
INEQUALITIES FOR SYMMETRIZED OR ANTI-SYMMETRIZED
INNER PRODUCTS OF COMPLEX-VALUED FUNCTIONS

DEFINED ON AN INTERVAL

S. S. DRAGOMIR1;2

Abstract. For a function f : [a; b] ! C we consider the symmetrical trans-
form of f on the interval [a; b] ; denoted by �f , and de�ned by

�f (t) :=
1

2
[f (t) + f (a+ b� t)] ; t 2 [a; b]

and the anti-symmetrical transform of f on the interval [a; b] denoted by ~f

and de�ned by
~f :=

1

2
[f (t)� f (a+ b� t)] ; t 2 [a; b] :

We consider in this paper the inner products

hf; gi^ :=

Z b

a

�f (t) �g (t)dt and hf; gi� :=

Z b

a

~f (t) ~g (t)dt;

the corresponding norms and establish their fundamental properties. Some
Schwarz and Grüss�type inequalities are also provided.

1. Introduction

For a function f : [a; b]! C we consider the symmetrical transform of f on the
interval [a; b] ; denoted by �f[a;b] or simply �f , when the interval [a; b] is implicit, as
de�ned by

(1.1) �f (t) :=
1

2
[f (t) + f (a+ b� t)] ; t 2 [a; b] :

The anti-symmetrical transform of f on the interval [a; b] is denoted by ~f[a;b]; or
simply ~f and is de�ned by

~f :=
1

2
[f (t)� f (a+ b� t)] ; t 2 [a; b] :

It is obvious that for any function f we have �f + ~f = f: We observe that the
symmetrical and anti-symmetrical transforms are linear transforms, namely

(�f + �g)
^
= � �f + ��g

and
(�f + �g)

�
= � ~f + �~g

for any functions f; g and any scalars �; � 2 C.
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We say that the function is symmetrical a.e. on the interval [a; b] if

f (t) = f (a+ b� t) for almost every t 2 [a; b]

and anti-symmetrical a.e. on the interval [a; b] if

f (t) = �f (a+ b� t) for almost every t 2 [a; b] :

We observe that if the function is (Lebesgue) integrable on [a; b], then by the change
of variable s = a+ b� t; t 2 [a; b] we haveZ b

a

�f (t) dt =
1

2

"Z b

a

f (t) dt+

Z b

a

f (a+ b� s) ds
#
=

Z b

a

f (t) dt

and Z b

a

~f (t) dt =
1

2

"Z b

a

f (t) dt�
Z b

a

f (a+ b� s) ds
#
= 0:

Assume that all functions below are measurable and the integrals involved are
�nite, then by considering the functionals

hf; gi^ :=

Z b

a

�f (t) �g (t)dt and hf; gi� :=
Z b

a

~f (t) ~g (t)dt

we have

h�f + �h; gi^ = � hf; gi^ + � hh; gi^ ; hg; fi^ = hf; gi^
for any scalars �; � and

hf; fi^ � 0;

and the similar relations for the functional h�; �i� :
These show that the functionals h�; �i^ and h�; �i� are nonnegative Hermitian

forms. We also observe that if �f 2 L2 [a; b] ; the Hilbert space of Lebesgue square-
integrable functions on [a; b] and hf; fi^ = 0; then f must be anti-symmetrical
a.e. on the interval [a; b] : Also, if ~f 2 L2 [a; b] and hf; fi� = 0; then f must be
symmetrical a.e. on the interval [a; b] :
We can de�ne the equivalence relation " ^ " by f ^ g , f � g is anti-

symmetrical a.e. on the interval [a; b] : Similarly, we have the equivalence relation
" � " by f � g , f � g is symmetrical a.e. on the interval [a; b] :
We de�ne the linear space of measurable functions L^2 [a; b] as the collections

of all " ^ "-classes of measurable functions for which
R b
a

��� �f (t)���2 dt < 1; and in
a similar way the space L�2 [a; b] : In this situation h�; �i^ becomes a proper in-
ner product on L^2 [a; b] and h�; �i� a proper inner product on L�2 [a; b] : Therefore
k�k^ := h�; �i1=2^ and k�k� := h�; �i1=2� are norms on L^2 [a; b] and L

�
2 [a; b] ; respec-

tively.
In what follows we establish some fundamental properties for these inner prod-

ucts. Some Schwarz and Grüss� type inequalities are also provided. For recent
results in connection to Grüss� inequality, see [1]-[12], [14]-[18], [20]-[27] and the
references therein.
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2. Some Fundamental Properties

We have:

Theorem 1. If f; g 2 L2 [a; b] then f; g 2 L^2 [a; b], we have the representations

hf; gi^ =
1

2

"Z b

a

f (t) g (t) +

Z b

a

f (a+ b� t) g (t)dt
#

(2.1)

=
1

2

"Z b

a

f (t) g (t) +

Z b

a

f (t) g (a+ b� t)dt
#

=

Z b

a

f (t) �g (t)dt =

Z b

a

�f (t) g (t)dt;

kfk2^ =
1

2

"Z b

a

jf (t)j2 +
Z b

a

f (t) f (a+ b� t)dt
#

(2.2)

=

Z b

a

f (t) �f (t)dt =

Z b

a

�f (t) f (t)dt

and the inequalities 
1

b� a

Z b

a

jf (t)j dt
!2

(2.3)

� 1

2

"
1

b� a

Z b

a

jf (t)j2 + 1

b� a

Z b

a

f (t) f (a+ b� t)dt
#

� 1

b� a

Z b

a

jf (t)j2 ;

�����
Z b

a

f (t) g (t) +

Z b

a

f (a+ b� t) g (t)dt
�����
2

(2.4)

�
"Z b

a

jf (t)j2 +
Z b

a

f (t) f (a+ b� t)dt
#

�
"Z b

a

jg (t)j2 +
Z b

a

g (t) g (a+ b� t)dt
#
:

Proof. We have by the de�nition of h�; �i^ that

hf; gi^ =
1

4

Z b

a

[f (t) + f (a+ b� t)] [g (t) + g (a+ b� t)]dt(2.5)

=
1

4

Z b

a

h
f (t) g (t) + f (a+ b� t) g (t)

+f (t) g (a+ b� t) + f (a+ b� t) g (a+ b� t)
i
dt
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=
1

4

"Z b

a

f (t) g (t)dt+

Z b

a

f (a+ b� t) g (t)dt

+

Z b

a

f (t) g (a+ b� t)dt+
Z b

a

f (a+ b� t) g (a+ b� t)dt
#
;

for any f; g 2 L2 [a; b] :
Using the change of variable s = a+ b� t; t 2 [a; b] ; we have

Z b

a

f (t) g (a+ b� t)dt =
Z b

a

f (a+ b� t) g (t)dt

and Z b

a

f (a+ b� t) g (a+ b� t)dt =
Z b

a

f (t) g (t)dt

and by (2.5) we get the �rst equality in (2.1). The rest is obvious.
The equality (2.2) follows by (2.1) for g = f: Also, from (2.2) we observe thatR b

a
f (t) f (a+ b� t)dt is a real number for any f 2 L2 [a; b] :
If f 2 L2 [a; b] ; then by Cauchy-Bunyakovsky-Schwarz inequality we have

kfk2^ =
1

4

Z b

a

jf (t) + f (a+ b� t)j2 dt

� 1

4 (b� a)

�����
Z b

a

[f (t) + f (a+ b� t)] dt
�����
2

=
1

4 (b� a)

�����
Z b

a

f (t) dt+

Z b

a

f (a+ b� t) dt
�����
2

=
1

b� a

�����
Z b

a

f (t) dt

�����
2

;

which proves the �rst inequality in (2.3).
If f 2 L2 [a; b] ; then by Cauchy-Bunyakovsky-Schwarz inequality we also have

kfk2^ =

Z b

a

�f (t) f (t)dt �
 Z b

a

��� �f (t)���2 dt!1=2 Z b

a

jf (t)j2 dt
!1=2

= kfk^ kfk2 ;

which implies that kfk^ � kfk2 that is equivalent to the second inequality in (2.3).
By the Schwarz inequality for the inner product h�; �i^ ; namely

jhf; gi^j
2 � kfk2^ kgk

2
^ ;

which by (2.1) and (2.2) produces the desired result (2.4). �

We have the corresponding result for L�2 [a; b] :
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Theorem 2. If f; g 2 L2 [a; b] then f; g 2 L�2 [a; b], we have the representations

hf; gi� =
1

2

"Z b

a

f (t) g (t)�
Z b

a

f (a+ b� t) g (t)dt
#

(2.6)

=
1

2

"Z b

a

f (t) g (t)�
Z b

a

f (t) g (a+ b� t)dt
#

=

Z b

a

f (t) ~g (t)dt =

Z b

a

~f (t) g (t)dt;

kfk2� =
1

2

"Z b

a

jf (t)j2 �
Z b

a

f (t) f (a+ b� t)dt
#

(2.7)

=

Z b

a

f (t) ~f (t)dt =

Z b

a

~f (t) f (t)dt

and the inequalities

0 � 1

2

"
1

b� a

Z b

a

jf (t)j2 � 1

b� a

Z b

a

f (t) f (a+ b� t)dt
#

(2.8)

� 1

b� a

Z b

a

jf (t)j2 ;

�����
Z b

a

f (t) g (t)�
Z b

a

f (a+ b� t) g (t)dt
�����
2

(2.9)

�
"Z b

a

jf (t)j2 �
Z b

a

f (t) f (a+ b� t)dt
#

�
"Z b

a

jg (t)j2 �
Z b

a

g (t) g (a+ b� t)dt
#
:

Proof. If f 2 L2 [a; b] then f 2 L�2 [a; b], we have the representations

hf; gi^ =
1

4

Z b

a

[f (t)� f (a+ b� t)] [g (t)� g (a+ b� t)]dt

=
1

4

Z b

a

h
f (t) g (t)� f (a+ b� t) g (t)

�f (t) g (a+ b� t) + f (a+ b� t) g (a+ b� t)
i
dt

=
1

4

"Z b

a

f (t) g (t)dt�
Z b

a

f (a+ b� t) g (t)dt

�
Z b

a

f (t) g (a+ b� t)dt+
Z b

a

f (a+ b� t) g (a+ b� t)dt
#

=
1

2

"Z b

a

f (t) g (t)�
Z b

a

f (a+ b� t) g (t)dt
#

for any f; g 2 L2 [a; b] :
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The rest of the equality (2.6) and (2.7) follow from this equality.
As above, we observe that the integral

R b
a
f (t) f (a+ b� t)dt is a real number

for any f 2 L2 [a; b].
By Cauchy-Bunyakovsky-Schwarz integral inequality we have for f 2 L2 [a; b]

that�����
Z b

a

f (t) f (a+ b� t)dt
����� �

 Z b

a

jf (t)j2 dt
!1=2 Z b

a

���f (a+ b� t)���2 dt!1=2

=

Z b

a

jf (t)j2 dt;

namely, since
R b
a
f (t) f (a+ b� t)dt is real,

�
Z b

a

jf (t)j2 dt �
Z b

a

f (t) f (a+ b� t)dt �
Z b

a

jf (t)j2 dt;

which is equivalent to (2.8).
By the Schwarz inequality for the inner product h�; �i� ; namely

jhf; gi�j
2 � kfk2� kgk

2
� ;

for any f; g 2 L2 [a; b] and the equalities (2.6) and (2.7) we get the desired result
(2.9). �

3. Inequalities for Bounded Functions

Now, for �; � 2 C and [a; b] an interval of real numbers, de�ne the sets of
complex-valued functions (see for instance [19])
�U[a;b] (�;�)

:=
n
g : [a; b]! CjRe

h
(�� g (t))

�
g (t)� �

�i
� 0 for almost every t 2 [a; b]

o
and

��[a;b] (�;�) :=

�
g : [a; b]! Cj

����g (t)� �+�

2

���� � 1

2
j�� �j for a.e. t 2 [a; b]

�
:

The following representation result may be stated.

Proposition 1. For any �; � 2 C, � 6= �; we have that �U[a;b] (�;�) and ��[a;b] (�;�)
are nonempty, convex and closed sets and

(3.1) �U[a;b] (�;�) = ��[a;b] (�;�) :

Proof. We observe that for any z 2 C we have the equivalence����z � �+�

2

���� � 1

2
j�� �j

if and only if
Re
�
(�� z)

�
�z � �

��
� 0:

This follows by the equality

1

4
j�� �j2 �

����z � �+�

2

����2 = Re �(�� z) ��z � ���
that holds for any z 2 C.
The equality (3.1) is thus a simple consequence of this fact. �
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On making use of the complex numbers �eld properties we can also state that:

Corollary 1. For any �; � 2 C, � 6= �;we have that

�U[a;b] (�;�) = fg : [a; b]! C j (Re�� Re g (t)) (Re g (t)� Re�)(3.2)

+(Im�� Im g (t)) (Im g (t)� Im�) � 0 for a.e. t 2 [a; b]g :

Now, if we assume that Re (�) � Re (�) and Im (�) � Im (�) ; then we can de�ne
the following set of functions as well:

�S[a;b] (�;�) := fg : [a; b]! C j Re (�) � Re g (t) � Re (�)(3.3)

and Im (�) � Im g (t) � Im (�) for a.e. t 2 [a; b]g :

One can easily observe that �S[a;b] (�;�) is closed, convex and

(3.4) ; 6= �S[a;b] (�;�) � �U[a;b] (�;�) :

We have the following Grüss�type inequalities:

Theorem 3. Let �; � 2 C, � 6= � and f 2 ��[a;b] (�;�) ; g 2 L2 [a; b] : Then�����hf; gi^ � �+�

2

Z b

a

g (t)dt

����� � 1

2
j�� �j

Z b

a

j�g (t)j dt(3.5)

� 1

2
j�� �j

Z b

a

jg (t)j dt

and

(3.6) jhf; gi�j �
1

2
j�� �j

Z b

a

j~g (t)j dt � 1

2
j�� �j

Z b

a

jg (t)j dt:

We also have �����hf; gi^ � 1

b� a

Z b

a

g (s)ds

Z b

a

f (t) dt

�����(3.7)

� 1

2
j�� �j

Z b

a

������g (t)� 1

b� a

Z b

a

g (s) ds

����� dt
� 1

2
j�� �j

Z b

a

�����g (t)� 1

b� a

Z b

a

g (s) ds

����� dt:
Proof. We have by (2.1) thatZ b

a

�
f (t)� �+�

2

�
�g (t)dt =

Z b

a

f (t) �g (t)dt� �+�

2

Z b

a

�g (t)dt(3.8)

= hf; gi^ � �+�

2

Z b

a

g (t)dt:
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Taking the modulus in this equality, we have�����hf; gi^ � �+�

2

Z b

a

g (t)dt

����� �
Z b

a

����f (t)� �+�

2

���� j�g (t)j dt
� 1

2
j�� �j

Z b

a

j�g (t)j dt

=
1

4
j�� �j

Z b

a

j[g (t) + g (a+ b� t)]j dt

� 1

4
j�� �j

Z b

a

[jg (t)j+ jg (a+ b� t)j] dt

=
1

2
j�� �j

Z b

a

jg (t)j dt

and the inequality (3.5) is proved.
We have by (2.6) thatZ b

a

�
f (t)� �+�

2

�
~g (t)dt =

Z b

a

f (t) ~g (t)dt� �+�

2

Z b

a

~g (t)dt(3.9)

=

Z b

a

f (t) ~g (t)dt = hf; gi� :

Taking the modulus in this equality we have�����
Z b

a

f (t) ~g (t)dt

����� �
Z b

a

����f (t)� �+�

2

���� j~g (t)j dt
� 1

2
j�� �j

Z b

a

j~g (t)j dt

=
1

4
j�� �j

Z b

a

j[g (t)� g (a+ b� t)]j dt

� 1

4
j�� �j

Z b

a

[jg (t)j+ jg (a+ b� t)j] dt

=
1

2
j�� �j

Z b

a

jg (t)j dt

and the inequality (3.6) is obtained.
We also have Z b

a

�
f (t)� �+�

2

� 
�g (t)� 1

b� a

Z b

a

g (s)ds

!
dt

=

Z b

a

f (t)

 
�g (t)� 1

b� a

Z b

a

g (s)ds

!
dt

� �+�

2

Z b

a

 
�g (t)� 1

b� a

Z b

a

g (s)ds

!
dt
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=

Z b

a

f (t) �g (t)dt� 1

b� a

Z b

a

g (s)ds

Z b

a

f (t) dt

� �+�

2

Z b

a

 
�g (t)� 1

b� a

Z b

a

g (s)ds

!
dt

=

Z b

a

f (t) �g (t)dt� 1

b� a

Z b

a

g (s)ds

Z b

a

f (t) dt

= hf; gi^ � 1

b� a

Z b

a

g (s)ds

Z b

a

f (t) dt;

which gives, by taking the modulus,�����hf; gi^ � 1

b� a

Z b

a

g (s)ds

Z b

a

f (t) dt

�����
�
Z b

a

����f (t)� �+�

2

����
������g (t)� 1

b� a

Z b

a

g (s)ds

����� dt
� 1

2
j�� �j

Z b

a

������g (t)� 1

b� a

Z b

a

g (s) ds

����� dt
=
1

2
j�� �j

Z b

a

�����g (t) + g (a+ b� t)2
� 1

b� a

Z b

a

g (s) ds

����� dt
� 1

2
j�� �j

Z b

a

�����g (t)� 1

b� a

Z b

a

g (s) ds

����� dt
and the last inequality (3.7) is proved. �
We have:

Theorem 4. Let �; � 2 C, � 6= � and f 2 ��[a;b] (�;�). If � ; �	 2 C, � 6= �	 and

�g 2 ��[a;b]
�
� ; �	

�
; then

(3.10)

�����hf; gi^ �
� + �	

2

Z b

a

f (t) dt� �+�

2

Z b

a

g (t)dt

+

�
�+�

2

� � + �	

2

!
(b� a)

�����
� 1

4
j�� �j

����	� � ��� (b� a)
and �����hf; gi^ � 1

b� a

Z b

a

g (s)ds

Z b

a

f (t) dt

�����(3.11)

� 1

2
j�� �j (b� a)

0@ 1

b� a

Z b

a

j�g (t)j2 �
����� 1

b� a

Z b

a

g (t) dt

�����
2
1A1=2

� 1

4
j�� �j

����	� � ��� (b� a) :



10 S. S. DRAGOMIR1;2

If ~ ; ~	 2 C, ~ 6= ~	 and ~g 2 ��[a;b]
�
~ ; ~	

�
; then

(3.12)

�����hf; gi� � ~ + ~	

2

Z b

a

f (t) dt

����� � 1

4
j�� �j

���~	� ~ ��� (b� a) :
Proof. We have by (3.8) thatZ b

a

�
f (t)� �+�

2

� 
�g (t)�

� + �	

2

!
dt

=

Z b

a

f (t)

 
�g (t)�

� + �	

2

!
dt� �+�

2

Z b

a

 
�g (t)�

� + �	

2

!
dt

=

Z b

a

f (t) ~g (t)dt�
� + �	

2

Z b

a

f (t) dt

� �+�

2

Z b

a

�g (t)dt+

�
�+�

2

� � + �	

2

!

= hf; gi^ �
� + �	

2

Z b

a

f (t) dt� �+�

2

Z b

a

g (t)dt

+

�
�+�

2

� � + �	

2

!
(b� a) :

Taking the modulus in this equality, we have�����hf; gi^ �
� + �	

2

Z b

a

f (t) dt� �+�

2

Z b

a

g (t)dt+

�
�+�

2

� � + �	

2

!�����
�
Z b

a

����f (t)� �+�

2

����
������g (t)� � + �	

2

����� dt � 1

4
j�� �j

����	� � ��� (b� a) ;
which proves (3.10).
By the Schwarz and Grüss�inequalities, see for instance [13], we have

1

b� a

Z b

a

������g (t)� 1

b� a

Z b

a

g (s) ds

����� dt
=

1

b� a

Z b

a

������g (t)� 1

b� a

Z b

a

�g (s) ds

����� dt
�

0@ 1

b� a

Z b

a

������g (t)� 1

b� a

Z b

a

�g (s) ds

�����
2

dt

1A1=2

=

0@ 1

b� a

Z b

a

j�g (t)j2 �
����� 1

b� a

Z b

a

g (t) dt

�����
2
1A1=2

� 1

2

����	� � ���
and by (3.7) we get (3.11).
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By (3.9) we haveZ b

a

�
f (t)� �+�

2

� 
~g (t)�

~ + ~	

2

!
dt

=

Z b

a

f (t)

 
~g (t)�

~ + ~	

2

!
dt = hf; gi� �

~ + ~	

2

Z b

a

f (t) :

By taking the modulus in this equality, we have�����hf; gi� � ~ + ~	

2

Z b

a

f (t) dt

����� �
Z b

a

����f (t)� �+�

2

����
�����~g (t)� ~ + ~	

2

����� dt
� 1

4
j�� �j

���~	� ~ ��� (b� a)
and the inequality (3.12) is proved. �

Remark 1. We observe that if �; � 2 R, � < � and f is real-valued function,
then f 2 ��[a;b] (�;�) is equivalent to

� � f (t) � � for a.e. t 2 [a; b] :

If � ; �	 2 R, � < �	 and g is real valued function, then �g 2 ��[a;b]

�
� ; �	

�
is

equivalent to

(3.13) � � 1

2
[g (t) + g (a+ b� t)] � �	 for a.e. t 2 [a; b] :

If  ; 	 are real numbers so that  � g (t) � 	 for a.e. t 2 [a; b] ; then

(3.14)  � 1

2
[g (t) + g (a+ b� t)] � 	 for a.e. t 2 [a; b] :

One can �nd examples of functions for which the bounds provided by (3.13) are
better than (3.14). For instance, if we consider the function f : [a; b] � (0;1)! R
given by g (t) = ln t; then we have

�g (t) =
1

2
[ln t+ ln (a+ b� t)] ;

(�g (t))
0
=
1

2

�
1

t
� 1

a+ b� t

�
=

a+b
2 � t

t (a+ b� t) ; t 2 (a; b)

and

(�g (t))
00
= �1

2

 
1

t2
+

1

(a+ b� t)2

!
; t 2 (a; b) :

These shows that �f is strictly increasing on
�
a; a+b2

�
, strictly decreasing on

�
a+b
2 ; b

�
and strictly concave on (a; b) : Therefore

(3.15) � := lnG (a; b) � �g (t) � lnA (a; b) =: �	 for any t 2 [a; b] ;
where G (a; b) :=

p
ab is the geometric mean and A (a; b) := 1

2 (a+ b) is the arith-
metic mean of positive numbers a; b:
Since  := ln a � ln t � ln b =: 	; then by (3.14) we get

(3.16)  � �g (t) � 	 for any t 2 [a; b] :
We observe that the bounds provided by (3.15) for �g are better than (3.16).
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4. The Case of One Function of Bounded Variation

For a function of bounded variation f : [a; b]! C we denote by
Wb
a (f) its total

variation on [a; b] :

Theorem 5. Assume that f : [a; b]! C is of bounded variation g is integrable on
[a; b] : Then we have�����hf; gi^ � f (a) + f (b)

2

Z b

a

g (t)dt

����� � 1

2

b_
a

(f)

Z b

a

j�g (t)j dt(4.1)

� 1

2

b_
a

(f)

Z b

a

jg (t)j dt

and

(4.2) jhf; gi�j �
1

2

b_
a

(f)

Z b

a

j~g (t)j dt � 1

2

b_
a

(f)

Z b

a

jg (t)j dt:

Proof. We have by (2.1) thatZ b

a

�
f (t)� f (a) + f (b)

2

�
�g (t)dt =

Z b

a

f (t) �g (t)dt� f (a) + f (b)

2

Z b

a

�g (t)dt

= hf; gi^ � f (a) + f (b)

2

Z b

a

g (t)dt:

Taking the modulus in this equality, we get

(4.3)

�����hf; gi^ � f (a) + f (b)

2

Z b

a

g (t)dt

����� �
Z b

a

����f (t)� f (a) + f (b)

2

���� j�g (t)j dt:
Observe that, for any t 2 [a; b] we have����f (t)� f (a) + f (b)

2

���� = ����f (t)� f (a) + f (t)� f (b)2

����
� 1

2
[jf (t)� f (a)j+ jf (b)� f (t)j] � 1

2

b_
a

(f)

and by (4.3) we get the �rst inequality in (4.1).
Since Z b

a

j�g (t)j dt = 1

2

Z b

a

jg (t) + g (a+ b� t)j dt

� 1

2

Z b

a

[jg (t)j+ jg (a+ b� t)j] dt =
Z b

a

jg (t)j dt;

the last part of (4.1) also holds.
We have by (2.6) thatZ b

a

�
f (t)� f (a) + f (b)

2

�
~g (t)dt =

Z b

a

f (t) ~g (t)dt� f (a) + f (b)

2

Z b

a

~g (t)dt

=

Z b

a

f (t) ~g (t)dt = hf; gi� :
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Taking the modulus in this equality, we get

jhf; gi�j �
Z b

a

����f (t)� f (a) + f (b)

2

���� j~g (t)j dt � 1

2

b_
a

(f)

Z b

a

j~g (t)j dt

=
1

4

b_
a

(f)

Z b

a

jg (t)� g (a+ b� t)j dt

� 1

4

b_
a

(f)

Z b

a

[jg (t)j+ jg (a+ b� t)j] dt = 1

2

b_
a

(f)

Z b

a

jg (t)j dt

and the inequality (4.2) is proved. �

We say that the function h : [a; b] ! R is H-r-Hölder continuous with the
constant H > 0 and power r 2 (0; 1] if

(4.4) jh (t)� h (s)j � H jt� sjr

for any t; s 2 [a; b] : If r = 1 we call that h is L-Lipschitzian when H = L > 0:

Corollary 2. Assume that f : [a; b] ! C is of bounded variation and g is H-r-
Hölder continuous with the constant H > 0 and power r 2 (0; 1]: Then

(4.5) jhf; gi�j �
1

4 (r + 1)
H

b_
a

(f) (b� a)r+1 :

In particular, if L-Lipschitzian with L > 0, then

(4.6) jhf; gi�j �
1

8
L

b_
a

(f) (b� a)2 :

Proof. Since g is H-r-Hölder continuous with the constant H > 0 and power r 2
(0; 1]; then

j~g (t)j = 1

2
jg (t)� g (a+ b� t)j � 1

2
H j2t� a� bjr

=
1

2
2rH

����t� a+ b

2

����r = 1

21�r
H

����t� a+ b

2

����r ;
which implies thatZ b

a

j~g (t)j dt � 1

21�r
H

Z b

a

����t� a+ b

2

����r dt = 1

21�r
H
(b� a)r+1

2r (r + 1)

=
1

2 (r + 1)
H (b� a)r+1

and the inequality (4.5) is proved. �

5. The Case of One Hölder Continuous Function

We say that the function h : [a; b] ! C is K-p-Hölder continuous in the middle
with the constant K > 0 and power p > 0 if

(5.1)

����h (t)� h�a+ b2
����� � K

����t� a+ b

2

����p
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for any t 2 [a; b] : We observe that if h : [a; b] ! C is H-r-Hölder continuous with
the constant H > 0 and power r 2 (0; 1]; then is Hölder continuous in the middle
with the same constants.
We de�ne the following Lebesgue norms for a measurable function h : [a; b]! C

khk1 := essup
t2[a;b]

jh (t)j <1 if h 2 L1 [a; b]

and, for � � 1;

khk� :=
 Z b

a

jh (t)j� dt
!1=�

<1 if h 2 L� [a; b] :

Theorem 6. Assume that f : [a; b] ! C is K-p-Hölder continuous in the middle
with the constant K > 0 and power p > 0, and g is integrable on [a; b] : Then we
have �����hf; gi^ � f

�
a+ b

2

�Z b

a

g (t)dt

����� � K

Z b

a

����t� a+ b

2

����p j�g (t)j dtt(5.2)

� K

8>>>>>>><>>>>>>>:

1
2p (b� a)

p k�gk1 ;

1
2p(p�+1)1=�

(b� a)p+1=� k�gk�
where �; � > 1 with 1

� +
1
� = 1;

1
2p(p+1) (b� a)

p+1 k�gk1 ;

� K

8>>>>>>><>>>>>>>:

1
2p (b� a)

p kgk1 ;

1
2p(p�+1)1=�

(b� a)p+1=� kgk�
where �; � > 1 with 1

� +
1
� = 1;

1
2p(p+1) (b� a)

p+1 kgk1 ;

and

jhf; gi�j � K

Z b

a

����t� a+ b

2

����p j~g (t)j dt(5.3)

� K

8>>>>>>><>>>>>>>:

1
2p (b� a)

p k~gk1 ;

1
2p(p�+1)1=�

(b� a)p+1=� k~gk�
where �; � > 1 with 1

� +
1
� = 1;

1
2p(p+1) (b� a)

p+1 k~gk1 ;

� K

8>>>>>>><>>>>>>>:

1
2p (b� a)

p kgk1 ;

1
2p(p�+1)1=�

(b� a)p+1=� kgk�
where �; � > 1 with 1

� +
1
� = 1;

1
2p(p+1) (b� a)

p+1 kgk1 :
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Proof. We have by (2.1) thatZ b

a

�
f (t)� f

�
a+ b

2

��
�g (t)dt =

Z b

a

f (t) �g (t)dt� f
�
a+ b

2

�Z b

a

�g (t)dt

= hf; gi^ � f
�
a+ b

2

�Z b

a

g (t)dt:

Taking the modulus in this equality, we get�����hf; gi^ � f
�
a+ b

2

�Z b

a

g (t)dt

����� �
Z b

a

����f (t)� f �a+ b2
����� j�g (t)j dt

� K

Z b

a

����t� a+ b

2

����p j�g (t)j dt:
By the Hölder�s integral inequality we have

Z b

a

����t� a+ b

2

����p j�g (t)j dt �

8>>>>>>>><>>>>>>>>:

maxt2[a;b]
��t� a+b

2

��p R b
a
j�g (t)j dt;

�R b
a

��t� a+b
2

��p� dt�1=� �R b
a
j�g (t)j� dt

�1=�
where �; � > 1 with 1

� +
1
� = 1;R b

a

��t� a+b
2

��p dt essupt2[a;b] j�g (t)j

=

8>>>>>>><>>>>>>>:

1
2p (b� a)

p k�gk1 ;

1
2p(p�+1)1=�

(b� a)p+1=� k�gk�
where �; � > 1 with 1

� +
1
� = 1;

1
2p(p+1) (b� a)

p+1 k�gk1 ;

which proves the second inequality in (5.2).
By the triangle inequality for the Lebesgue norms we have

k�gk� =
1

2
kg + g (a+ b� �)k� �

1

2

h
kgk� + kg (a+ b� �)k�

i
= kgk� ;

which proves the last part of (5.2).
We have by (2.6) thatZ b

a

�
f (t)� f

�
a+ b

2

��
~g (t)dt =

Z b

a

f (t) ~g (t)dt� f
�
a+ b

2

�Z b

a

~g (t)dt

=

Z b

a

f (t) ~g (t)dt = hf; gi� :

Taking the modulus in this equality, we get

jhf; gi�j �
Z b

a

����f (t)� f �a+ b2
����� j~g (t)j dt � K

Z b

a

����t� a+ b

2

����p j~g (t)j dt;
which proves the second inequality in (5.3).
The rest follows in a similar manner and the details are omitted. �
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Corollary 3. Assume that f : [a; b] ! C is K-p-Hölder continuous in the middle
with the constant K > 0 and power p > 0, and g is H-r-Hölder continuous with the
constant H > 0 and power r 2 (0; 1]: Then

(5.4) jhf; gi�j �
1

2p+1 (p+ r + 1)
HK (b� a)p+r+1 :

In particular, if L-Lipschitzian with L > 0, then

(5.5) jhf; gi�j �
1

2p+1 (p+ 2)
LK (b� a)p+2 :

Proof. From the �rst inequality in (5.3) we have

jhf; gi�j � K

Z b

a

����t� a+ b

2

����p j~g (t)j dt � 1

21�r
HK

Z b

a

����t� a+ b

2

����p+r dt
=

1

21�r
HK

(b� a)p+r+1

2p+r (p+ r + 1)
=

1

2p+1 (p+ r + 1)
HK (b� a)p+r+1 ;

which proves (5.4). �
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