
FURTHER INEQUALITIES FOR THE GENERALIZED
k-g-FRACTIONAL INTEGRALS OF FUNCTIONS WITH

BOUNDED VARIATION

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let g be a strictly increasing function on (a; b) ; having a continu-
ous derivative g0 on (a; b) : For the Lebesgue integrable function f : (a; b)! C,
we de�ne the k-g-left-sided fractional integral of f by

Sk;g;a+f (x) =

Z x

a
k (g (x)� g (t)) g0 (t) f (t) dt; x 2 (a; b]

and the k-g-right-sided fractional integral of f by

Sk;g;b�f (x) =

Z b

x
k (g (t)� g (x)) g0 (t) f (t) dt; x 2 [a; b);

where the kernel k is de�ned either on (0;1) or on [0;1) with complex values
and integrable on any �nite subinterval.

In this paper we establish some new inequalities for the k-g-fractional inte-
grals of functions of bounded variation.Examples for the generalized left- and
right-sided Riemann-Liouville fractional integrals of a function f with respect
to another function g and a general exponential fractional integral are also
provided.

1. Introduction

Assume that the kernel k is de�ned either on (0;1) or on [0;1) with complex
values and integrable on any �nite subinterval. We de�ne the function K : [0;1)!
C by

K (t) :=

8<:
R t
0
k (s) ds if 0 < t;

0 if t = 0:

As a simple example, if k (t) = t��1 then for � 2 (0; 1) the function k is de�ned on
(0;1) and K (t) := 1

� t
� for t 2 [0;1) : If � � 1, then k is de�ned on [0;1) and

K (t) := 1
� t
� for t 2 [0;1) :

Let g be a strictly increasing function on (a; b) ; having a continuous derivative
g0 on (a; b) : For the Lebesgue integrable function f : (a; b) ! C, we de�ne the
k-g-left-sided fractional integral of f by

(1.1) Sk;g;a+f (x) =

Z x

a

k (g (x)� g (t)) g0 (t) f (t) dt; x 2 (a; b]
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and the k-g-right-sided fractional integral of f by

(1.2) Sk;g;b�f (x) =

Z b

x

k (g (t)� g (x)) g0 (t) f (t) dt; x 2 [a; b):

If we take k (t) = 1
�(�) t

��1; where � is the Gamma function, then

Sk;g;a+f (x) =
1

� (�)

Z x

a

[g (x)� g (t)]��1 g0 (t) f (t) dt(1.3)

=: I�a+;gf(x); a < x � b
and

Sk;g;b�f (x) =
1

� (�)

Z b

x

[g (t)� g (x)]��1 g0 (t) f (t) dt(1.4)

=: I�b�;gf(x); a � x < b;
which are the generalized left- and right-sided Riemann-Liouville fractional integrals
of a function f with respect to another function g on [a; b] as de�ned in [23, p. 100].
For g (t) = t in (1.4) we have the classical Riemann-Liouville fractional integrals

while for the logarithmic function g (t) = ln t we have the Hadamard fractional
integrals [23, p. 111]

(1.5) H�
a+f(x) :=

1

� (�)

Z x

a

h
ln
�x
t

�i��1 f (t) dt
t

; 0 � a < x � b

and

(1.6) H�
b�f(x) :=

1

� (�)

Z b

x

�
ln

�
t

x

����1
f (t) dt

t
; 0 � a < x < b:

One can consider the function g (t) = �t�1 and de�ne the "Harmonic fractional
integrals" by

(1.7) R�a+f(x) :=
x1��

� (�)

Z x

a

f (t) dt

(x� t)1�� t�+1
; 0 � a < x � b

and

(1.8) R�b�f(x) :=
x1��

� (�)

Z b

x

f (t) dt

(t� x)1�� t�+1
; 0 � a < x < b:

Also, for g (t) = exp (�t) ; � > 0; we can consider the "�-Exponential fractional
integrals"

(1.9) E�a+;�f(x) :=
�

� (�)

Z x

a

[exp (�x)� exp (�t)]��1 exp (�t) f (t) dt;

for a < x � b and

(1.10) E�b�;�f(x) :=
�

� (�)

Z b

x

[exp (�t)� exp (�x)]��1 exp (�t) f (t) dt;

for a � x < b:
If we take g (t) = t in (1.1) and (1.2), then we can consider the following k-

fractional integrals

(1.11) Sk;a+f (x) =

Z x

a

k (x� t) f (t) dt; x 2 (a; b]
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and

(1.12) Sk;b�f (x) =

Z b

x

k (t� x) f (t) dt; x 2 [a; b):

In [26], Raina studied a class of functions de�ned formally by

(1.13) F��;� (x) :=
1X
k=0

� (k)

� (�k + �)
xk; jxj < R; with R > 0

for �; � > 0 where the coe¢ cients � (k) generate a bounded sequence of positive real
numbers. With the help of (1.13), Raina de�ned the following left-sided fractional
integral operator

(1.14) J �
�;�;a+;wf (x) :=

Z x

a

(x� t)��1 F��;� (w (x� t)
�
) f (t) dt; x > a

where �; � > 0, w 2 R and f is such that the integral on the right side exists.
In [1], the right-sided fractional operator was also introduced as

(1.15) J �
�;�;b�;wf (x) :=

Z b

x

(t� x)��1 F��;� (w (t� x)
�
) f (t) dt; x < b

where �; � > 0, w 2 R and f is such that the integral on the right side exists.
Several Ostrowski type inequalities were also established.
We observe that for k (t) = t��1F��;� (wt�) we re-obtain the de�nitions of (1.14)

and (1.15) from (1.11) and (1.12).
In [24], Kirane and Torebek introduced the following exponential fractional in-

tegrals

(1.16) T �a+f (x) :=
1

�

Z x

a

exp

�
�1� �

�
(x� t)

�
f (t) dt; x > a

and

(1.17) T �b�f (x) :=
1

�

Z b

x

exp

�
�1� �

�
(t� x)

�
f (t) dt; x < b

where � 2 (0; 1) :
We observe that for k (t) = 1

� exp
�
� 1��

� t
�
; t 2 R we re-obtain the de�nitions of

(1.16) and (1.17) from (1.11) and (1.12).
Let g be a strictly increasing function on (a; b) ; having a continuous derivative

g0 on (a; b) : We can de�ne the more general exponential fractional integrals

(1.18) T �g;a+f (x) :=
1

�

Z x

a

exp

�
�1� �

�
(g (x)� g (t))

�
g0 (t) f (t) dt; x > a

and

(1.19) T �g;b�f (x) :=
1

�

Z b

x

exp

�
�1� �

�
(g (t)� g (x))

�
g0 (t) f (t) dt; x < b

where � 2 (0; 1) :
Let g be a strictly increasing function on (a; b) ; having a continuous derivative g0

on (a; b) : Assume that � > 0:We can also de�ne the logarithmic fractional integrals

(1.20) L�g;a+f (x) :=
Z x

a

(g (x)� g (t))��1 ln (g (x)� g (t)) g0 (t) f (t) dt;
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for 0 < a < x � b and

(1.21) L�g;b�f (x) :=
Z b

x

(g (t)� g (x))��1 ln (g (t)� g (x)) g0 (t) f (t) dt;

for 0 < a � x < b; where � > 0: These are obtained from (1.11) and (1.12) for the
kernel k (t) = t��1 ln t; t > 0:
For � = 1 we get

(1.22) Lg;a+f (x) :=
Z x

a

ln (g (x)� g (t)) g0 (t) f (t) dt; 0 < a < x � b

and

(1.23) Lg;b�f (x) :=
Z b

x

ln (g (t)� g (x)) g0 (t) f (t) dt; 0 < a � x < b:

For g (t) = t; we have the simple forms

(1.24) L�a+f (x) :=
Z x

a

(x� t)��1 ln (x� t) f (t) dt; 0 < a < x � b;

(1.25) L�b�f (x) :=
Z b

x

(t� x)��1 ln (t� x) f (t) dt; 0 < a � x < b;

(1.26) La+f (x) :=
Z x

a

ln (x� t) f (t) dt; 0 < a < x � b

and

(1.27) Lb�f (x) :=
Z b

x

ln (t� x) f (t) dt; 0 < a � x < b:

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals
see [2]-[17], [21]-[34] and the references therein.
For k and g as at the beginning of Introduction, we consider the mixed operator

Sk;g;a+;b�f (x)(1.28)

:=
1

2
[Sk;g;a+f (x) + Sk;g;b�f (x)]

=
1

2

"Z x

a

k (g (x)� g (t)) g0 (t) f (t) dt+
Z b

x

k (g (t)� g (x)) g0 (t) f (t) dt
#

for the Lebesgue integrable function f : (a; b)! C and x 2 (a; b) :
We also de�ne the function K : [0;1)! [0;1) by

K (t) :=

8<:
R t
0
jk (s)j ds if 0 < t;

0 if t = 0:

In the recent paper [19] we obtained the following result for functions of bounded
variation:

Theorem 1. Assume that the kernel k is de�ned either on (0;1) or on [0;1)
with complex values and integrable on any �nite subinterval. Let f : [a; b] ! C be
a function of bounded variation on [a; b] and g be a strictly increasing function on



FURTHER INEQUALITIES FOR THE GENERALIZED k-g-FRACTIONAL INTEGRALS 5

(a; b) ; having a continuous derivative g0 on (a; b) : Then we have the Ostrowski type
inequality

(1.29)

����Sk;g;a+;b�f (x)� 12 [K (g (b)� g (x)) +K (g (x)� g (a))] f (x)
����

� 1

2

"Z b

x

jk (g (t)� g (x))j
t_
x

(f) g0 (t) dt+

Z x

a

jk (g (x)� g (t))j
x_
t

(f) g0 (t) dt

#

� 1

2

"
K (g (b)� g (x))

b_
x

(f) +K (g (x)� g (a))
x_
a

(f)

#

� 1

2

8>>>>>>>>><>>>>>>>>>:

max fK (g (b)� g (x)) ;K (g (x)� g (a))g
Wb
a (f) ;

[Kp (g (b)� g (x)) +Kp (g (x)� g (a))]1=p
�
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;

[K (g (b)� g (x)) +K (g (x)� g (a))]
h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
and the trapezoid type inequality

(1.30)

����Sk;g;a+;b�f (x)� 12 [K (g (b)� g (x)) f (b) +K (g (x)� g (a)) f (a)]
����

� 1

2

"Z x

a

jk (g (x)� g (t))j
t_
a

(f) g0 (t) dt+

Z b

x

jk (g (t)� g (x))j
b_
t

(f) g0 (t) dt

#

� 1

2

"
K (g (b)� g (x))

b_
x

(f) +K (g (x)� g (a))
x_
a

(f)

#

� 1

2

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

max fK (g (b)� g (x)) ;K (g (x)� g (a))g
Wb
a (f) ;

[Kp (g (b)� g (x)) +Kp (g (x)� g (a))]1=p

�
�
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;

[K (g (b)� g (x)) +K (g (x)� g (a))]
�
h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
for any x 2 (a; b) ; where

Wd
c (f) denoted the total variation on the interval [c; d] :

Observe that

(1.31) Sk;g;x+f (b) =

Z b

x

k (g (b)� g (t)) g0 (t) f (t) dt; x 2 [a; b)

and

(1.32) Sk;g;x�f (a) =

Z x

a

k (g (t)� g (a)) g0 (t) f (t) dt; x 2 (a; b]:
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We can de�ne also the mixed operator
�Sk;g;a+;b�f (x)(1.33)

:=
1

2
[Sk;g;x+f (b) + Sk;g;x�f (a)]

=
1

2

"Z b

x

k (g (b)� g (t)) g0 (t) f (t) dt+
Z x

a

k (g (t)� g (a)) g0 (t) f (t) dt
#

for any x 2 (a; b) :
In this paper we establish some inequalities for the k-g-fractional integrals of

functions with bounded variation f : [a; b] ! C that provide error bounds in ap-
proximating the composite operators Sk;g;a+;b�f and �Sk;g;a+;b�f in terms of the
double trapezoid rule

1

2

�
f (x) + f (b)

2
K (g (b)� g (x)) + f (a) + f (x)

2
K (g (x)� g (a))

�
; x 2 (a; b) :

Examples for the generalized left- and right-sided Riemann-Liouville fractional in-
tegrals of a function f with respect to another function g and a general exponential
fractional integral are also provided.

2. Further Inequalities for Functions of BV

The following two parameters representation for the operators Sk;g;a+;b� and
�Sk;g;a+;b� hold [20]:

Lemma 1. Assume that the kernel k is de�ned either on (0;1) or on [0;1) with
complex values and integrable on any �nite subinterval. Let f : [a; b] ! C be an
integrable function on [a; b] and g be a strictly increasing function on (a; b) ; having
a continuous derivative g0 on (a; b) : Then

Sk;g;a+;b�f (x) =
1

2
[
K (g (b)� g (x)) + �K (g (x)� g (a))](2.1)

+
1

2

Z x

a

k (g (x)� g (t)) g0 (t) [f (t)� �] dt

+
1

2

Z b

x

k (g (t)� g (x)) g0 (t) [f (t)� 
] dt

and

�Sk;g;a+;b�f (x) =
1

2
[�K (g (b)� g (x)) + 
K (g (x)� g (a))](2.2)

+
1

2

Z x

a

k (g (t)� g (a)) g0 (t) [f (t)� 
] dt

+
1

2

Z b

x

k (g (b)� g (t)) g0 (t) [f (t)� �] dt

for x 2 (a; b) and for any �; 
 2 C.

Proof. We have, by taking the derivative over t and using the chain rule, that

[K (g (x)� g (t))]0 = K 0 (g (x)� g (t)) (g (x)� g (t))0 = �k (g (x)� g (t)) g0 (t)
for t 2 (a; x) and

[K (g (t)� g (x))]0 = K 0 (g (t)� g (x)) (g (t)� g (x))0 = k (g (t)� g (x)) g0 (t)
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for t 2 (x; b) :
Therefore, for any �; 
 2 C we have

Z x

a

k (g (x)� g (t)) g0 (t) [f (t)� �] dt(2.3)

=

Z x

a

k (g (x)� g (t)) g0 (t) f (t) dt� �
Z x

a

k (g (x)� g (t)) g0 (t) dt

= Sk;g;a+f (x) + �

Z x

a

[K (g (x)� g (t))]0 dt

= Sk;g;a+f (x) + � [K (g (x)� g (t))]jxa = Sk;g;a+f (x)� �K (g (x)� g (a))

and

Z b

x

k (g (t)� g (x)) g0 (t) [f (t)� 
] dt(2.4)

=

Z b

x

k (g (t)� g (x)) g0 (t) f (t) dt� 

Z b

x

k (g (t)� g (x)) g0 (t) dt

= Sk;g;b�f (x)� 

Z b

x

[K (g (t)� g (x))]0 dt

= Sk;g;b�f (x)� 
 [K (g (t)� g (x))]jbx = Sk;g;b�f (x)� 
K (g (b)� g (x))

for x 2 (a; b) :
If we add the equalities (2.3) and (2.4) and divide by 2 then we get the desired

result (2.1).
Moreover, by taking the derivative over t and using the chain rule, we have that

[K (g (b)� g (t))]0 = K 0 (g (b)� g (t)) (g (b)� g (t))0 = �k (g (b)� g (t)) g0 (t)

for t 2 (x; b) and

[K (g (t)� g (a))]0 = K 0 (g (t)� g (a)) (g (t)� g (a))0 = k (g (t)� g (a)) g0 (t)

for t 2 (a; x) :
For any �; 
 2 C we have

Z b

x

k (g (b)� g (t)) g0 (t) [f (t)� �] dt(2.5)

=

Z b

x

k (g (b)� g (t)) g0 (t) f (t) dt� �
Z b

x

k (g (b)� g (t)) g0 (t) dt

= Sk;g;x+f (b) + �

Z b

x

[K (g (b)� g (t))]0 dt

= Sk;g;x+f (b)� �K (g (b)� g (x))
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and Z x

a

k (g (t)� g (a)) g0 (t) [f (t)� 
] dt(2.6)

=

Z x

a

k (g (t)� g (a)) g0 (t) f (t) dt� 

Z x

a

k (g (t)� g (a)) g0 (t) dt

=

Z x

a

k (g (t)� g (a)) g0 (t) f (t) dt� 

Z x

a

[K (g (t)� g (a))]0 dt

=

Z x

a

k (g (t)� g (a)) g0 (t) f (t) dt� 
K (g (x)� g (a))

for x 2 (a; b) :
If we add the equalities (2.5) and (2.6) and divide by 2 then we get the desired

result (2.2). �

If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can de�ne the g-mean of two numbers
a; b 2 I as

Mg (a; b) := g
�1
�
g (a) + g (b)

2

�
:

If I = R and g (t) = t is the identity function, then Mg (a; b) = A (a; b) :=
a+b
2 ;

the arithmetic mean. If I = (0;1) and g (t) = ln t; thenMg (a; b) = G (a; b) :=
p
ab,

the geometric mean. If I = (0;1) and g (t) = 1
t ; then Mg (a; b) = H (a; b) :=

2ab
a+b ; the harmonic mean. If I = (0;1) and g (t) = tp; p 6= 0; then Mg (a; b) =

Mp (a; b) :=
�
ap+bp

2

�1=p
; the power mean with exponent p. Finally, if I = R and

g (t) = exp t; then

Mg (a; b) = LME (a; b) := ln

�
exp a+ exp b

2

�
;

the LogMeanExp function.
Using the g-mean of two numbers we can introduce

Pk;g;a+;b�f := Sk;g;a+;b�f (Mg (a; b))(2.7)

=
1

2

Z Mg(a;b)

a

k

�
g (a) + g (b)

2
� g (t)

�
g0 (t) f (t) dt

+
1

2

Z b

Mg(a;b)

k

�
g (t)� g (a) + g (b)

2

�
g0 (t) f (t) dt:

Using the representation (2.1) we have

Pk;g;a+;b�f = K

�
g (b)� g (a)

2

�

 + �

2
(2.8)

+
1

2

Z Mg(a;b)

a

k

�
g (a) + g (b)

2
� g (t)

�
g0 (t) [f (t)� �] dt

+
1

2

Z b

Mg(a;b)

k

�
g (t)� g (a) + g (b)

2

�
g0 (t) [f (t)� 
] dt

for any �; 
 2 C.
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Also, if

�Pk;g;a+;b�f := �Sk;g;a+;b�f (Mg (a; b))(2.9)

=
1

2

Z b

Mg(a;b)

k (g (b)� g (t)) g0 (t) f (t) dt

+
1

2

Z Mg(a;b)

a

k (g (t)� g (a)) g0 (t) f (t) dt:

then by (2.2) we get

�Pk;g;a+;b�f = K

�
g (b)� g (a)

2

�

 + �

2
(2.10)

+
1

2

Z Mg(a;b)

a

k (g (t)� g (a)) g0 (t) [f (t)� 
] dt

+
1

2

Z b

Mg(a;b)

k (g (b)� g (t)) g0 (t) [f (t)� �] dt

for any �; 
 2 C.

Theorem 2. Assume that the kernel k is de�ned either on (0;1) or on [0;1)
with complex values and integrable on any �nite subinterval. Let f : [a; b] ! C
be a function of bounded variation on [a; b] and g be a strictly increasing function
on (a; b) ; having a continuous derivative g0 on (a; b) : Then we have the double
trapezoid inequalities

(2.11) jSk;g;a+;b�f (x)

�1
2

�
f (x) + f (b)

2
K (g (b)� g (x)) + f (a) + f (x)

2
K (g (x)� g (a))

�����
� 1

4

"
K (g (x)� g (a))

x_
a

(f) +K (g (b)� g (x))
b_
x

(f)

#

� 1

4

8>>>>>>>>><>>>>>>>>>:

max fK (g (b)� g (x)) ;K (g (x)� g (a))g
Wb
a (f) ;

[Kp (g (b)� g (x)) +Kp (g (x)� g (a))]1=p
�
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;

[K (g (b)� g (x)) +K (g (x)� g (a))]
h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i



10 S. S. DRAGOMIR

and

(2.12)
��� �Sk;g;a+;b�f (x)
�1
2

�
f (x) + f (b)

2
K (g (b)� g (x)) + f (a) + f (x)

2
K (g (x)� g (a))

�����
� 1

4

"
K (g (x)� g (a))

x_
a

(f) +K (g (b)� g (x))
b_
x

(f)

#

� 1

4

8>>>>>>>>><>>>>>>>>>:

max fK (g (b)� g (x)) ;K (g (x)� g (a))g
Wb
a (f) ;

[Kp (g (b)� g (x)) +Kp (g (x)� g (a))]1=p
�
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;

[K (g (b)� g (x)) +K (g (x)� g (a))]
h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
for x 2 (a; b) :

Proof. Using the identity (2.1) for � = f(a)+f(x)
2 and 
 = f(x)+f(b)

2 we have

Sk;g;a+;b�f (x)(2.13)

=
1

2

�
f (x) + f (b)

2
K (g (b)� g (x)) + f (a) + f (x)

2
K (g (x)� g (a))

�
+
1

2

Z x

a

k (g (x)� g (t)) g0 (t)
�
f (t)� f (a) + f (x)

2

�
dt

+
1

2

Z b

x

k (g (t)� g (x)) g0 (t)
�
f (t)� f (x) + f (b)

2

�
dt

for x 2 (a; b) :
Since f is of bounded variation, then����f (t)� f (a) + f (x)2

���� = ����f (t)� f (a) + f (t)� f (x)2

����
� 1

2
[jf (t)� f (a)j+ jf (x)� f (t)j] � 1

2

x_
a

(f)

and ����f (t)� f (x) + f (b)2

���� = ����f (t)� f (x) + f (t)� f (b)2

����
� 1

2
[jf (t)� f (x)j+ jf (b)� f (t)j] � 1

2

b_
x

(f)

for x 2 (a; b) :
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Using the equality (2.13) we have

(2.14) jSk;g;a+;b�f (x)

�1
2

�
f (x) + f (b)

2
K (g (b)� g (x)) + f (a) + f (x)

2
K (g (x)� g (a))

�����
� 1

2

����Z x

a

k (g (x)� g (t)) g0 (t)
�
f (t)� f (a) + f (x)

2

�
dt

����
+
1

2

�����
Z b

x

k (g (t)� g (x)) g0 (t)
�
f (t)� f (x) + f (b)

2

�
dt

�����
� 1

2

Z x

a

jk (g (x)� g (t))j
����f (t)� f (a) + f (x)2

���� g0 (t) dt
+
1

2

Z b

x

jk (g (t)� g (x))j
����f (t)� f (x) + f (b)2

���� g0 (t) dt
� 1

4

"
x_
a

(f)

Z x

a

jk (g (x)� g (t))j g0 (t) dt+
b_
x

(f)

Z b

x

jk (g (t)� g (x))j g0 (t) dt
#

=: B (x)

for x 2 (a; b) :
We have, by taking the derivative over t and using the chain rule, that

[K (g (x)� g (t))]0 = K0 (g (x)� g (t)) (g (x)� g (t))0 = � jk (g (x)� g (t))j g0 (t)

for t 2 (a; x) and

[K (g (t)� g (x))]0 = K0 (g (t)� g (x)) (g (t)� g (x))0 = jk (g (t)� g (x))j g0 (t)

for t 2 (x; b) :
ThenZ x

a

jk (g (x)� g (t))j g0 (t) dt = �
Z x

a

[K (g (x)� g (t))]0 dt = K (g (x)� g (a))

andZ b

x

jk (g (t)� g (x))j g0 (t) dt =
Z b

x

[K (g (t)� g (x))]0 dt = K (g (b)� g (x)) :

Therefore

B (x) =
1

4

"
x_
a

(f)

Z x

a

jk (g (x)� g (t))j g0 (t) dt+
b_
x

(f)

Z b

x

jk (g (t)� g (x))j g0 (t) dt
#

=
1

4

"
K (g (x)� g (a))

x_
a

(f) +K (g (b)� g (x))
b_
x

(f)

#
:

The last part of (2.11) is obvious by making use of the elementary Hölder type
inequalities for positive real numbers c; d; m; n � 0

mc+ nd �

8<:
max fm;ng (c+ d) ;

(mp + np)
1=p
(cq + dq)

1=q with p; q > 1; 1
p +

1
q = 1:
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Using the identity (2.2) for � = f(x)+f(b)
2 and 
 = f(x)+f(a)

2 we also have��� �Sk;g;a+;b�f (x)
�1
2

�
f (x) + f (b)

2
K (g (b)� g (x)) + f (x) + f (a)

2
K (g (x)� g (a))

�����
� 1

2

Z x

a

jk (g (t)� g (a))j
����f (t)� f (x) + f (a)2

���� g0 (t) dt
+
1

2

Z b

x

jk (g (b)� g (t))j
����f (t)� f (x) + f (b)2

���� g0 (t) dt
� 1

4

x_
a

(f)

Z x

a

jk (g (t)� g (a))j g0 (t) dt+ 1
4

b_
x

(f)

Z b

x

jk (g (b)� g (t))j g0 (t) dt

=: C (x) :

We also have, by taking the derivative over t and using the chain rule, that

[K (g (b)� g (t))]0 = K0 (g (b)� g (t)) (g (b)� g (t))0 = � jk (g (b)� g (t))j g0 (t)

for t 2 (x; b) and

[K (g (t)� g (a))]0 = K0 (g (t)� g (a)) (g (t)� g (a))0 = jk (g (t)� g (a))j g0 (t)

for t 2 (a; x) :
Therefore Z x

a

jk (g (t)� g (a))j g0 (t) dt = K (g (x)� g (a))

and Z b

x

jk (g (b)� g (t))j g0 (t) dt = K (g (b)� g (x))

giving that

C (x) =
1

4

x_
a

(f)K (g (x)� g (a)) + 1
4

b_
x

(f)K (g (b)� g (x))

for x 2 (a; b) ; and the inequality (2.12) is thus proved. �

Corollary 1. With the assumptions of Theorem 2 we have����Pk;g;a+;b�f � 12K
�
g (b)� g (a)

2

��
f (Mg (a; b)) +

f (a) + f (b)

2

�����(2.15)

� 1

4
K

�
g (b)� g (a)

2

� b_
a

(f)

and ���� �Pk;g;a+;b�f � 12K
�
g (b)� g (a)

2

��
f (Mg (a; b)) +

f (a) + f (b)

2

�����(2.16)

� 1

4
K

�
g (b)� g (a)

2

� b_
a

(f) :
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If we take x = a+b
2 in (2.11) and (2.12), then we get

(2.17)

�����Sk;g;a+;b�f
�
a+ b

2

�
�
f
�
a+b
2

�
+ f (b)

4
K

�
g (b)� g

�
a+ b

2

��

�
f (a) + f

�
a+b
2

�
4

K

�
g

�
a+ b

2

�
� g (a)

������
� 1

4

24K�g�a+ b
2

�
� g (a)

� a+b
2_
a

(f) +K

�
g (b)� g

�
a+ b

2

�� b_
a+b
2

(f)

35

� 1

4

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

max
�
K
�
g (b)� g

�
a+b
2

��
;K
�
g
�
a+b
2

�
� g (a)

�	Wb
a (f) ;�

Kp
�
g (b)� g

�
a+b
2

��
+Kp

�
g
�
a+b
2

�
� g (a)

��1=p��W a+b
2

a (f)
�q
+
�Wb

a+b
2
(f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;�

K
�
g (b)� g

�
a+b
2

��
+K

�
g
�
a+b
2

�
� g (a)

��h
1
2

Wb
a (f) +

1
2

���W a+b
2

a (f)�
Wb

a+b
2
(f)
���i

and

(2.18)

����� �Sk;g;a+;b�f
�
a+ b

2

�
�
f
�
a+b
2

�
+ f (b)

4
K

�
g (b)� g

�
a+ b

2

��

�
f (a) + f

�
a+b
2

�
4

K

�
g

�
a+ b

2

�
� g (a)

������
� 1

4

24K�g�a+ b
2

�
� g (a)

� a+b
2_
a

(f) +K

�
g (b)� g

�
a+ b

2

�� b_
x

(f)

35

� 1

4

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

max
�
K
�
g (b)� g

�
a+b
2

��
;K
�
g
�
a+b
2

�
� g (a)

�	Wb
a (f) ;�

Kp
�
g (b)� g

�
a+b
2

��
+Kp

�
g
�
a+b
2

�
� g (a)

��1=p��W a+b
2

a (f)
�q
+
�Wb

a+b
2
(f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;�

K
�
g (b)� g

�
a+b
2

��
+K

�
g
�
a+b
2

�
� g (a)

��h
1
2

Wb
a (f) +

1
2

���W a+b
2

a (f)�
Wb

a+b
2
(f)
���i

for x 2 (a; b) :
We use the classical Lebesgue p-norms de�ned as

khk[c;d];1 := essup
s2[c;d]

jh (s)j
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and

khk[c;d];p :=
 Z d

c

jh (s)jp ds
!1=p

; p � 1:

Using Hölder�s integral inequality we have for t > 0 that

K (t) =

Z t

0

jk (s)j ds �

8<:
t kkk[0;t];1 if k 2 L1 [0; t]

t1=p kkk[0;t];q if k 2 Lq [0; t] ; p; q > 1; 1
p +

1
q = 1:

Therefore by the �rst inequality in (2.11) and (2.12) we get for p; q > 1; 1p+
1
q = 1

(2.19) jSk;g;a+;b�f (x)

�1
2

�
f (x) + f (b)

2
K (g (b)� g (x)) + f (a) + f (x)

2
K (g (x)� g (a))

�����
� 1

4

x_
a

(f)

8><>:
(g (x)� g (a)) kkk[0;g(x)�g(a)];1

(g (x)� g (a))1=p kkk[0;g(x)�g(a)];q

+
1

4

b_
x

(f)

8><>:
(g (b)� g (x)) kkk[0;g(b)�g(x)];1

(g (b)� g (x))1=p kkk[0;g(b)�g(x)];q

and

(2.20)
��� �Sk;g;a+;b�f (x)
�1
2

�
f (x) + f (b)

2
K (g (b)� g (x)) + f (a) + f (x)

2
K (g (x)� g (a))

�����
� 1

4

x_
a

(f)

8><>:
(g (x)� g (a)) kkk[0;g(x)�g(a)];1

(g (x)� g (a))1=p kkk[0;g(x)�g(a)];q

+
1

4

b_
x

(f)

8><>:
(g (b)� g (x)) kkk[0;g(b)�g(x)];1

(g (b)� g (x))1=p kkk[0;g(b)�g(x)];q

for x 2 (a; b) :
From (2.15) and (2.16) we also have for p; q > 1; 1p +

1
q = 1 that

(2.21)

����Pk;g;a+;b�f � 12K
�
g (b)� g (a)

2

��
f (Mg (a; b)) +

f (a) + f (b)

2

�����
� 1

4

b_
a

(f)

8>><>>:
�
g(b)�g(a)

2

�
kkk[0; g(b)�g(a)2 ];1�

g(b)�g(a)
2

�1=p
kkk[0; g(b)�g(a)2 ];q
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and

(2.22)

���� �Pk;g;a+;b�f � 12K
�
g (b)� g (a)

2

��
f (Mg (a; b)) +

f (a) + f (b)

2

�����
� 1

4

b_
a

(f)

8>><>>:
�
g(b)�g(a)

2

�
kkk[0; g(b)�g(a)2 ];1�

g(b)�g(a)
2

�1=p
kkk[0; g(b)�g(a)2 ];q .

3. Applications for Generalized Riemann-Liouville Fractional
Integrals

If we take k (t) = 1
�(�) t

��1; where � is the Gamma function, then

Sk;g;a+f (x) = I
�
a+;gf(x) :=

1

� (�)

Z x

a

[g (x)� g (t)]��1 g0 (t) f (t) dt

for a < x � b and

Sk;g;b�f (x) = I
�
b�;gf(x) :=

1

� (�)

Z b

x

[g (t)� g (x)]��1 g0 (t) f (t) dt

for a � x < b; which are the generalized left- and right-sided Riemann-Liouville
fractional integrals of a function f with respect to another function g on [a; b] as
de�ned in [23, p. 100].
We consider the mixed operators

(3.1) I�g;a+;b�f (x) :=
1

2

�
I�a+;gf(x) + I

�
b�;gf(x)

�
and

(3.2) �I�g;a+;b�f (x) :=
1

2

�
I�x+;gf (b) + I

�
x�;gf(a)

�
for x 2 (a; b) :
We observe that for � > 0 we have

K (t) =
1

� (�)

Z t

0

s��1ds =
t�

�� (�)
=

t�

� (�+ 1)
; t � 0:
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If we use the inequalities (2.11) and (2.12) we get

(3.3)
��I�g;a+;b�f (x)

� 1

2� (�+ 1)

�
f (x) + f (b)

2
(g (b)� g (x))� + f (a) + f (x)

2
(g (x)� g (a))�

�����
� 1

4� (�+ 1)

"
(g (x)� g (a))�

x_
a

(f) + (g (b)� g (x))�
b_
x

(f)

#

� 1

4� (�+ 1)

�

8>>>>>>>>>><>>>>>>>>>>:

h
g(b)�g(a)

2 +
���g (x)� g(b)+g(a)

2

���i�Wba (f) ;
[(g (b)� g (x))p� + (g (x)� g (a))p�]1=p

�
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;

[(g (b)� g (x))� + (g (x)� g (a))�]
h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
and

(3.4)
����I�g;a+;b�f (x)

� 1

2� (�+ 1)

�
f (x) + f (b)

2
(g (b)� g (x))� + f (a) + f (x)

2
(g (x)� g (a))�

�����
� 1

4� (�+ 1)

"
(g (x)� g (a))�

x_
a

(f) + (g (b)� g (x))�
b_
x

(f)

#

� 1

4� (�+ 1)

�

8>>>>>>>>>><>>>>>>>>>>:

h
g(b)�g(a)

2 +
���g (x)� g(b)+g(a)

2

���i�Wba (f) ;
[(g (b)� g (x))p� + (g (x)� g (a))p�]1=p

�
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;

[(g (b)� g (x))� + (g (x)� g (a))�]
h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
for x 2 (a; b) :
From (2.15) and (2.16) we get

(3.5)

����I�g;a+;b�f (Mg (a; b))�
(g (b)� g (a))�

2�+1� (�+ 1)

�
f (Mg (a; b)) +

f (a) + f (b)

2

�����
� 1

2�+2� (�+ 1)
(g (b)� g (a))�

b_
a

(f)
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and

(3.6)

�����I�g;a+;b�f (Mg (a; b))�
(g (b)� g (a))�

2�+1� (�+ 1)

�
f (Mg (a; b)) +

f (a) + f (b)

2

�����
� 1

2�+2� (�+ 1)
(g (b)� g (a))�

b_
a

(f) :

4. Example for an Exponential Kernel

For �; � 2 R we consider the kernel k (t) := exp [(�+ �i) t] ; t 2 R. We have

K (t) =
exp [(�+ �i) t]� 1

(�+ �i)
; if t 2 R

for �; � 6= 0:
Also, we have

jk (s)j := jexp [(�+ �i) s]j = exp (�s) for s 2 R

and

K (t) =

Z t

0

exp (�s) ds =
exp (�t)� 1

�
if 0 < t;

for � 6= 0:
Let f : [a; b] ! C be a function of bounded variation on [a; b] and g be a

strictly increasing function on (a; b) ; having a continuous derivative g0 on (a; b) :
We consider the operator

H�+�i
g;a+;b�f (x) :=

1

2

Z x

a

exp [(�+ �i) (g (x)� g (t))] g0 (t) f (t) dt(4.1)

+
1

2

Z b

x

exp [(�+ �i) (g (t)� g (x))] g0 (t) f (t) dt

for x 2 (a; b) :
If g = lnh where h : [a; b] ! (0;1) is a strictly increasing function on (a; b) ;

having a continuous derivative h0 on (a; b) ; then we can consider the following
operator as well

��+�ih;a+;b�f (x)(4.2)

:= H�+�i
lnh;a+;b�f (x)

=
1

2

"Z x

a

�
h (x)

h (t)

��+�i
h0 (t)

h (t)
f (t) dt+

Z b

x

�
h (t)

h (x)

��+�i
h0 (t)

h (t)
f (t) dt

#
;

for x 2 (a; b) :
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Using the inequality (2.11) we have for x 2 (a; b)

(4.3)

����H�+�i
g;a+;b�f (x)�

1

2

f (x) + f (b)

2

exp [(�+ �i) (g (b)� g (x))]� 1
(�+ �i)

�f (a) + f (x)
2

exp [(�+ �i) (g (x)� g (a))]� 1
(�+ �i)

����
� 1

4

"
exp (� (g (x)� g (a)))� 1

�

x_
a

(f) +
exp (� (g (b)� g (x)))� 1

�

b_
x

(f)

#

� 1

4

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

max
n
exp(�(g(x)�g(a)))�1

� ; exp(�(g(b)�g(x)))�1�

oWb
a (f) ;

h�
exp(�(g(x)�g(a)))�1

�

�p
+
�
exp(�(g(b)�g(x)))�1

�

�pi1=p
�
�
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;h

exp(�(g(x)�g(a)))+exp(�(g(b)�g(x)))�2
�

i
�
h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i

and if we take g = lnh where h : [a; b]! (0;1) is a strictly increasing function on
(a; b) ; having a continuous derivative h0 on (a; b) ; then we get

(4.4)

���������+�ih;a+;b�f (x)�
1

2

264f (x) + f (b)
2

�
h(b)
h(x)

��+�i
� 1

(�+ �i)

�f (a) + f (x)
2

�
h(x)
h(a)

��+�i
� 1

(�+ �i)

375
�������

� 1

4

24
�
h(x)
h(a)

��
� 1

�

x_
a

(f) +

�
h(b)
h(x)

��
� 1

�

b_
x

(f)

35

� 1

4

8>>>>>>>>>>>><>>>>>>>>>>>>:

max

�
(h(x)h(a) )

��1
� ;

( h(b)h(x) )
��1

�

�Wb
a (f) ;

��
(h(x)h(a) )

��1
�

�p
+

�
( h(b)h(x) )

��1
�

�p�1=p �
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;�

(h(x)h(a) )
�
+( h(b)h(x) )

��2
�

� h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i :
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If we take if we take xh := h�1
�p

h (a)h (b)
�
= h�1 (G (h (a) ; h (b))) 2 (a; b) ;

where G is the geometric mean, then from (4.4) we get

(4.5)

����������
�+�i
h;a+;b�f �

�
h(b)
h(a)

��+�i
2 � 1

2 (�+ �i)

�
f
�
h�1 (G (h (a) ; h (b)))

�
+
f (a) + f (b)

2

���������
� 1

4

�
h(b)
h(a)

��
2 � 1
�

b_
a

(f) ;

where ���+�ih;a+;b�f = �
�+�i
h;a+;b�f (xh) :

Let f : [a; b]! C be an integrable function on [a; b] and g be a strictly increasing
function on (a; b) ; having a continuous derivative g0 on (a; b) : Also de�ne

�H�
g;a+;b�f (x)(4.6)

:=
1

2

Z b

x

exp [� (g (b)� g (t))] g0 (t) f (t) dt

+
1

2

Z x

a

exp [� (g (t)� g (a))] g0 (t) f (t) dt

for any x 2 (a; b) :
If g = lnh where h : [a; b] ! (0;1) is a strictly increasing function on (a; b) ;

having a continuous derivative h0 on (a; b) ; then we can consider the following
operator as well

���h;a+;b�f (x)(4.7)

:= �H�
lnh;a+;b�f (x)

=
1

2

"Z b

x

�
h (b)

h (t)

��
h0 (t)

h (t)
f (t) dt+

Z x

a

�
h (t)

h (a)

��
h0 (t)

h (t)
f (t) dt

#
;

for any x 2 (a; b) :
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Using the inequality (2.12) we have for x 2 (a; b) that

(4.8)

���� �H�+�i
g;a+;b�f (x)�

1

2

�
f (x) + f (b)

2

exp [(�+ �i) (g (b)� g (x))]� 1
(�+ �i)

�f (a) + f (x)
2

exp [(�+ �i) (g (x)� g (a))]� 1
(�+ �i)

�����
� 1

4

"
exp (� (g (x)� g (a)))� 1

�

x_
a

(f) +
exp (� (g (b)� g (x)))� 1

�

b_
x

(f)

#

� 1

4

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

max
n
exp(�(g(x)�g(a)))�1

� ; exp(�(g(b)�g(x)))�1�

oWb
a (f) ;

h�
exp(�(g(x)�g(a)))�1

�

�p
+
�
exp(�(g(b)�g(x)))�1

�

�pi1=p
�
�
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;h

exp(�(g(x)�g(a)))+exp(�(g(b)�g(x)))�2
�

i
�
h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i

and if we take g = lnh where h : [a; b]! (0;1) is a strictly increasing function on
(a; b) ; having a continuous derivative h0 on (a; b) ; then we get

(4.9)

����������+�ih;a+;b�f (x)�
1

2

264f (x) + f (b)
2

�
h(b)
h(x)

��+�i
� 1

(�+ �i)

�f (a) + f (x)
2

�
h(x)
h(a)

��+�i
� 1

(�+ �i)

375
�������

� 1

4

24
�
h(x)
h(a)

��
� 1

�

x_
a

(f) +

�
h(b)
h(x)

��
� 1

�

b_
x

(f)

35

� 1

4

8>>>>>>>>>>>><>>>>>>>>>>>>:

max

�
(h(x)h(a) )

��1
� ;

( h(b)h(x) )
��1

�

�Wb
a (f) ;

��
(h(x)h(a) )

��1
�

�p
+

�
( h(b)h(x) )

��1
�

�p�1=p �
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;�

(h(x)h(a) )
�
+( h(b)h(x) )

��2
�

� h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i :
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If we take if we take xh = h�1 (G (h (a) ; h (b))) 2 (a; b) ; where G is the geometric
mean, then from (4.4) we get

(4.10)

���������̀
�+�i
h;a+;b�f �

�
h(b)
h(a)

��+�i
2 � 1

2 (�+ �i)

�
f
�
h�1 (G (h (a) ; h (b)))

�
+
f (a) + f (b)

2

���������
� 1

4

�
h(b)
h(a)

��
2 � 1
�

b_
a

(f) ;

where �̀�+�ih;a+;b�f = ��
�+�i
h;a+;b�f (xh) :
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