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INEQUALITIES FOR SYMMETRIZED OR ANTI-SYMMETRIZED
INNER PRODUCTS OF COMPLEX-VALUED FUNCTIONS
DEFINED ON AN INTERVAL

S. S. DRAGOMIR!:2

ABSTRACT. For a function f : [a,b] — C we consider the symmetrical trans-
form of f on the interval [a,b], denoted by f, and defined by

Fy= 5@+ fatb=1], t€la)

and the anti-symmetrical transform of f on the interval [a,b] denoted by f
and defined by

Ji= U@ fa+b—0]tefad.
We consider in this paper the inner products
b b _
oo = [ FOT0dad (9= [ FoT0®,

the corresponding norms and establish their fundamental properties. Some
Schwarz and Griiss’ type inequalities are also provided.

1. INTRODUCTION

For a function f : [a,b] — C we consider the symmetrical transform of f on the
interval [a,b], denoted by fj, 4 or simply f, when the interval [a, b] is implicit, as
defined by

v 1

(1.1) f(t):zi[f(t)—kf(a—i—b—t)],te[a7b].

The anti-symmetrical transform of f on the interval [a,b] is denoted by f[a’b], or
simply f and is defined by

f::§[f(t)—f(a+b—t)],t€[a,b].

It is obvious that for any function f we have f + f = f. We observe that the
symmetrical and anti-symmetrical transforms are linear transforms, namely

(af +B9)~ = af + 5y
and

(af +B9)” = af + 57

for any functions f, g and any scalars «, 8 € C.
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We say that the function is symmetrical a.e. on the interval [a, ] if
f(@)=f(a+b—1t) for almost every t € [a, b]
and anti-symmetrical a.e. on the interval [a, b] if
f@t)=—f(a+b—1t) for almost every t € [a,b].

We observe that if the function is (Lebesgue) integrable on [a, b], then by the change
of variable s = a + b —t, t € [a,b] we have

/abf(t)dt:; l/abf(t)dtJr/abf(aer—s)ds] :/abf(t)dt
/abf(t)dt:; Vabf(t)dt—/abf(am_s)dsl _o

Assume that all functions below are measurable and the integrals involved are
finite, then by considering the functionals

and

b b
(f.g)_ = / () F@dt and (f.g)_ = / F ()70t
we have

(af+Bh,g)_=alf,g)_+Bhg)_, (g./)_=(frg9)_
for any scalars a, 8 and
(£, fi_ >0,

and the similar relations for the functional (-,-) _ .

These show that the functionals (-,-) _ and (,-)
forms. We also observe that if f € Lo [a,b], the Hilbert space of Lebesgue square-
integrable functions on [a,b] and (f, f)_ = 0, then f must be anti-symmetrical
a.e. on the interval [a,b]. Also, if f € Ly [a,b] and (f, f)_ = 0, then f must be
symmetrical a.e. on the interval [a, b] .

We can define the equivalence relation ” — 7 by f — g < f — g is anti-
symmetrical a.e. on the interval [a,b]. Similarly, we have the equivalence relation
" ~7 by f~g<e f—gis symmetrical a.e. on the interval [a, b] .

We define the linear space of measurable functions L3 [a,b] as the collections

are nonnegative Hermitian

— ~

b2

L2
of all 7 ~— "-classes of measurable functions for which fab ‘ f (t)‘ dt < oo, and in

a similar way the space L3 [a,b]. In this situation (-,-) _ becomes a proper in-
ner product on L3 [a,b] and (-, ). a proper inner product on L3 [a,b]. Therefore
Il == (- )52 and ||| == (, ~>1N/2 are norms on L3 [a,b] and L3 [a,b], respec-
tively.

In what follows we establish some fundamental properties for these inner prod-
ucts. Some Schwarz and Griiss’ type inequalities are also provided. For recent
results in connection to Griiss’ inequality, see [1]-[12], [14]-[18], [20]-[27] and the
references therein.
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2. SOME FUNDAMENTAL PROPERTIES

We have:

Theorem 1. If f, g € La[a,b] then f, g € Ly [a,b], we have the representations

(2.1) [/f /faerft ]
[/f /f +b—tdt]
:/a f(t)é(t)dt:/a f )9 @t

b b
(22) ||f||i=;[/ P | f(t)f(a+b—t)dt]

b 2
(23) (1 / 7 0 dt)

FOF (a—l—b—t)dt}

(2.4)

/bf(t)g(t)—l-/bf(a—&-b—t)g(t)dtz
V 1F (@) +/ ft —&-b—tdt]
V lg (1) +/ (a+b—t)dt]

Proof. We have by the definition of (-,-) _ that

b
@5) (o =7 [ UO+I@rb- GO Fglar -

b
:%/ [/ 09+ flatb-1)g(0)

+f(t)gla+b—t)+ fla+b—1t)gla+b—1t)|dt
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3| [rosma [ - nama
/f +b—tdt+/ fla+b—1t)gla+b—1t)dt|,

for any f, g € Ly |a,b].
Using the change of variable s =a+b —t, t € [a,b], we have

/,f gla+b—t)dt = (/lfa+b—0 (t)dt

and
b b
/f(a—|—b—t)g(a—|—b—t)dt:/f(t)g(t)dt

and by (2.5) we get the first equality in (2.1). The rest is obvious.

The equality (2.2) follows by (2.1) for g = f. Also, from (2.2) we observe that
f: f () f(a+0b—t)dtis a real number for any f € Ls [a,b].

If f € La[a,b], then by Cauchy-Bunyakovsky-Schwarz inequality we have

2

b
1912 =5 [ 10+ @b
1

/Lﬂﬂ+fw+b—ﬂMt

= 1h—a)
b b 2
4<b_a)/af(t)dt+/a Fla+b—1t)dt
ol rwal

which proves the first inequality in (2.3).
If f € Ls]a,b], then by Cauchy-Bunyakovsky-Schwarz inequality we also have

b 5 1/2 b 1/2
112 = /f dt<</a ol dt) (/ |f<t>|2dt>

= [IAI 11l

which implies that || f||_ < || f]|, that is equivalent to the second inequality in (2.3).
By the Schwarz inequality for the inner product (-,-)_ , namely

[Foa) P < P12 gl

which by (2.1) and (2.2) produces the desired result (2.4).

We have the corresponding result for L3 [a,b].
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Theorem 2. If f, g € La[a,b] then f, g € L5 [a,b], we have the representations

(2.6) Vf /f +b—1)g(t) ]
[/f - [0 a+b_tdt]
l/f )5 (@t = /f

b
(2.7) T L/M@W—/f@wm+v%mﬁ

b _ b~ 7
—/f@f@ﬁ:/f@ Dt

and the inequalities

09 [

§b7a1|f®2

(2.9)

/‘f O]
V |f(t I—/f +btdt]
UNg |—/ w+b—m4

Proof. If f € Ly [a,b] then f € L3 [a,b], we have the representations

b

/ F ()~ flatb—t)]g® —g(atb_nld
b

/ FWaW —flatb—1)g@®)

~fWglatb—0+flatb—t)gla+b—1)d

b L b _
[/fwgww—/fm+w%wmw

1
4
—/bf() (a+b—tdt—|—/fa+b—t) (a—I—b—t)dt]

;l/ /f +b—t) g (t) 1

for any f, g € La|a,b].
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The rest of the equality (2.6) and (2.7) follow from this equality.

As above, we observe that the integral f; f @) f(a+b—t)dt is a real number
for any f € Lo [a, b].
By Cauchy-Bunyakovsky-Schwarz integral inequality we have for f € Lo [a,b]

that
()
- / ORe

namely, since fb f@) f(a+0b—t)dtis real,

/|f |dt</f a+b7tdt</|f )2 dt,

which is equivalent to (2.8).
By the Schwarz inequality for the inner product (-,-)_ , namely

2 e 7

for any f, g € Lo [a,b] and the equalities (2.6) and (2.7) we get the desired result
(2.9). O

1/2
a+b—tdt

f(a—i—b—t)rdt)

3. INEQUALITIES FOR BOUNDED FUNCTIONS

Now, for ¢, ® € C and [a,b] an interval of real numbers, define the sets of
complex-valued functions (see for instance [19])

Ula,p) (¢, ®)
= {g : [a,b] — C|Re {(CD —g(t) (M - @)] > 0 for almost every t € [a, b]}

and
_ o
Aoy (@0®) = {3081~ €] o)~ “5%| < 510~ ol for ac. tefatl .

The following representation result may be stated.

Proposition 1. For any ¢, ® € C, ¢ # @, we have that U[a,b] (¢, ®) and A[a,b] (¢, D)
are nonempty, convexr and closed sets and

(3.1) Ula,p) (6, ®) = Do) (6, D).
Proof. We observe that for any z € C we have the equivalence
o+ 1
LI R
LR

if and only if -

Re [(®—2) (z—¢)] > 0.
This follows by the equality
2

1 2 o Z— 0
Lo _‘z_qﬁ; = Re[(@ - 2) (- 3)]

that holds for any z € C.
The equality (3.1) is thus a simple consequence of this fact. (I



INEQUALITIES FOR SYMMETRIZED OR ANTI-SYMMETRIZED INNER PRODUCTS 7

On making use of the complex numbers field properties we can also state that:
Corollary 1. For any ¢, ® € C, ¢ # ®,we have that

(32) Uy (¢,®) ={g:[a,b] > C| (Re® —Reg(t)) (Reg (t) — Reg)
+(Im®—Img(t)) Img () —Ime) >0 for a.e. t € [a,b]}.

Now, if we assume that Re (®) > Re (¢) and Im (®) > Im (¢) , then we can define
the following set of functions as well:

(33) Sy (6:9) = {g: 0,5 — C | Re(®) > Reg () > Re (9)
and Im (®) > Img (¢t) > Im (¢) for a.e. t € [a,b]}.

One can easily observe that S[a,b] (¢, @) is closed, convex and
(3.4) 0 # Stap) (6,®) C Ul (¢, 9) .
We have the following Griiss’ type inequalities:

Theorem 3. Let ¢, ® € C, ¢ # ® and f € Ajgp) (¢,®), g € Lz [a,b]. Then

1 b
e [
: <glo—a [

b
(3.5) %ﬁmv—¢+¢/guw

N

1 b
<glo—a [ o

and

b b
66 Wal<zle-¢ [lawa<se-d [l

We also have

b b
(37) |umv—gﬂ/g@w/f®w
b b
<slo—ol [ 10— 5= [ s asa
b b
<glo—al [ fow-5= [o@asae

Proof. We have by (2.1) that

(3.8) Ab@%w—¢§¢)auMn=17ﬂwgumr—¢;¢mewﬁ
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Taking the modulus in this equality, we have

<f,9>v¢+2q)/ab9(t)dt S/b

1 b
§§I<I>—¢>I/ o

|<I> ¢|/\ t)+g(a+b—1t)|dt

o+

F-=

g@)|dt

Lo ol [ ol +ls a0l

20 [ la0la

fI= \

l\')\»—l

and the inequality (3.5) is proved.
We have by (2.6) that

s [ (r0-250)5ma= [ rogoa- 250 [ o

Taking the modulus in this equality we have

(t) g (t)dt| <

(t) -

g%@—m/ (6)de
\q> ¢\/| g(a+b—1t)|dt

0}
¢+ ‘| P dt

<Lio- ¢>\/ g (&)] + lg (a+b—t)[]dt

- ¢\/|g )| dt

and the inequality (3.6) is obtained.
We also have

e~

l\D\H
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/f G0t~ /f
e
/f ) 7@t / f @)

- G)ds / Fa,
which gives, by taking the modulus,

'<f,g>v—b1 bg(s)ds/bm)dt
<[ 05 [ 06

<§|«I>—¢|/:g<t>—bia/a (5)ds

f(t)

dt

:;|<I>—¢>|/ab g(t)+g(2a+b—t) B bia/abg(s)ds »
1 b I
<glo—ol [ o - 5= [ gas|ar
and the last inequality (3.7) is proved. (I

‘We have:
Theorem 4. Let ¢, ® € C, ¢ # @ and f € Apy) (6, ®). If b, V€ C, ¢ # ¥ and
ge A[a’b] ({p, i’) , then

N b
(310) ‘(f,g>v—¢+m/ rwa- 252 [y

and

b b
(3.11) ‘<f,g>v - ﬁ g(S)dS/ f(t)dt
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If, Ve C, Y+ T and § e A[a,b] (1]),\11) , then

T b
(3.12) ‘<f,g>w—w+\1// £y dt| <

Proof. We have by (3.8) that

1120l [F [ (b —a).

Taking the modulus in this equality, we have

w+W/f m—‘f @ﬁ+cé@>0$®>

o+ P v+ U
2

f) - g(t)—

at < 11— o[ 9| 6~ 0),

which proves (3.10).
By the Schwarz and Griiss’ inequalities, see for instance [13], we have

1 b
b—a/a
1 b
:bfa/a
1 b
S=
“\b—a/,
o
=(b_a/ 50 -

and by (3.7) we get (3.11).

b
90— [ g(s)ds

dt

1 b
g@)=3— | d(s)ds

dt

9 1/2
9

, o\ 1/2
1
o [ ata ) <

1 b
g(t)—m ’ g(s)ds

i

1
2
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By (3.9) we have

/j(f(t)gﬁ;@)(

=/fw(mw—wgm)ﬁzqmm—wgw/fu»

By taking the modulus in this equality, we have

Qe

(t) - QZ;@)dt

AN b -
< %|¢_¢|“if—1~b‘(b—a)
and the inequality (3.12) is proved. 0

Remark 1. We observe that if ¢, ® € R, ¢ < ® and [ is real-valued function,
then f € A (¢, ®) is equivalent to

d< f(t) <P fora.e teE]al].

If 7:[1, ¥ € R, 17) < ¥ and g 1s real valued function, then g € A[%b] (;ﬁ,\i/) 18
equivalent to

(3.13) zvbg%[g(t)—&—g(a—l—b—t)}§\I'f07“a.e.te[a,b].
If ¢, U are real numbers so that ¢ < g (t) < U for a.e. t € [a,b], then
(3.14) wg%[g(t)+g(a+b—t)}§\Pf0ra.e.tE[a,b].

One can find examples of functions for which the bounds provided by (3.13) are
better than (3.14). For instance, if we consider the function f : [a,b] C (0,00) — R
given by g (t) = Int, then we have

()= 5 [nt+n(a+b—1),

1 1 ath ¢
t >_t(a+bt)’t€<a’b)

and

<mm”§<;+@+;1¥>wem@.

These shows that f 18 strictly increasing on (a, “TM), strictly decreasing on (“TH’, b)

and strictly concave on (a,b). Therefore
(3.15) ¥ :=InG(a,b) < §(t) <InA(a,b) = for any t € [a,b],

where G (a,b) := Vab is the geometric mean and A (a,b) := L (a+1b) is the arith-
metic mean of positive numbers a, b.
Since ¢ :=Ina <Int <Inb=: U, then by (3.14) we get

(3.16) Y <g(t)<T for anyt € [a,b].
We observe that the bounds provided by (3.15) for g are better than (3.16).
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4. THE CASE OF ONE FUNCTION OF BOUNDED VARIATION

For a function of bounded variation f : [a,b] — C we denote by \/Z (f) its total
variation on [a, b] .

Theorem 5. Assume that f : [a,b] — C is of bounded variation g is integrable on
[a,b] . Then we have

b
=l T

and
b

b b
(42) J<sV ) / Ol <3V () [ la @l

Proof. We have by (2. 1) that

/ab(fof) Lt 0 5o - /f Y10 dt—)f”/aé(t)dt
~ g - OO [

Taking the modulus in this equality, we get

—_

b b
4 |tro- - T (oG < [ o - L0 gy an
Observe that, for any t € [a b] we have

15 @) = f(a)[ + 17 () = F O] <

N =
§<®~
—
=

N)M—l

and by (4.3) we get the first inequality in (4.1).

Since
b 1 b
[la=3 [le@+ga+s-ola

b b
<5 [ @l +lg@ro-nia= [ 190

the last part of (4.1) also holds.
We have by (2.6) that

/ab(f(t)_f() ) Bt = /f V5T dt_)f”/ag(t)dt
- / F 7Dt = (f,g)..

dt,
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Taking the modulus in this equality, we get
b b 1 b
)l < [ ﬂw—”@jf”MMMﬁ<2\Mﬂ/|MMﬁ

a a
b

1\/ / lg(t) —g(a+b—1t)|dt

a

=

b

1
<V [ o1+ lg(a+ bl = /\g ) d
and the inequality (4.2) is proved. O

We say that the function h : [a,b] — R is H-r-Hélder continuous with the
constant H > 0 and power r € (0, 1] if

(4.4) |h(t) = h(s)| < H|t—s["
for any ¢, s € [a,b]. If r = 1 we call that h is L-Lipschitzian when H = L > 0.

Corollary 2. Assume that f : [a,b] — C is of bounded variation and g is H-r-
Hélder continuous with the constant H > 0 and power r € (0,1]. Then

1 ’ r+1
(4.5) |<f79>~|§mH\a/(f)(b_a) i

In particular, if L-Lipschitzian with L > 0, then

1 b
(4.6) I{f g \/ b—a)

Proof. Since g is H-r-Holder continuous with the constant H > 0 and power r €
(0, 1], then

_ 1 1 .
91 =319(t) —gla+b-t)] < SH[2t —a )|

1., a+bl" 1 a+b|"
which implies that
a Jr b|" 1 (b— a)T'H
)| dt < t —
/ 9(0) —21r ot o (r 1 1)
_ 7}[ bh— r+1
2o +1) (b—a)
and the inequality (4.5) is proved. O

5. THE CASE OoF ONE HOLDER CONTINUOUS FUNCTION

We say that the function h : [a,b] — C is K-p-Hélder continuous in the middle
with the constant K > 0 and power p > 0 if

(5.1) ‘h(t)h(a;rb>‘§K‘ta;rbp
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for any t € [a,b]. We observe that if b : [a,b] — C is H-r-Hdélder continuous with
the constant H > 0 and power r € (0, 1], then is Holder continuous in the middle

S.S. DRAGOMIRY2

with the same constants.

We define the following Lebesgue norms for a measurable function b : [a,b] — C

and, for § > 1,

Theorem 6. Assume that f : [a,b] — C is K-p-Hdlder continuous in the middle
with the constant K > 0 and power p > 0, and g is integrable on [a,b]. Then we

have

(5:2) %ﬁmv—f<a;b>L2ﬂﬂﬁ

and

(5.3)

[|h]|, :=essup|h(t)] < oo if h € Lo [a,b]

t€la,b

nmw=<[m

b
|mmJgK/

1/8
®)° dt) <ooif h e Lgla,b].

p

t— |g (¢)| dtt

a+b
2

b
<

3 (b—a)” gl »

1 Pl a gy
<K 217(pa+1)1/o‘ (b a) ||g||ﬁ
- wherea,ﬁ>lwz’thé+%:l,

1y
m (b— a)p+ 190l -
3 (b—a)” llgll;

1 pt+l/a
<K W(b*a) ||9||[3
- wherea,ﬂ>1withé+%:l,

m (b—a)"*! gl »

p
t— |9 ()| dt

a+b
2

37 (b= a)’[l3ll; ,

+1/c ||~
W(b—a)p / ||9||;3

where o, B > 1 withé—i—%:l,

m (b—a)"" 19l »

35 (b—a)” [lglly »

—+1/a
W(b—a)p / ||9||5
where a, B > 1 withé+%:l,

p+1
m (b—a)" 19/ -
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Proof. We have by (2.1) that

/ab (f(f)f(a;b»é(t)dt—/abf(t)g(t)dt_f(a;b)/jg(t)dt

=(f.9)_—f (a;rb> /abg(t)dt-

Taking the modulus in this equality, we get
/b

a+b —
(Lo =7 ( 5 > / g (t)dt
b
<
By the Holder’s integral inequality we have

b,
max;eay |t — 2|7 [, 19 ()] dt,

IN

rw-1 (55|l

P
|

a+b
2

IN

t—

g0 d.

(it gt an) ™ (11 7 ar) ™

a+obl’
2 wherea7ﬁ>lwith$+%:1,

IN

t— | ()] dt

/

b P q
fa |t _ GTJF”| dt essupyeq ) |9 (t)]
L (b= a4l

+1/a s
W(b—a)p /aHyHg
where «, § > 1 with éJr%: 1,

+1 v
m (b— a)p ||9||Oo )

which proves the second inequality in (5.2).
By the triangle inequality for the Lebesgue norms we have

y 1 1
195 =5 lg+g(a+b=")lls < 5 [lglls + llg atb=)lls] = llglls

which proves the last part of (5.2).
We have by (2.6) that

/ab (f(t)—f(a;b)>§(t)dt=/:f(t)§z(t)dt—f(a;—b)/:g(t)dt

b
- / F @50t = (f.q)...

Taking the modulus in this equality, we get

s | r0-1(*5) o<k [

which proves the second inequality in (5.3).
The rest follows in a similar manner and the details are omitted.

p

a+b|" .
g ()] dt,

t—
2

15
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Corollary 3. Assume that f : [a,b] — C is K-p-Hélder continuous in the middle
with the constant K > 0 and power p > 0, and g is H-r-Holder continuous with the
constant H > 0 and power r € (0,1]. Then

1

4 <— —  _HK(@(b-aP.
(5 ) ‘<fag>w|—2p+1(p+,r+1) ( a)
In particular, if L-Lipschitzian with L > 0, then

1

: <————LK(b-a)".
(55) (4.9).) < gy LK =)
Proof. From the first inequality in (5.3) we have

b p b p+r
a+bl" . 1 a+b
(ool <k [ o= 52 gl < ot [ e at
1 (b — a’)p+r+1 _ 1 HK (b _ a)P+T+1
o2l 2047 (p+r4+1)  20HL (p+r +1) ’

which proves (5.4). O
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