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SOME INEQUALITIES FOR THE GENERALIZED
k-g-FRACTIONAL INTEGRALS OF CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let g be a strictly increasing function on (a,b), having a continu-
ous derivative ¢’ on (a,b) . For the Lebesgue integrable function f : (a,b) — C,
we define the k-g-left-sided fractional integral of f by

Staarf @ = [ k@ -g0)g ©F Odt, 2 € (a1

a

and the k-g-right-sided fractional integral of f by

b
Sk f () = / k(g (t) — g (@) g (8) f (B)db, @ € [a,b),

where the kernel k is defined either on (0, 00) or on [0, c0) with complex values
and integrable on any finite subinterval.

In this paper we establish some trapezoid and Ostrowski type inequal-
ities for the k-g-fractional integrals of convex functions. Applications for
Hermite-Hadamard type inequalities for generalized g-means and examples
for Riemann-Liouville and exponential fractional integrals are also given.

1. INTRODUCTION

Assume that the kernel k is defined either on (0, 00) or on [0, c0) with complex
values and integrable on any finite subinterval. We define the function K : [0, 00) —
C by

[T k(s)dsif 0 < t,
K (t) =
0if ¢t =0.

As a simple example, if k (t) = t*~! then for o € (0,1) the function k is defined on
(0,00) and K (t) := 1t for t € [0,00). If a > 1, then k is defined on [0, 00) and
K (t) := Lt> for t € [0,00).

Let g be a strictly increasing function on (a,b), having a continuous derivative
g on (a,b). For the Lebesgue integrable function f : (a,b) — C, we define the

k-g-left-sided fractional integral of f by

(1.1) Sk.g.a+f (x) = /rk(y (x) =g ) g (t) f(t)dt, = € (a,b]

and the k-g-right-sided fractional integral of f by
b

(1.2) Seanf (@) = / k(g (t)— g () g () f (B dt, = € [a,b).
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If we take k (t) = ﬁto"l, where T is the Gamma function, then
(13) Skgar! @) = 75 [ @ =g @01 g @ F (@)
= Ig f(2), a<x <D
and
1 b a—1 7
(1.4) Sk,gb-f (2) = F(a)/z lg () —g (@)™ g () f(t)dt

=1 f(x), a<x<b,

which are the generalized left- and right-sided Riemann-Liouville fractional integrals
of a function f with respect to another function g on [a, b] as defined in [23, p. 100].

For g (t) =t in (1.4) we have the classical Riemann-Liowville fractional integrals
while for the logarithmic function ¢ (¢) = Int¢ we have the Hadamard fractional
integrals [23, p. 111]

(1.5) HS, f(x) :_F(la)/; [111 (%)}“‘W(i)dﬂ 0<a<z<b

and

(1L6)  HY f(z) ;:1/: {m (tﬂa_l JWdt gt

I'(a) x t
One can consider the function g (t) = —t~! and define the "Harmonic fractional
integrals"” by

11—« x
(1.7) RY, f(z) = I‘f(a) / ; ft)(f)_;lttaﬂ, 0<a<z<b
and
(1.8) R® f(z) = v /b f®dt o pcn
U'(e) Jo (t—a)' "ttt

Also, for ¢g(t) = exp(Bt), 8 > 0, we can consider the "S-Ezxponential fractional
integrals"

p

(19) B pf@) = g [ e (5) - exp (01" exp (30) F (0

fora < x <band

b
(110) B @)= g [ e (50 - exp (3] exn (30) ] ()t
for a <z < b.

If we take g(t) = t in (1.1) and (1.2), then we can consider the following k-

fractional integrals

(1.11) Sk.atf () = /xk(x —t) f(t)dt, = € (a,b]

and

b
(1.12) Sko—f (z) = / k(t—=x)f(t)dt, z € [a,b).
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In [26], Raina studied a class of functions defined formally by
(1.13) Foy\ (z):= i _ok) || < R, with R >0
' PANIT T (pk+ )" ’

for p, A > 0 where the coefficients o (k) generate a bounded sequence of positive real
numbers. With the help of (1.13), Raina defined the following left-sided fractional
integral operator

(1.14) Ty rnarwl () = /‘"” (z — t)/\—l o (w(z—t)’) f(t)dt, z>a

where p, A > 0, w € R and f is such that the integral on the right side exists.
In [1], the right-sided fractional operator was also introduced as

b
(1.15) T o] (@) ::/ (t— o) F2 (w(t—2)) f (1) dt, = < b

where p, A > 0, w € R and f is such that the integral on the right side exists.
Several Ostrowski type inequalities were also established.

We observe that for k (t) = t>‘*1]-'g’A (wt”) we re-obtain the definitions of (1.14)
and (1.15) from (1.11) and (1.12).

In [24], Kirane and Torebek introduced the following exponential fractional in-
tegrals

o) TRfE)=

a

mexp{—l;a(w—t)}f(t)dt, z>a

and

(1.17) T f () :=;/:exp{—l;a(t—m)}f(t)dt,x<b

where a € (0,1).

We observe that for k (t) = éexp (—leo‘t) , t € R we re-obtain the definitions of
(1.16) and (1.17) from (1.11) and (1.12).

Let g be a strictly increasing function on (a,b), having a continuous derivative
g’ on (a,b). We can define the more general exponential fractional integrals

(118)  To., f (x) ::;/xexp{—l_a(9($)_9(t))}9/(t)f(t)dt, z>a

a (0%

and

119) T f@ = [ bexp{_

where a € (0,1).
Let g be a strictly increasing function on (a,b), having a continuous derivative g’
on (a,b). Assume that o > 0. We can also define the logarithmic fractional integrals

(1.20) LG (2) = /T (9(x) =g (&) " In(g(x) — g (1) g’ () f (1) dt,

for0<a<z<band

(gt)—g (m))} g @) ft)dt, z<b

b

(1.21) Ly [ (2):= / (9(1) =g (x)* " In(g(t) — g (@) g’ (t) f (1) dt,

x
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for 0 < a <z < b, where o > 0. These are obtained from (1.11) and (1.12) for the
kernel k (t) =t LInt, t > 0.
For a =1 we get

(12)  Lpaf )= [ W) =g @)g (00 0<a<w<d
and
b
(1.23) Lovf ()= / m(g(t)— g (@) g () fB)dt, 0<a<z<b
For g (t) = t, we have the simple forms
(1.24) Lo f(x):= /z (z—8)* "In(z—t)f(t)dt, 0<a<z<b,
b
(1.25) Lo f(z) = / (t—2)* VIn(t—2) f () dt, 0<a<z<b
(1.26) £a+f(q:)::/mln(x—t)f(t)dt,0<a<x§b
and
b
(1.27) Ly f () ::/ Im(t—a)f(t)dt, 0<a<a<b.

Recall the classical Riemann-Liouville fractional integrals defined for a > 0 by

I @)= / (@ -0 f (1) de
fora < x <band
b
Jgf (x) = ﬁ / (t— o)™ (1) dt

for a < x < b, where I is the Gamma function. For a = 0, they are defined as
Jf @) =T f@)=f (@) ora e (ab).

In the recent paper [17] we obtained the following results for convex functions and
the classical Riemann-Liouville fractional integrals:

Theorem 1. Let f : [a,b] — R be a conver function and = € (a,b), then we have
the inequalities

1) g [ @ 0-2" = @) @ =)
1 . . X X
S TlarD [(x—a)* f(a)+ (b—2)" f(D)] = Jo f(x) = Jp f (x)
1

< g [ 062 - @ -]
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and
1 !/ « ! «
(129) gy @ e = @) @ -
e} (03 ]‘ a «@
< Jpfla)+ T2 (b) — Tlat1) (@ =a)" +(b—2)"] f(2)
< sty O E-0" - @ @0,

where f' (-) are the lateral derivatives of f.
In particular, we have:

Corollary 1. Let f : [a,b] — R be a convex function, then we have the inequalities

(1.30) 0 < m {ﬁ (a;b) _p (a;bﬂ (b— a)*!

< 2a—1r1(a+1)f(“)§f(b) (b_a)a_J3+f(a—2kb>_Jl?f<a—2&—b)
1
(

/2 ) = fi (@)] (=)™,

\
[\)
Q
+
=
—
Q
+
2

(1.31) 0< 2("+1F1(a—|—2) {f; (a;rb> g (a;b)] (b— )

1 b a
<T@+ T f0) - g (U5 ) -0

< gty O - £ @ 0=
and
(1.32) 0< = <a1+ 5 f(b) ; f (a) (b—a) — Ty f (a) ; Jorf (b)

2¢ —1 , , at1
Sm(f—(b)*f-s-(a))(b*a) A

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals
see [2]-[18], [21]-[34] and the references therein.

In this paper we establish some trapezoid and Ostrowski type inequalities for the
k-g-fractional integrals of convex functions. Applications for Hermite-Hadamard
type inequalities for generalized g-means and examples for Riemann-Liouville and
exponential fractional integrals are also given.

2. SOME IDENTITIES

For k and g as at the beginning of Introduction, we consider the mixed operator
(2.1)  Skgatbf ()

= % [Sk’g,aJrf ($) + Sk,g,bff (x)]

® b
-3 V bla@) =g (0)g' (0 F @ at+ [ kg ) =g () () F(2)d

for the Lebesgue integrable function f : (a,b) — C and z € (a,b).
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Observe that

b
(2.2) Starrd 0) = [ Klg®) =90 ©)F (0)dt, 2 € a.)
and
(2.3) Sk.g.a—f (a / k(g g ) f@t)dt, z € (a,b].

We can define also the mixed operator

(2.4)  Spgats_f(2)

1
= 5 [Sk,g,x-‘y—f (b) + Sk,g,z—f (a)]

for any x € (a,b).
The following two parameters representation for the operators Sj g,a+.— and
Sk,g,a+,p— hold [20]:

Lemma 1. Assume that the kernel k is defined either on (0,00) or on [0,00) with
complex values and integrable on any finite subinterval and g be a strictly increasing
function on (a,b), having a continuous deriwative g’ on (a,b). If f : [a,b] — C is
absolutely continuous on [a,b], then we have for x € (a,b) that

(25) Skgarsf (@) %[K(g(w)—g(a))f(a)+K(g(b)—g(fc))f(b>]

1 b
+)\/K tdtff’y/K

o2 [ Ke@-sr @A [ Koo -s@h- o

and

(2.6) Skgatof (@) %[K(g(b)— (#)) + K (g () —g(a))] f (z)

+ W/K dt—f)\/ K (g ) dt
+%/z K(g(b) —g(t)) Ydt+ = /K ) A= () dt

for any A, v € C.
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Proof. Using the integration by parts formula, we have

en kg (@) — g (1) g (1) f () de

for any x € (a,b).
From (2.7) and (2.8) we get

(2.9) / kg (@) — g () g (1) f () de
= K (@)~ g (@) f @)+ [ Klgw) =g 0)ar
+ [ K@=y 0 - Na

and

b

(210 [ a0 9@y ©fwa
=[K(g(b)—g(w))]f(b)—v/ K (g(t) — g (x)) dt
—/ K (g(t) — g () [f (t) — ] dt

for any x € (a,b).
If we add the equalities (2.9) and (2.10) and divide by 2 then we get the desired
result (2.5).



8 S.S. DRAGOMIR

Using the integration by parts formula, we have

b
(2.11) / k(g (b) —g() g () F (1) dt

dt
b
== [K(g (b) —g(®) f (@), */ K (g(b)—g(®) f(t)dt

b
:K(g(b)—g(m))f(x)+/ K (g(b)—g(®) f (t)dt

= [ K- 9@ @
KO- g@) O - [ Kg)-g)f O
K (@) -g(@) f )~ [ KO -g@) s 0

for any x € (a,b).
From (2.11) and (2.12) we have

b
(2.13) / k(g (b) — g (6) g’ (1) f (1) dt

and

(2.14) / k() - g(a) g (1) f (1) dt

for any z € (a,b).
If we add the equalities (2.13) and (2.14) and divide by 2 then we get the desired
result (2.6). O

If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can define the g-mean of two numbers

a,bel as
Mg (a,b) = gfl (g(a);g(b)) .
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If I =R and g (t) = t is the identity function, then M, (a,b) = A(a,b) := £,
the arithmetic mean. If I = (0,00) and g (¢t) = Int, then M, (a,b) = G(a,b) := \/>
the geometric mean. If I = (0,00) and g (t) = then M,y (a,b) = H (a,

b) =
21127 the harmonic mean. If I = (0,00) and g (¢ ) = tP, p # 0, then M, (a,b) =

M, (a,b) := (%)mj7 the power mean with exponent p. Finally, if I = R and
g (t) = expt, then

exp a + exp b)

M, (a,b) = LME (a,b) := ln( 5

the LogMeanExp function.
Using the g-mean of two numbers we can introduce

(215)  Pogarsfi=Seguiint (M, (a.))
[ (2529 - y0) s 010 a
. /A;@,b) O e FACHUL
and
(216)  Bugarst = Sigars f (M (ab)
- /M() E(g() 9 () g/ (1) £ (1) di
[ w0 s

Corollary 2. With the assumptions of Lemma 1 we have

(217) Piyorsfm K( (b)—g())f()+f()

2

N /\/M(ab ( )—2|—g(b) g(t))dt

- 27/M9<a,b> # (o0 £

My (a,b) a
e[ (MY ) o -
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and

(2.18) Prgats-f =K (W) £ (M (a,b))

1
+ =

My(
2 a

a,b)
K(g(t) —g(a))dt

b
V[ K@®) g
Mgy (a,b)

1 b /
T2 /Mg(a,b) K(g(b)—g()[f"(t) —~]dt

for any A, v € C.

+b

For x = ‘IT we can consider

2

:;/k(g<;b) —g(t))g’(t)f(t)dt

3 (o0 -0 (“50)) s @@

2

a+b
(219) Mk‘,g,a+,b7f = Sk,g,a+,b7f < )

and

v v a+b
(220) Mk,g,a-‘r,b—f = Sk,g,a-ﬁ-,b—f( 2 )

b
- ;/ k(g(0)—g (1) g () f(t)dt

a+b
1

2
by [ e -g@)g O O
We have the mid-point representation as well:

Corollary 3. With the assumptions of Lemma 1 we have

(2.21) My gatrp—f
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and

(2.22) Mygatb—f

5w (s0-0(57) rx (o (557) )] (%5)
e v/a;K(g(b)—g(t))dt—k/aa;bK(g(t)—g(a))dt

+;/a;bK(g(b)—g(t))[f'(t)—v]dﬁ;/a ) K(g(t)—g(a) A= f (1) dt

for any A, v € C.

3. TRAPEZOID TYPE INEQUALITY FOR CONVEX FUNCTIONS

We have the following trapezoid type inequality for convex functions:

Theorem 2. Assume that the kernel k is defined either on (0,00) or on [0,00)
with nonnegative values and integrable on any finite subinterval and g be a strictly
increasing function on (a,b), having a continuous derivative g’ on (a,b). If f :
[a,b] — R is a continuous convex function on [a,b], then we have

7l /K @) [ K >>dt]

[K (9(x) = g(a)) f(a) + K (g(b) = g(2)) f (0)] = Sk.gat+p-f (2)
S;[ /K ) dt — f} (a /K ))dt]

for any © € (a,b).

(3.1)

IA N
N |

Proof. Since f : [a,b] — Ris a continuous convex function on [a, b], then the lateral
derivatives f, exist on (a,b) and they are equal except at most a countably subset
of (a,b). Also f/ (a) and f (b) exist and we have f (a) < f. (t) < f1(t) < fL(b)
for any t € (a,b).

Observe that by the positivity of the kernel k we have K (g (z) — g (¢t)) > 0 for
t € (a,z) and K (g(t) —g(x)) >0 for t € (x,b).

If we use the equality (2.5) for A = f! (a) and v = f’ (b), then we have for

€ (a,b) that
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Staarof () = 2 K (g(2) — g(a) £ (@) + K (9 6) — 9 () £ ()]
+ f+ /K dt—ff /K
©) [ () - £} (@) dt-+ / K(g(t) =g (@) [/ () - 1 ()] dt
(K (9(2) — 9.(a)) f (@) + K (9 4) — g () £ ()]
LA /K Dt~ 21 /K

which proves the second part of (3.1).

If we use the equality (2.5) for A = f’ (z) and v = f/ (z), then we have for
€ (a,b) that

—_ IV
N = ‘Q

skgmf() LK (9(@) — g (@) £ (@) + K (g(6) — g (x)) £ (B)]

1 b
/K dtfff_"_x/K

+;/;K<g(x> g () [ (¢ )] di+ /K £y (@) — 1 (0] de
< 3K (9(&) ~ g(a)) £ (a) + K (9 (8) g (@) f ()
b
w38 @ [ Kl -g@i- 35 @ [ Ko -

which proves the first part of (3.1).

Remark 1. If the functions is differentiable convex on (a,b), then the first inequal
ity in (3.1) becomnes

(3.2)

N | =

V K<g<t>—g(m))dt—/mw(m—g(t))dt] 7 ()

<

(K (g9(x) —g(a)) f(a) + K (g(b) —g(z)) f (0)] = Skgat b1 (7)

[N

for any x € (a,b).
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Corollary 4. With the assumptions of Theorem 2 we have the Hermite-Hadamard
type inequality for the g-mean M, (a,b)

b
(3.3) % [f; (M, (a,b))/ K <g (1) - g(a);g(b)> @

Mg (a,b)
Mg(a,b) a
o) [ K (9”“’(’” g <t>) dt]

" 2
<K <g(b) 29(“)) f(“);rf(b) — Prgatp-f
L WIGESI0)
< 2 [f ®) /Mg(mb) K (g ) 2 ) “

. /aMg(a,b) % (g(a)—;g(b) —g (t)> dt] ,

In particular, if f is differentiable in My (a,b) , then we have the simpler inequal-
1ty

(34) 31 (M, (@,D)

I e e R G Ok
- <K<g(b)g(a)>f(a)+f(b)

— Prgatb—f-

2 2
‘We also have:

Corollary 5. With the assumptions of Theorem 2 we have

(3.5) % [f; (“;rb> /iK (g(t) —g
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In particular, if f is differentiable in %H’, then we have the simpler inequality

o (59
Lo [ R )]
<55 (o(55) ~a@) r@+ (900 -9 (“5) ) 1O -Migasas.

4. OSTROWSKI TYPE INEQUALITIES FOR CONVEX FUNCTIONS

We also have:

Theorem 3. Assume that the kernel k is defined either on (0,00) or on [0,00)
with nonnegative values and integrable on any finite subinterval and g be a strictly
increasing function on (a,b), having a continuous derivative ¢’ on (a,b). If f :
[a,b] — R is a continuous convex function on [a,b], then we have

(4.1) ;[ /K /K ))dt]

< Sk.gato-f () — 5K (g(b) —g (@) + K (9 (2) —g(a)] f(2)

g;[ /K Vdt — f(a /K ))dt]

for z € (a,b).

Proof. Observe that by the positivity of the kernel k we have K (g (b) — g (t)) >0
for t € (x,b) and K (g (t) —g(a)) >0 for t € (a,x).
Using the identity (2.6), we have for v = f! () and A = f” () that

Segara-d @) = 3 1K (9 0) = 9(@) + K (9 () 9 (@))] (@)
e /K Nt = 3@ [ K (g0~ g (@) a
b
b3 [ K@@ -g@) [ O~ fi@]deey [ K@®-g@)[7 @)~ £ 0]
> SIK (G 0) 9 () + K (9(2) — g @)/ (&)
1 b
3000 [ KGO -g@a- 37 @ [ Ko -g@)a

which proves the first inequality in (4.1).
Using the identity (2.6), we have for v = f’ (b) and A = f/ (a) that
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Stguraf (@)= 5 1K (g(0) g () + K (9(x) g ()] f (2)

roffruo s o e
) [f (¢t )] dt+= /K ) [fy (@) = £ (t)] dt
[K(g(b) —g(z)+K(g(z)—g(a)]f(x)

/K ff+ /K

which proves the second inequality in (4.1). O

Remark 2. If the function is differentiable convex on (a,b), then the first inequality
in (4.1) becomes

;V:K(g( dt—/K

< Skgatof (x) = 2[K(g(b)—g(x))JrK(g(x)—g(a))]f(fﬂ)
for any = € (a,b).

Corollary 6. With the assumptions of Theorem 3 we have the Hermite-Hadamard
type inequality for the g-mean Mg (a,b)

1 b
(43) 5 [f@ (o, @) | IRACROL

1 , b , My (a,b)
<: [f o f, K@ g @[ Ko@) dt] .

In particular, if f is differentiable in Mg (a,b), then we have the simpler inequality
1, b M, (a,b)
ay g am|[ Ke@ g [T KGO g
My(a, a

< Prgarpf—K (g(b);g(“)) £ (M, (a,b)).

We also have:
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Corollary 7. With the assumptions of Theorem 3 we have

@5 5 [f@ (52) L xa®-gena

a+b

7 (‘2”’) | K(g(t)—g(a))dt]

o oo (39) w6 5) )] )

: ot
S;lf’ (b)/l;bK(g(b)—g(t))dt—f;(a)/a K (g(t)—g(a))dt

In particular, if f is differentiable in “7“’, then we have the simpler inequality

(4.6) ;f’(“;b) /;K(g(b)—g(t))dt—[l

< Mg+ o—f
—% {K (g(b)—g(a;b» +K(g (a;b) —g(a))] f<a;rb).

5. APPLICATIONS FOR GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL

a+
2

K (g(t) —g(a)) dt]

INTEGRALS
If we take k (t) = ﬁto‘_l, where T is the Gamma function, then
1 £ a—
Skgar] @) = 124, f@) = s [ lo@) =g 1" 0 F O
fora < x <band
«a 1 b a—1
Skonf @) = I yf@) = i [ 00 =0 @ g O 5 O

for a < x < b, which are the generalized left- and right-sided Riemann-Liouville
fractional integrals of a function f with respect to another function g on [a,b] as
defined in [23, p. 100].

We consider the mixed operators

« 1 o «
(5.1) Igapp-f () =35 15 o f () + I f ()]
and
o 1 « e
(52) Ig,aJr,bff (l‘) = 5 [Ia:+,gf (b) + wa,gf(a')}
for z € (a,b).
We observe that for o > 0 we have

toc—l _ to _ to
K(t):m/os ds_aF(a)_F(oz—l—l)’tZO'
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Let g be a strictly increasing function on (a,b), having a continuous derivative
g on (a,b). If f : [a,b] — R is a continuous convex function on [a,d], then by
Theorem 2 we have the trapezoid type inequalities

1
A (a+1)

< 5F (03+ 0 [(g(x) —g(a)* f(a)+ (g (b) — g (@) fF ()] = IS0y s f (@)

(5.3)

b x
7y (@) / (9(t) - g () dt — f" (2) / (9(2) — g (£)" dt]

1
<
—2'(a+1)

b x
) / (9(8) - g (@) dt — f} (a) / (¢(2) —g(t))adt]

for z € (a,b).
In particular, if f is differentiable convex on (a,b), then by the first inequality
in (5.3) we have

1
o (o + 1)

S o7 (a1+ 0 [(g(x) — g (@) f(a)+ (g (b) — g ()" f (B)] = IZayp_f (2)

(5.4)

b x
/ (9(t) - g ()" dt - / (9(2) — g (£)" dt] £ (@)

for z € (a,b).
If we take in (5.3) and (5.4) x = M, (a,b) , then we get
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If we take in (5.3) and (5.4) « = “E2, then we also get

1 ,(a+Db
2F(a+1)f< 2 >

Vo Goms () = [T (o(5) -00) o

(5.6)

Let g be a strictly increasing function on (a,b) , having a continuous derivative g’
on (a,b). If f: [a,b] — R is a continuous convex function on [a, b], then on making
use of Theorem 3 we can state the following Ostrowski type inequality

1

(57) 2I' (e + 1)

b T
7 (@) / (9(8) — g ()™ dt — f (x) / (9(t) - g(a)° dt]

< o 1 0) = g 00 —9@)" + (0(@) ~ 9 (@)1 @)

b x
<grary |20 [ w0 -s0ra-so | <g<t>—g<a>>°‘dt]

for x € (a,b).
In particular, if f is differentiable convex on (a,b), then by the first inequality
in (5.7) we have

1

ST (a+1)

b x
[ a9y d- [ @o-g@r dt] (@)

< Igavp S (@)~ ONCE] [(g(®) =g (@) + (9(z) — g(a)®] f (x)

for z € (a,b).
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If we take in (5.7) and (5.8) z = M, (a,b) , then we get

(5.9) m]ﬂ (Mg (a,b))
[ My (a,b)
X _/Mg(a)b) (g(b) —g (1)) dt—/a (g(t) = g(a)) dt]

1 [ b N / My (a,b) .
< m fL(b) /Mg(a,b) (g(d) —g(t)" dt — f+ (a)/a (g(t) —g(a)) dt} )

It we take in (5.7) and (5.8) « — ©££, then we also get
et
x [/b <g<b>—g<t>>“dt—/aa;b (9(0) ~ g ()" de
< Bt (%57)
S (000 () (0 (5) @) ] (55)

I Y / (9(b) — g ()™ dt — f'. (a) / 2 <g<t>—g<a>>“dt].

<
_QF(OZ+1) # a

If we take in these inequalities g (t) = t, we recapture the results for the classical
Riemann-Liouville fractional integrals outlined in Introduction.

6. EXAMPLE FOR AN EXPONENTIAL KERNEL
For a € R we consider the kernel k (t) := exp (at) , t € R. We have
|k (s)| = exp (as) for s € R

and

exp (at) —

K (t) = 1,ifte]R

for v # 0.
Let f : [a,b] — C be an integrable function on [a, b] and g be a strictly increasing
function on (a,b) , having a continuous derivative ¢’ on (a, b) . Define

1

b
(6.1) Hgatp-f (2) = 5/ expla(g(t) — g ()] g () f(t)dt

+ % /GI €xp [a (g (l’) —4g (t))] gl (t) f (t) dt
for x € (a,b).

If g = Inh where h : [a,b] — (0,00) is a strictly increasing function on (a,b),
having a continuous derivative h’ on (a,b), then we can consider the following
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operator as well

(6.2) Ky at b1 (T)
= Hip, h,a+,b—f ()

1 [P h@)\" 1 (1) T Ch(x)\© K (t)
= - t)dt — t)dt
QU (i) wwrous [ (5w) w0
for x € (a,b).
Let g be a strictly increasing function on (a,b), having a continuous derivative

g on (a,b). If f : [a,b] — R is differentiable convex function on (a,b), then by
Theorem 2 we have the trapezoid type inequalities

63) 5 (@)
. < [eplels@ o =1, "ol o) - 1dt>
L [eRlelb@ gty ), e 0@ 1 )

- Hg,aqt,bff (x)
1) S PR / exp (a (g (¢) — g (1)) — 1 dt}

o o o

L, P exp (a (g (1)
<! lf_ o [

for any x € (a,b).
If g = Inh where h : [a,b] — (0,00) is a strictly increasing function on (a,b),
having a continuous derivative h’ on (a,b), then by (6.3) we get

(6.4) %f’ (z) (/:(’?((f”)))_ldt_/j (Z(&))_ldt)

(07

h(x)

e B o G

for any z € (a,b).
Let f : [a,b] — C be an integrable function on [a, b] and g be a strictly increasing
function on (a,b), having a continuous derivative ¢’ on (a,b) . Also define

(6.5) HE wrnf ()

b
Jr;/azexp[a(g(t)g(amg/(t)f(t)dt

for any x € (a,b).
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If g = Inh where h : [a,b] — (0,00) is a strictly increasing function on (a,b),
having a continuous derivative h’ on (a,b), then we can consider the following
operator as well

(6‘6) Eh,a«k,bff(x)
= ’Flﬁtlh,aﬁqbff (x)
71 b w ahl(t) T h(t) ahl(t)
2[/¢ <h(t)> h(t)f(t)dt+/a <h(a)> h(t)f(t)dt‘|a

for any x € (a,b) .
If f:[a,b] — R is differentiable convex function on (a,b), then by Theorem 3
we have the Ostrowski type inequalities

x

b
67) 3/ @) l [ exvlata®)-gwnia- [

a

exp [a (g (t) — g (a))] dt]

< Hg,a-‘r,b—f (1‘)
[eXp (a(g () —g (@) +exp(a(g(z) —g(a) -2

(67

} / @)
b x
< % [f’ (b)[ exp [ (g (b) — g (1)1 dt — f'. (a)/ exp[a (g () — g(a))] dt]
for any = € (a,b).

If g = Inh where h : [a,b] — (0,00) is a strictly increasing function on (a,b),
having a continuous derivative h’ on (a,b), then by (6.7) we get

for any x € (a,b).
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Finally, if we take ) := h—l( h(a)h(b)) = b1 (G (h(a),h (D) € (a,b),

where G is the geometric mean, in (6.4) and (6.9), then we get

G(h(am(b)))a 1

h(t) “
1 b (G(h(a) h(b))) -1 Th ( R(t)
6.9) =f ’ dt — dt
©9) 3@ | [ ¢ / :
a/2
h(b) 1
h(a) fl@+f0) .
< ( >O/, 9 _K’h,a-l-,b—f(xh)
“_q o (C@.hN\" _
1 a h
< : G(h( )hb))) dt— f, (a)/ ( h(t)a ) di
a

and

rof
(6.10) (1) / (?) dt—/:h(z((i))>adt

(1]

[10]
(11]

[12]

Ao () a s [ () o
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