
kK (g (x)� g)k[a;x];1 + kK (g � g (x))k[x;b];1

i
if f 0 2 L1 [a; b] ;

kf 0k[a;b];p
h
kK (g (x)� g)kq[a;x];q + kK (g � g (x))k

q
[x;b];q

i1=q
if f 0 2 Lp [a; b] ; and p; q > 1 with 1

p +
1
q = 1;

kf 0k[a;b];1max
n
kK (g (x)� g)k[a;x];1 ; kK (g � g (x))k[x;b];1

o
if f 0 2 L1 [a; b] ; :

We observe that, by Hölder�s integral inequality we also have

K (t) =

Z t

0

jk (s)j ds �

8><>:
t essups2[0;t] jk (s)j

t1=p
�R t

0
jk (s)jq ds

�1=q
; p; q > 1; 1

p +
1
q = 1

(3.4)

�

8<:
t kkk[0;M ];1 if k 2 L1 [0;M ]

t1=m kkk[0;M ];n ; if k 2 Ln [0;M ] ; m; n > 1; 1
m +

1
n = 1

for t 2 [0;M ] ; where M > 0:
We observe that

Z x

a

K (g (x)� g (t)) jf 0 (t)j dt �

8>><>>:
kkk[0;g(x)�g(a)];1

R x
a
(g (x)� g (t)) jf 0 (t)j dt

kkk[0;g(x)�g(a)];n
R x
a
(g (x)� g (t))1=m jf 0 (t)j dt;

if m;n > 1; 1
m +

1
n = 1

�

8>><>>:
kkk[0;g(b)�g(a)];1

R x
a
(g (x)� g (t)) jf 0 (t)j dt

kkk[0;g(b)�g(a)];n
R x
a
(g (x)� g (t))1=m jf 0 (t)j dt;

if m;n > 1; 1
m +

1
n = 1
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and

Z b

x

K (g (t)� g (x)) jf 0 (t)j dt �

8>>><>>>:
kkk[0;g(b)�g(x)];1

R b
x
(g (t)� g (x)) jf 0 (t)j dt

kkk[0;g(b)�g(x)];n
R b
x
(g (t)� g (x))1=m jf 0 (t)j dt;

if m;n > 1; 1
m +

1
n = 1

�

8>>><>>>:
kkk[0;g(b)�g(a)];1

R b
x
(g (t)� g (x)) jf 0 (t)j dt

kkk[0;g(b)�g(a)];n
R b
x
(g (t)� g (x))1=m jf 0 (t)j dt;

if m;n > 1; 1
m +

1
n = 1;

where x 2 (a; b) :
Using the �rst bound in (3.3) we then get, for instance,

(3.5)

����Sk;g;a+;b�f (x)� 12 [K (g (x)� g (a)) f (a) + [K (g (b)� g (x))] f (b)]
����

� 1

2

"Z x

a

K (g (x)� g (t)) jf 0 (t)j dt+
Z b

x

K (g (t)� g (x)) jf 0 (t)j dt
#

� 1

2

8>><>>:
kkk[0;g(x)�g(a)];1

R x
a
(g (x)� g (t)) jf 0 (t)j dt

kkk[0;g(x)�g(a)];n
R x
a
(g (x)� g (t))1=m jf 0 (t)j dt;

if m;n > 1; 1
m +

1
n = 1

+
1

2

8>>><>>>:
kkk[0;g(b)�g(x)];1

R b
x
(g (t)� g (x)) jf 0 (t)j dt

kkk[0;g(b)�g(x)];n
R b
x
(g (t)� g (x))1=m jf 0 (t)j dt;

if m;n > 1; 1
m +

1
n = 1

� 1

2

8>>>>>>>><>>>>>>>>:

kkk[0;g(b)�g(a)];1
�
�R x

a
(g (x)� g (t)) jf 0 (t)j dt+

R b
x
(g (t)� g (x)) jf 0 (t)j dt

�
kkk[0;g(b)�g(a)];n
�
�R x

a
(g (x)� g (t))1=m jf 0 (t)j dt+

R b
x
(g (t)� g (x))1=m jf 0 (t)j dt

�
if m;n > 1; 1

m +
1
n = 1:
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Observe thatZ x

a

(g (x)� g (t)) jf 0 (t)j dt+
Z b

x

(g (t)� g (x)) jf 0 (t)j dt

�

8><>:
(g (x)� g (a))

R x
a
jf 0 (t)j dt+ (g (b)� g (x))

R b
x
jf 0 (t)j dt

supt2[a;x] jf 0 (t)j
R x
a
(g (x)� g (t)) dt+ supt2[a;x] jf 0 (t)j

R b
x
(g (t)� g (x)) dt

=

8>>><>>>:
(g (x)� g (a))

R x
a
jf 0 (t)j dt+ (g (b)� g (x))

R b
x
jf 0 (t)j dt

supt2[a;x] jf 0 (t)j
�
g (x) (x� a)�

R x
a
g (t) dt

�
dt

+supt2[a;x] jf 0 (t)j
�R b

x
g (t) dt� g (x) (b� x)

�
dt

�

8><>:
max fg (x)� g (a) ; g (b)� g (x)g

R b
a
jf 0 (t)j dt�

g (x) (2x� a� b) +
R b
x
g (t) dt�

R x
a
g (t) dt

�
supt2[a;b] jf 0 (t)j

=

8>><>>:
�
g(b)�g(a)

2 +
���g (x)� g(a)+g(b)

2

���� kf 0k[a;b];1�
g (x) (2x� a� b) +

R b
x
g (t) dt�

R x
a
g (t) dt

�
kf 0k[a;b];1 :

We can state the following corollary that provides simple error bounds in terms
of the functions involved:

Corollary 2. With the assumptions of Theorem 2, we have

(3.6)

����Sk;g;a+;b�f (x)� 12 [K (g (x)� g (a)) f (a) + [K (g (b)� g (x))] f (b)]
����

� kkk[0;g(b)�g(a)];1

8>><>>:
1
2

�
g(b)�g(a)

2 +
���g (x)� g(a)+g(b)

2

���� kf 0k[a;b];1�
g (x)

�
x� a+b

2

�
+ 1

2

�R b
x
g (t) dt�

R x
a
g (t) dt

��
kf 0k[a;b];1

for x 2 (a; b) :
Remark 2. If we take in the �rst branch of (3.6) x =Mg (a; b) ; then we get

(3.7)

����Pk;g;a+;b�f �K �g (b)� g (a)2

�
f (a) + f (b)

2

����
� 1

4
(g (b)� g (a)) kkk[0;g(b)�g(a)];1 kf

0k[a;b];1 ;

where Pk;g;a+;b�f := Sk;g;a+;b�f (Mg (a; b)) ; while if we take x = a+b
2 in the second

branch, then we get

(3.8)

����Sk;g;a+;b�f �a+ b2
�

�1
2

�
K

�
g

�
a+ b

2

�
� g (a)

�
f (a) +K

�
g (b)� g

�
a+ b

2

��
f (b)

�����
� 1

2
kkk[0;g(b)�g(a)];1

 Z b

a+b
2

g (t) dt�
Z a+b

2

a

g (t) dt

!
kf 0k[a;b];1 :
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Similarly, by using the second branch in (3.5), we have for m; n > 1; 1
m +

1
n = 1

that

(3.9)

����Sk;g;a+;b�f (x)� 12 [K (g (x)� g (a)) f (a) + [K (g (b)� g (x))] f (b)]
����

� 1

2

"Z x

a

K (g (x)� g (t)) jf 0 (t)j dt+
Z b

x

K (g (t)� g (x)) jf 0 (t)j dt
#

� 1

2
kkk[0;g(x)�g(a)];n

Z x

a

(g (x)� g (t))1=m jf 0 (t)j dt

+
1

2
kkk[0;g(b)�g(x)];n

Z b

x

(g (t)� g (x))1=m jf 0 (t)j dt

� 1

2
kkk[0;g(b)�g(a)];n

�
 Z x

a

(g (x)� g (t))1=m jf 0 (t)j dt+
Z b

x

(g (t)� g (x))1=m jf 0 (t)j dt
!

for x 2 (a; b) :
Using Hölder�s integral inequality for p; q > 1; 1p +

1
q = 1 we haveZ x

a

(g (x)� g (t))1=m jf 0 (t)j dt+
Z b

x

(g (t)� g (x))1=m jf 0 (t)j dt

�
�Z x

a

(g (x)� g (t))p=m dt
�1=p�Z x

a

jf 0 (t)jq dt
�1=q

+

 Z b

x

(g (t)� g (x))p=m dt
!1=p Z b

x

jf 0 (t)jq dt
!1=q

�

24 �Z x

a

(g (x)� g (t))p=m dt
�1=p!p

+

0@ Z b

x

(g (t)� g (x))p=m dt
!1=p1Ap351=p

�

24 �Z x

a

jf 0 (t)jq dt
�1=q!q

+

0@ Z b

x

jf 0 (t)jq dt
!1=q1Aq351=q

=

 Z x

a

(g (x)� g (t))p=m dt+
Z b

x

(g (t)� g (x))p=m dt
!1=p

�
 Z x

a

jf 0 (t)jq dt+
Z b

x

jf 0 (t)jq dt
!1=q

=

 Z b

a

jg (x)� g (t)jp=m dt
!1=p Z b

a

jf 0 (t)jq dt
!1=q

=

 Z b

a

jg (x)� g (t)jp=m dt
!1=p

kf 0k[a;b];q ;

where in the second inequality we used the Holder�s elementary inequality (3.2).
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Therefore, we can state the following corollary that provided simple error bounds
in terms of the functions involved.

Corollary 3. With the assumptions of Theorem 2, we have

(3.10)

����Sk;g;a+;b�f (x)� 12 [K (g (x)� g (a)) f (a) + [K (g (b)� g (x))] f (b)]
����

� 1

2
kkk[0;g(b)�g(a)];n

 Z b

a

jg (x)� g (t)jp=m dt
!1=p

kf 0k[a;b];q

for x 2 (a; b) ; where m; n > 1; 1
m +

1
n = 1 and p; q > 1;

1
p +

1
q = 1:

If we take in (3.10) x =Mg (a; b) ; then we get the simple inequality

(3.11)

����Pk;g;a+;b�f �K �g (b)� g (a)2

�
f (a) + f (b)

2

����
� 1

2
kkk[0;g(b)�g(a)];n

 Z b

a

����g (b) + g (a)2
� g (t)

����p=m dt
!1=p

kf 0k[a;b];q :

Also, if we take m = p and n = q in (3.10), then we get

(3.12)

����Sk;g;a+;b�f (x)� 12 [K (g (x)� g (a)) f (a) + [K (g (b)� g (x))] f (b)]
����

� 1

2
kkk[0;g(b)�g(a)];q

 Z b

a

jg (x)� g (t)j dt
!1=p

kf 0k[a;b];q

for x 2 (a; b) ; while from (3.11) we get

(3.13)

����Pk;g;a+;b�f �K �g (b)� g (a)2

�
f (a) + f (b)

2

����
� 1

2
kkk[0;g(b)�g(a)];q

 Z b

a

����g (b) + g (a)2
� g (t)

���� dt
!1=p

kf 0k[a;b];q :

4. Example for an Exponential Kernel

The above inequalities may be written for all the particular fractional integrals
introduced in the introduction. We consider here only an example for a general
exponential kernel that generalizes the transforms (1.16) and (1.17).
For �; � 2 R we consider the kernel k (t) := exp [(�+ �i) t] ; t 2 R. We have

K (t) =
exp [(�+ �i) t]� 1

(�+ �i)
; if t 2 R

for �; � 6= 0:
Also, we have

jk (s)j := jexp [(�+ �i) s]j = exp (�s) for s 2 R
and

K (t) =

Z t

0

exp (�s) ds =
exp (�t)� 1

�
if 0 < t;

for � 6= 0:
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Let f : [a; b] ! C be an absolutely continuous function on [a; b] and g be a
strictly increasing function on (a; b) ; having a continuous derivative g0 on (a; b) :
We have

E�+�ig;a+;b�f (x) =
1

2

Z x

a

exp [(�+ �i) (g (x)� g (t))] g0 (t) f (t) dt(4.1)

+
1

2

Z b

x

exp [(�+ �i) (g (t)� g (x))] g0 (t) f (t) dt

for x 2 (a; b) :
If g = lnh where h : [a; b] ! (0;1) is a strictly increasing function on (a; b) ;

having a continuous derivative h0 on (a; b) ; then we can consider the following
operator as well

��+�ih;a+;b�f (x)(4.2)

:= E�+�ilnh;a+;b�f (x)

=
1

2

"Z x

a

�
h (x)

h (t)

��+�i
h0 (t)

h (t)
f (t) dt+

Z b

x

�
h (t)

h (x)

��+�i
h0 (t)

h (t)
f (t) dt

#
;

for x 2 (a; b) :
From the �rst part of (3.3) we have

(4.3)
���E�+�ig;a+;b�f (x)�

�1
2

�
fexp [(�+ �i) (g (b)� g (x))]� 1g f (a) + fexp [(�+ �i) (g (x)� g (a))]� 1g f (b)

(�+ �i)

�����
� 1

2

Z x

a

�
exp (� (g (x)� g (t)))� 1

�

�
jf 0 (t)j dt

+
1

2

Z b

x

�
exp (� (g (t)� g (x)))� 1

�

�
jf 0 (t)j dt

for x 2 (a; b) :
If we denote

E�+�ig;a+;b�f := E
�+�i
g;a+;b�f (Mg (a; b))

=
1

2

Z Mg(a;b)

a

exp

�
(�+ �i)

�
g (b) + g (a)

2
� g (t)

��
g0 (t) f (t) dt

+
1

2

Z b

Mg(a;b)

exp

�
(�+ �i)

�
g (t)� g (b) + g (a)

2

��
g0 (t) f (t) dt;
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then by (4.3) we get

(4.4)

������E�+�ig;a+;b�f �
exp

h
(�+ �i) g(b)�g(a)2

i
� 1

(�+ �i)

f (a) + f (b)

2

������
� 1

2

Z Mg(a;b)

a

24exp
�
�
�
g(b)+g(a)

2 � g (t)
��
� 1

�

35 jf 0 (t)j dt
+
1

2

Z b

Mg(a;b)

24exp
�
�
�
g (t)� g(b)+g(a)

2

��
� 1

�

35 jf 0 (t)j dt:
Assume that � > 0, then

kkk[0;g(b)�g(a)];1 = sup
s2[0;g(b)�g(a)]

exp (�s) = exp (� [g (b)� g (a)])

and by (3.6) we have

(4.5)
���E�+�ig;a+;b�f (x)�

�1
2

�
fexp [(�+ �i) (g (b)� g (x))]� 1g f (a) + fexp [(�+ �i) (g (x)� g (a))]� 1g f (b)

(�+ �i)

�����
� exp (� [g (b)� g (a)])

8>><>>:
1
2

�
g(b)�g(a)

2 +
���g (x)� g(a)+g(b)

2

���� kf 0k[a;b];1�
g (x)

�
x� a+b

2

�
+ 1

2

�R b
x
g (t) dt�

R x
a
g (t) dt

��
kf 0k[a;b];1

for x 2 (a; b) :
In particular,

(4.6)

������E�+�ig;a+;b�f �
exp

h
(�+ �i) g(b)�g(a)2

i
� 1

(�+ �i)

f (a) + f (b)

2

������
� 1

4
exp (� [g (b)� g (a)]) (g (b)� g (a)) kf 0k[a;b];1 :

If g = lnh where h : [a; b] ! (0;1) is a strictly increasing function on (a; b) ;
having a continuous derivative h0 on (a; b) ; then by (4.6) we get

(4.7)

����������+�ih;a+;b�f �

�
h(b)
h(a)

��+�i
� 1

(�+ �i)

f (a) + f (b)

2

�������
� 1

4

�
h (b)

h (a)

��
ln

�
h (b)

h (a)

�
kf 0k[a;b];1 ;

where ���+�ih;a+;b�f := E
�+�i

lnh;a+;b�f:
Furthermore, for n > 1; a real number, we have

kkk[0;g(b)�g(a)];n =
 Z g(b)�g(a)

0

exp (n�s) ds

!1=n
=

�
exp (n� (g (b)� g (a)))� 1

n�

�1=n
:
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Using the inequality (3.10) we have for �; � 6= 0 that

(4.8)
���E�+�ig;a+;b�f (x)�

�1
2

�
fexp [(�+ �i) (g (b)� g (x))]� 1g f (a) + fexp [(�+ �i) (g (x)� g (a))]� 1g f (b)

(�+ �i)

�����
� 1

2

�
exp (n� (g (b)� g (a)))� 1

n�

�1=n Z b

a

jg (x)� g (t)jp=m dt
!1=p

kf 0k[a;b];q

for x 2 (a; b) ; where m; n > 1; 1
m +

1
n = 1 and p; q > 1;

1
p +

1
q = 1:

In particular,

(4.9)

������E�+�ig;a+;b�f �
exp

h
(�+ �i) g(b)�g(a)2

i
� 1

(�+ �i)

f (a) + f (b)

2

������
� 1

2

�
exp (n� (g (b)� g (a)))� 1

n�

�1=n
�
 Z b

a

����g (b) + g (a)2
� g (t)

����p=m dt
!1=p

kf 0k[a;b];q :

If we take m = p and n = q with p; q > 1; 1p +
1
q = 1; then by (4.8) we have

(4.10)
���E�+�ig;a+;b�f (x)�

�1
2

�
fexp [(�+ �i) (g (b)� g (x))]� 1g f (a) + fexp [(�+ �i) (g (x)� g (a))]� 1g f (b)

(�+ �i)

�����
� 1

2

�
exp (q� (g (b)� g (a)))� 1

q�

�1=q  Z b

a

jg (x)� g (t)j dt
!1=p

kf 0k[a;b];q

and by (4.9) we get

(4.11)

������E�+�ig;a+;b�f �
exp

h
(�+ �i) g(b)�g(a)2

i
� 1

(�+ �i)

f (a) + f (b)

2

������
� 1

2

�
exp (q� (g (b)� g (a)))� 1

q�

�1=q
�
 Z b

a

����g (b) + g (a)2
� g (t)

���� dt
!1=p

kf 0k[a;b];q :

References

[1] R. P. Agarwal, M.-J. Luo and R. K. Raina, On Ostrowski type inequalities, Fasc. Math. 56
(2016), 5-27.

[2] A. Aglíc Aljinovíc, Montgomery identity and Ostrowski type inequalities for Riemann-
Liouville fractional integral. J. Math. 2014, Art. ID 503195, 6 pp.

[3] T. M. Apostol, Mathematical Analysis, Second Edition, Addison-Wesley Publishing Com-
pany, 1975.



20 S. S. DRAGOMIR

[4] A. O. Akdemir, Inequalities of Ostrowski�s type for m- and (�;m)-logarithmically convex
functions via Riemann-Liouville fractional integrals. J. Comput. Anal. Appl. 16 (2014), no.
2, 375�383

[5] G. A. Anastassiou, Fractional representation formulae under initial conditions and fractional
Ostrowski type inequalities. Demonstr. Math. 48 (2015), no. 3, 357�378

[6] G. A. Anastassiou, The reduction method in fractional calculus and fractional Ostrowski type
inequalities. Indian J. Math. 56 (2014), no. 3, 333�357.

[7] H. Budak, M. Z. Sarikaya, E. Set, Generalized Ostrowski type inequalities for functions
whose local fractional derivatives are generalized s-convex in the second sense. J. Appl. Math.
Comput. Mech. 15 (2016), no. 4, 11�21.

[8] P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view.
Handbook of analytic-computational methods in applied mathematics, 135�200, Chapman
& Hall/CRC, Boca Raton, FL, 2000.

[9] S. S. Dragomir, The Ostrowski�s integral inequality for Lipschitzian mappings and applica-
tions. Comput. Math. Appl. 38 (1999), no. 11-12, 33�37.

[10] S. S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation. Bull.
Austral. Math. Soc. 60 (1999), No. 3, 495�508.

[11] S. S. Dragomir, On the midpoint quadrature formula for mappings with bounded variation
and applications. Kragujevac J. Math. 22 (2000), 13�19.

[12] S. S. Dragomir, On the Ostrowski�s integral inequality for mappings with bounded variation
and applications, Math. Ineq. Appl. 4 (2001), No. 1, 59-66. Preprint: RGMIA Res. Rep. Coll.
2 (1999), Art. 7, [Online: http://rgmia.org/papers/v2n1/v2n1-7.pdf]

[13] S. S. Dragomir, Re�nements of the generalised trapezoid and Ostrowski inequalities for func-
tions of bounded variation. Arch. Math. (Basel) 91 (2008), no. 5, 450�460.

[14] S. S. Dragomir, Re�nements of the Ostrowski inequality in terms of the cumulative variation
and applications, Analysis (Berlin) 34 (2014), No. 2, 223�240. Preprint: RGMIA Res. Rep.
Coll. 16 (2013), Art. 29 [Online:http://rgmia.org/papers/v16/v16a29.pdf].

[15] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results,
Australian J. Math. Anal. Appl., Volume 14, Issue 1, Article 1, pp. 1-287, 2017. [Online
http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].

[16] S. S. Dragomir, Ostrowski type inequalities for Riemann-Liouville fractional integrals of
bounded variation, Hölder and Lipschitzian functions, Preprint RGMIA Res. Rep. Coll. 20
(2017), Art. 48. [Online http://rgmia.org/papers/v20/v20a48.pdf].

[17] S. S. Dragomir, Ostrowski type inequalities for generalized Riemann-Liouville fractional in-
tegrals of functions with bounded variation, RGMIA Res. Rep. Coll. 20 (2017), Art. 58.
[Online http://rgmia.org/papers/v20/v20a58.pdf].

[18] S. S. Dragomir, Further Ostrowski and trapezoid type inequalities for the generalized
Riemann-Liouville fractional integrals of functions with bounded variation, RGMIA Res.
Rep. Coll. 20 (2017), Art. 84. [Online http://rgmia.org/papers/v20/v20a84.pdf].

[19] S. S. Dragomir, Ostrowski and trapezoid type inequalities for the generalized k-g-fractional
integrals of functions with bounded variation, RGMIA Res. Rep. Coll. 20 (2017), Art. .

[20] A. Guezane-Lakoud and F. Aissaoui, New fractional inequalities of Ostrowski type. Transylv.
J. Math. Mech. 5 (2013), no. 2, 103�106

[21] A. Kashuri and R. Liko, Ostrowski type fractional integral inequalities for generalized
(s;m; ')-preinvex functions. Aust. J. Math. Anal. Appl. 13 (2016), no. 1, Art. 16, 11 pp.

[22] A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Di¤ eren-
tial Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam,
2006. xvi+523 pp. ISBN: 978-0-444-51832-3; 0-444-51832-0.

[23] M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal
and Pachpatte type Inequalities for convex functions via fractional integrals, Preprint
arXiv:1701.00092.

[24] M. A. Noor, K. I. Noor and S. Iftikhar, Fractional Ostrowski inequalities for harmonic
h-preinvex functions. Facta Univ. Ser. Math. Inform. 31 (2016), no. 2, 417�445

[25] R. K. Raina , On generalized Wright�s hypergeometric functions and fractional calculus op-
erators, East Asian Math. J., 21(2)(2005), 191-203.

[26] M. Z. Sarikaya and H. Filiz, Note on the Ostrowski type inequalities for fractional integrals.
Vietnam J. Math. 42 (2014), no. 2, 187�190



TRAPEZOID TYPE INEQUALITIES 21

[27] M. Z. Sarikaya and H. Budak, Generalized Ostrowski type inequalities for local fractional
integrals. Proc. Amer. Math. Soc. 145 (2017), no. 4, 1527�1538.

[28] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in
the second sense via fractional integrals. Comput. Math. Appl. 63 (2012), no. 7, 1147�1154.

[29] M. Tunç, On new inequalities for h-convex functions via Riemann-Liouville fractional inte-
gration, Filomat 27:4 (2013), 559�565.

[30] M. Tunç, Ostrowski type inequalities for m- and (�;m)-geometrically convex functions via
Riemann-Louville fractional integrals. Afr. Mat. 27 (2016), no. 5-6, 841�850.

[31] H. Yildirim and Z. Kirtay, Ostrowski inequality for generalized fractional integral and related
inequalities, Malaya J. Mat., 2(3)(2014), 322-329.

[32] C. Yildiz, E, Özdemir and Z. S. Muhamet, New generalizations of Ostrowski-like type in-
equalities for fractional integrals. Kyungpook Math. J. 56 (2016), no. 1, 161�172.

[33] H. Yue, Ostrowski inequality for fractional integrals and related fractional inequalities. Tran-
sylv. J. Math. Mech. 5 (2013), no. 1, 85�89.

1Mathematics, College of Engineering & Science, Victoria University, PO Box 14428,
Melbourne City, MC 8001, Australia.

E-mail address : sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2DST-NRF Centre of Excellence, in the Mathematical and Statistical Sciences,
School of Computer Science & Applied Mathematics, University of the Witwatersrand,
Private Bag 3, Johannesburg 2050, South Africa




