
INTEGRAL GRUSS�TYPE INEQUALITIES FOR
COMPLEX-VALUED FUNCTIONS

S. S. DRAGOMIR1;2

Abstract. In this paper we provide several upper bounds for the modulus of
the complex µCeby�ev functional

C (f; g) :=
1

b� a

Z b

a
f (t) g (t) dt� 1

b� a

Z b

a
f (t) dt

Z b

a
g (t) dt

under various assumptions for the integrable functions f; g : [a; b]! C. Some
particular cases via Wirtinger and Alzer inequalities for complex-valued func-
tions are also given.

1. Introduction

For two Lebesgue integrable real-valued functions f; g : [a; b] ! R, in order to
compare the integral mean of the product with the product of the integral means,
in 1934, G. Grüss [12] showed that����� 1

b� a

Z b

a

f (t) g (t) dt� 1

b� a

Z b

a

f (t) dt
1

b� a

Z b

a

g (t) dt

�����(1.1)

� 1

4
(M �m) (N � n) ;

provided m; M; n; N are real numbers with the property that

(1.2) �1 < m � f �M <1; �1 < n � g � N <1 a.e. on [a; b] :

The constant 1
4 is best possible in (1.1) in the sense that it cannot be replaced

by a smaller one.
In order to extend this inequality for complex-valued functions we need the

following preparations.
For �; � 2 C and [a; b] an interval of real numbers, de�ne the sets of complex-

valued functions (see [7], [8] and [11])

�U[a;b] (�;�)

:=
n
g : [a; b]! Cj Re

h
(�� g (t))

�
g (t)� �

�i
� 0 for almost every t 2 [a; b]

o
and

��[a;b] (�;�) :=

�
g : [a; b]! Cj

����g (t)� �+�

2

���� � 1

2
j�� �j for a.e. t 2 [a; b]

�
:
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For any �; � 2 C, � 6= �; we have that �U[a;b] (�;�) and ��[a;b] (�;�) are non-
empty, convex and closed sets and

(1.3) �U[a;b] (�;�) = ��[a;b] (�;�) :

We observe that for any z 2 C we have the equivalence����z � �+�

2

���� � 1

2
j�� �j

if and only if
Re
�
(�� z)

�
�z � �

��
� 0:

This follows by the equality

1

4
j�� �j2 �

����z � �+�

2

����2 = Re �(�� z) ��z � ���
that holds for any z 2 C.
The equality (1.3) is thus a simple consequence of this fact.
For any �; � 2 C, � 6= �;we also have that

�U[a;b] (�;�) = fg : [a; b]! C j (Re�� Re g (t)) (Re g (t)� Re�)(1.4)

+(Im�� Im g (t)) (Im g (t)� Im�) � 0 for a.e. t 2 [a; b]g :

Now, if we assume that Re (�) � Re (�) and Im (�) � Im (�) ; then we can de�ne
the following set of functions as well:

�S[a;b] (�;�) := fg : [a; b]! C j Re (�) � Re g (t) � Re (�)(1.5)

and Im (�) � Im g (t) � Im (�) for a.e. t 2 [a; b]g :

One can easily observe that �S[a;b] (�;�) is closed, convex and

(1.6) ; 6= �S[a;b] (�;�) � �U[a;b] (�;�) :

This fact provides also numerous example of complex functions belonging to the
class ��[a;b] (�;�) :
For Lebesgue integrable functions f; g : [a; b] ! C we consider the complex

µCeby�ev functional

C (f; g) :=
1

b� a

Z b

a

f (t) g (t) dt� 1

b� a

Z b

a

f (t) dt
1

b� a

Z b

a

g (t) dt:

In [7] we obtained the following complex version of Gruss�inequality:

(1.7) jC (f; g)j � 1

4
j�� �j j	�  j

provided f 2 ��[a;b] (�;�) and g 2 ��[a;b] ( ;	) ; where g denotes the complex
conjugate function of g:
We denote the variance of the complex-valued function f : [a; b] ! C by D (f)

and de�ned as

D (f) =
�
C
�
f; �f
��1=2

=

24 1

b� a

Z b

a

jf (t)j2 dt�
����� 1

b� a

Z b

a

f (t) dt

�����
2
351=2 ;

where �f denotes the complex conjugate function of f:
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If we apply the inequality (1.7) for g = f; then we get

(1.8) D (f) � 1

2
j�� �j :

We observe that, if g 2 ��[a;b] ( ;	) ; then
���g (t)�  +	

2

��� � 1
2 j	�  j for a.e. t 2

[a; b] that is equivalent to
���g (t)�  +	

2

��� � 1
2

��	�  �� meaning that g 2 ��[a;b] � ;	�
and by 1.7, for g instead of g we also have

(1.9) jC (f; g)j � 1

4
j�� �j j	�  j

provided f 2 ��[a;b] (�;�) and g 2 ��[a;b] ( ;	) :
We can also consider the following quantity associated with a complex-valued

function f : [a; b]! C,

E (f) := jC (f; f)j1=2 =

������ 1

b� a

Z b

a

f2 (t) dt�
 

1

b� a

Z b

a

f (t) dt

!2������
1=2

:

By using (1.9) we also have

(1.10) E (f) � 1

2
j�� �j :

For an integrable function f : [a; b] ! C, consider the mean deviation of f
de�ned by

R (f) :=
1

b� a

Z b

a

�����f (t)� 1

b� a

Z b

a

f (s) ds

����� dt:
The following result holds (see [10] or the more extensive preprint version [9]).

Theorem 1. Let f : [a; b]! C be of bounded variation on [a; b] and g : [a; b]! C
a Lebesgue integrable function on [a; b] : Then

(1.11) jC (f; g)j � 1

2

b_
a

(f)R (g) � 1

2

b_
a

(f)D (g) ;

where
b_
a

(f) denotes the total variation of f on the interval [a; b] : The constant 12

is best possible in (1.11).

Corollary 1. If f; g : [a; b]! C are of bounded variation on [a; b] ; then

(1.12) jC (f; g)j � 1

2

b_
a

(f)R (g) � 1

2

b_
a

(f)D (g) � 1

4

b_
a

(f)
b_
a

(g) :

The constant 14 is best possible in (1.12).
We also have

(1.13) D (f) � 1

2

b_
a

(f) ;

and the constant 12 is best possible in (1.13).
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Utilising the above results we can state, for a function of bounded variation
f : [a; b]! C, that

(1.14) E2 (f) � 1

2

b_
a

(f)R (f) � 1

2

b_
a

(f)D (f) � 1

4

"
b_
a

(f)

#2
:

Moreover, de�ne

G (f) := jC (f; jf j)j1=2

=

����� 1

b� a

Z b

a

f (t) jf (t)j dt� 1

b� a

Z b

a

f (t) dt
1

b� a

Z b

a

jf (t)j dt
�����
1=2

;

then we also have, for a function of bounded variation f : [a; b]! C, that

G2 (f) � 1

2

b_
a

(f)R (jf j) � 1

2

b_
a

(f)D (jf j) � 1

4

b_
a

(f)

b_
a

(jf j)(1.15)

� 1

4

"
b_
a

(f)

#2
and

G2 (f) � 1

2

b_
a

(jf j)R (f) � 1

2

b_
a

(jf j)D (f) � 1

4

b_
a

(f)
b_
a

(jf j)(1.16)

� 1

4

"
b_
a

(f)

#2
:

Motivated by the above results, in this paper we provide several upper bounds for
the modulus of the complex µCeby�ev functional C (f; g) under various assumptions
for the integrable functions f; g : [a; b] ! C. Some particular cases via Wirtinger
and Alzer inequalities for complex-valued functions are also given.

2. Main Results

We have the following inequality for the complex µCeby�ev functional that extends
naturally the real case:

Lemma 1. If f; g : [a; b]! C are Lebesgue integrable on [a; b] ; then
(2.1) jC (f; g)j � D (f)D (g)

and

(2.2) jC (f; g)j � D (f)D (g) :

In particular

(2.3) E (f) � D (f) and G (f) �
p
D (f)D (jf j):

Proof. As in the real case, we have Korkine�s identity

C (f; g) :=
1

2 (b� a)2
Z b

a

Z b

a

(f (t)� f (s)) (g (t)� g (s)) dtds;

that can be proved directly by doing the calculations in the right hand side.
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Using the Cauchy-Bunyakovsky-Schwarz integral inequality for complex func-
tions, we have ����� 1

2 (b� a)2
Z b

a

Z b

a

(f (t)� f (s)) (g (t)� g (s)) dtds
�����
2

(2.4)

� 1

2 (b� a)2
Z b

a

Z b

a

jf (t)� f (s)j2 dtds

� 1

2 (b� a)2
Z b

a

Z b

a

jg (t)� g (s)j2 dtds

and since

1

2 (b� a)2
Z b

a

Z b

a

jf (t)� f (s)j2 dtds

=
1

2 (b� a)2
Z b

a

Z b

a

(f (t)� f (s)) (f (t)� f (s))dtds

=
1

2 (b� a)2
Z b

a

Z b

a

(f (t)� f (s))
�
f (t)� f (s)

�
dtds

= C
�
f; f
�
= D2 (f) ;

and a similar equality for g, hence we get from (2.4) the desired inequality (2.1).
Since D (g) = D (g) the inequality (2.2) follows by (2.1). Also, by (2.1) we have

E2 (f) := jC (f; f)j � D (f)D (f) = D2 (f) ;

which produces the �rst inequality in (2.3). Similarly, by (2.1) we have

G2 (f) := jC (f; jf j)j � D (f)D (jf j) ;

which proves the second part of (2.3). �

We de�ne the following Lebesgue norms for a measurable function f : [a; b]! C

kfk1 := essup
t2[a;b]

jf (t)j <1 if f 2 L1 [a; b]

and, for � � 1;

kfk� :=
 Z b

a

jf (t)j� dt
!1=�

<1 if f 2 L� [a; b] :

For real-valued functions h; k that are absolutely continuous on [a; b] and for
which the derivatives h0; k0 2 L2 [a; b] we have Lupaş�s inequality

(2.5) jC (h; k)j � 1

�2
(b� a) kh0k2 kk

0k2 ;

in which the constant 1
�2 is best possible. For k = h we have from (2.5) that

(2.6) D2 (h) � 1

�2
(b� a) kh0k22 :

The following version for complex-valued functions also holds:
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Theorem 2. Assume that the functions f; g : [a; b]! C are absolutely continuous
on [a; b] with the derivatives f 0; g0 2 L2 [a; b] : Then

(2.7) jC (f; g)j � 1

�2
(b� a) kf 0k2 kg

0k2 :

The constant 1
�2 is best possible.

Proof. Let f = Re f + i Im f: If we write (2.6) for Re f and Im f; then we get

1

b� a

Z b

a

(Re f (t))
2
dt� 1

(b� a)2

 Z b

a

Re f (t) dt

!2

� 1

�2
(b� a)

Z b

a

(Re f 0 (t))
2
dt

and

1

b� a

Z b

a

(Im f (t))
2
dt� 1

(b� a)2

 Z b

a

Im f (t) dt

!2

� 1

�2
(b� a)

Z b

a

(Im f 0 (t))
2
dt:

If we add these inequalities we get

1

b� a

Z b

a

h
(Re f (t))

2
+ (Im f (t))

2
i
dt

� 1

(b� a)2

24 Re Z b

a

f (t) dt

!2
+

 
Im

Z b

a

f (t) dt

!235
� 1

�2
(b� a)

"Z b

a

h
(Re f 0 (t))

2
+ (Im f 0 (t))

2
i
dt

#
;

namely

1

b� a

Z b

a

jf (t)j2 dt� 1

(b� a)2

�����
Z b

a

f (t) dt

�����
2

� 1

�2
(b� a)

Z b

a

jf 0 (t)j2 dt;

which can be written as

(2.8) D2 (f) � 1

�2
(b� a) kf 0k22 :

If we use the inequality (2.1), then we get the desired result (2.7). �

Another lesser known inequality for C (f; g) was derived in 1882 by µCeby�ev [5]
under the assumption that f 0; g0 exist and are continuous on [a; b] ; and is given by

(2.9) jC (f; g)j � 1

12
kf 0k1 kg

0k1 (b� a)
2
;

where kf 0k1 := maxt2[a;b] jf 0 (t)j < 1: The constant 1
12 cannot be improved in

general in (1.5).
We have the following version for complex functions:
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Theorem 3. Assume that the complex-valued functions f; g : [a; b] ! C are ab-
solutely continuous on [a; b] with the derivatives f 0; g0 2 L1 [a; b] : Then

(2.10) jC (f; g)j � 1

12
(b� a)2 kf 0k1 kg

0k1 :

The constant 1
12 is best possible.

Proof. Since f is absolutely continuous on [a; b] with the derivative f 0 2 L1 [a; b] ;
we have

jf (t)� f (s)j =
����Z t

s

f 0 (u) du

���� � jt� sj essup
u2[t;s]([s;t])

jf 0 (u)j � kf 0k1 jt� sj

for any t; s 2 [a; b] :
This implies that

D2 (f) =
1

2 (b� a)2
Z b

a

Z b

a

jf (t)� f (s)j2 dtds

� 1

2 (b� a)2
kf 0k21

Z b

a

Z b

a

(t� s)2 dtds

= kf 0k21

24 1

b� a

Z b

a

t2dt�
 

1

b� a

Z b

a

tdt

!235
= kf 0k21

�
b2 + ba+ a2

3
� b2 + 2ab+ a2

4

�
=
1

12
(b� a)2 kf 0k21

and similarly,

D2 (g) � 1

12
(b� a)2 kg0k21 :

By using (2.1) we get (2.10). �

In [3], P. Cerone and S. S. Dragomir proved the following inequalities for real-
valued functions:

jC (f; g)j(2.11)

�

8>>>>>>><>>>>>>>:

inf

2R

kg � 
k1 � 1
b�a

R b
a

���f (t)� 1
b�a

R b
a
f (s) ds

��� dt
if g 2 L1 [a; b] ; f 2 L1 [a; b]

inf

2R

kg � 
kq � 1
b�a

�R b
a

���f (t)� 1
b�a

R b
a
f (s) ds

���p dt� 1
p

if g 2 Lq [a; b] ; f 2 Lp [a; b] , where p > 1; 1=p+ 1=q = 1:

For 
 = 0; we get from the �rst inequality in (1.12)

(2.12) jC (f; g)j � kgk1 � 1

b� a

Z b

a

�����f (t)� 1

b� a

Z b

a

f (s) ds

����� dt
for which the constant 1 cannot be replaced by a smaller constant.
If m � g � M for a.e. x 2 [a; b] ; then



g � m+M
2




1 � 1

2 (M �m) and by the
�rst inequality in (1.12) we can deduce the following result obtained by Cheng and
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Sun [6] by a more complicated technique

(2.13) jC (f; g)j � 1

2
(M �m) 1

b� a

Z b

a

�����f (t)� 1

b� a

Z b

a

f (s) ds

����� dt:
The constant 1

2 is best in (2.13) as shown by Cerone and Dragomir in [4] where a
general version for Lebesgue integral and measurable spaces was also given.
For a complex-valued function f : [a; b]! C we de�ne the p-mean deviations of

f by

Rp (f) :=

 
1

b� a

Z b

a

�����f (t)� 1

b� a

Z b

a

f (s) ds

�����
p

dt

! 1
p

where p � 1 and f 2 Lp [a; b] : For p =1 we de�ne

R1 (f) := essup
t2[a;b]

�����f (t)� 1

b� a

Z b

a

f (s) ds

�����
if f 2 L1 [a; b] :
For p = 2 we obviously have R2 (f) = D (f) and Rp

�
f
�
= Rp (f) for any

p 2 [1;1] : We denote R (f) for R1 (f) :
By utilising a simpler technique than the one employed in [3] we can prove the

following result for complex-valued functions.

Theorem 4. Let f; g : [a; b]! C be measurable on [a; b] : Then

(2.14) jC (f; g)j �

8>>>>>>>>><>>>>>>>>>:

inf

2C

kg � 
k1R (f) if g 2 L1 [a; b] and f 2 L [a; b] ;

1
(b�a)1=q inf
2C

kg � 
kq Rp (f) ; g 2 Lq [a; b] ; f 2 Lp [a; b] ;
and p; q > 1 with 1

p +
1
q = 1;

1
b�a inf
2C

kg � 
k1R1 (f) if g 2 L [a; b] and f 2 L1 [a; b] :

Proof. We use the following version of Sonin�s identity for complex-valued functions

C (f; g) =
1

b� a

Z b

a

 
f (t)� 1

b� a

Z b

a

f (s) ds

!
(g (t)� 
) dt

provided f; g : [a; b] ! C are integrable on [a; b] and 
 2 C. This can be easily
proved by performing the calculation in the right hand side of the equality.
We have for g 2 L1 [a; b] and f 2 L [a; b] that

jC (f; g)j � 1

b� a

Z b

a

�����f (t)� 1

b� a

Z b

a

f (s) ds

����� jg (t)� 
j dt
� essup

t2[a;b]
jg (t)� 
j 1

b� a

Z b

a

�����f (t)� 1

b� a

Z b

a

f (s) ds

����� dt
= kg � 
k1R (f) ;

which proves the �rst part of (2.14).
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By Hölder�s integral inequality we have for g 2 Lq [a; b] and f 2 Lp [a; b] ; where
p; q > 1 with 1

p +
1
q = 1; that

jC (f; g)j � 1

b� a

Z b

a

�����f (t)� 1

b� a

Z b

a

f (s) ds

����� jg (t)� 
j dt
� 1

b� a

 Z b

a

�����f (t)� 1

b� a

Z b

a

f (s) ds

�����
p

dt

!1=p Z b

a

jg (t)� 
jq dt
!1=q

= kg � 
kq
1

(b� a)1=q

 
1

b� a

Z b

a

�����f (t)� 1

b� a

Z b

a

f (s) ds

�����
p

dt

!1=p
=

1

(b� a)1=q
kg � 
kq Rp (f) ;

which proves the second part of (2.14).
We have for g 2 L [a; b] and f 2 L1 [a; b] that

jC (f; g)j � 1

b� a

Z b

a

�����f (t)� 1

b� a

Z b

a

f (s) ds

����� jg (t)� 
j dt
� 1

b� a essupt2[a;b]

�����f (t)� 1

b� a

Z b

a

f (s) ds

�����
Z b

a

jg (t)� 
j dt

=
1

b� a kg � 
k1R1 (f) ;

which proves the last part of (2.14). �

An obvious particular case of interest is:

Corollary 2. Let f; g : [a; b]! C be measurable on [a; b] : Then

(2.15) jC (f; g)j �

8>>>>>><>>>>>>:

kgk1R (f) if g 2 L1 [a; b] and f 2 L [a; b] ;

1
(b�a)1=q kgkq Rp (f) ; g 2 Lq [a; b] ; f 2 Lp [a; b] ;
and p; q > 1 with 1

p +
1
q = 1;

1
b�a kgk1R1 (f) if g 2 L [a; b] and f 2 L1 [a; b]

and

(2.16) jC (f; g)j �

8>>>>>><>>>>>>:

R1 (g)R (f) if g 2 L1 [a; b] and f 2 L [a; b] ;

Rq (g)Rp (f) ; g 2 Lq [a; b] ; f 2 Lp [a; b] ;
and p; q > 1 with 1

p +
1
q = 1;

R (g)R1 (f) if g 2 L [a; b] and f 2 L1 [a; b] :

3. Some General Examples

We have the following result:
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Proposition 1. Assume that g : [a; b] ! C is measurable on [a; b] and g 2
��[a;b] ( ;	) for some distinct complex numbers  ; 	: Then

(3.1) jC (f; g)j �

8>>>><>>>>:
1
2 j	�  jR (f) if f 2 L [a; b] ;

1
2 j	�  jRp (f) if f 2 Lp [a; b] ; p > 1;

1
2 j	�  jR1 (f) if f 2 L1 [a; b] :

Proof. If g 2 ��[a;b] ( ;	) ; then
���g (t)� �+�

2

��� � 1
2 j�� �j for a.e. t 2 [a; b] ; which

implies that 



g � �+�

2






1
� 1

2
j�� �j ;





g � �+�

2






q

=

 Z b

a

����g (t)� �+�

2

����q dt
!1=q

�
 Z b

a

�
1

2
j�� �j

�q
dt

!1=q
=
1

2
j�� �j (b� a)1=q

and 



g � �+�

2






1

=

Z b

a

����g (t)� �+�

2

���� dt � 1

2
j�� �j (b� a) :

By making use of (2.14) for 
 = �+�
2 we deduce (3.1). �

Remark 1. If f 2 L1 [a; b] ; then f 2 Lp [a; b] for p � 1 and by Hölder�s inequality
we have

R (f) � Rp (f) � R1 (f) ;

which shows that the �rst inequality in (3.1) is better than the second that is better
than the third.
If we assume that the following more general condition holds

(3.2)





g � �+�

2






q

� 1

2
j�� �j (b� a)1=q ; q > 1

for some distinct complex numbers  ; 	; then the second inequality in (3.1) also
holds. Moreover, if the inequality (3.2) holds for q = 1; then the third inequality in
(3.1) is valid as well.

Proposition 2. Assume that g : [a; b]! C is of bounded variation on [a; b] : Then

(3.3) jC (f; g)j �

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

1
2

b_
a

(g)R (f) if f 2 L [a; b] ;

1
2

b_
a

(g)Rp (f) if f 2 Lp [a; b] ; p > 1;

1
2

b_
a

(g)R1 (f) if f 2 L1 [a; b] :
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Proof. For any t 2 [a; b] we have����g (t)� g (a) + g (b)

2

���� = ����g (t)� g (a) + g (t)� g (b)2

����
� 1

2
[jg (t)� g (a)j+ jg (b)� g (t)j] � 1

2

b_
a

(g) :

Using this inequality, we then have



g � g (a) + g (b)

2






1
� 1

2

b_
a

(g) ;





g � g (a) + g (b)

2






q

� 1

2

b_
a

(g) (b� a)1=q

and 



g � g (a) + g (b)

2






1

� 1

2

b_
a

(g) (b� a) :

By making use of (2.14) for 
 = g(a)+g(b)
2 we deduce (3.3). �

We say that the function h : [a; b] ! R is H-r-Hölder continuous with the
constant H > 0 and power r 2 (0; 1] if
(3.5) jh (t)� h (s)j � H jt� sjr

for any t; s 2 [a; b] : If r = 1 we call that h is L-Lipschitzian when H = L > 0:

Proposition 3. Assume that g : [a; b] ! C is H-r-Hölder continuous with the
constant H > 0 and power r 2 (0; 1] on [a; b] : Then

(3.6) jC (f; g)j �

8>>>>>>><>>>>>>>:

1
2rH (b� a)

r
R (f) if f 2 L [a; b] ;

1
2r(qr+1)1=q

H (b� a)r Rp (f) if f 2 Lp [a; b] ; p; q > 1;
and 1

p +
1
q = 1;

1
2r(r+1)H (b� a)

r
R1 (f) if f 2 L1 [a; b] :

In particular, if g : [a; b]! C is L-Lipschitzian on [a; b] ; then

(3.7) jC (f; g)j �

8>>>>>><>>>>>>:

1
2L (b� a)R (f) if f 2 L [a; b] ;

1
2(q+1)1=q

L (b� a)Rp (f) if f 2 Lp [a; b] ; p; q > 1;
and 1

p +
1
q = 1;

1
4L (b� a)R1 (f) if f 2 L1 [a; b] :

Proof. For any t 2 [a; b] we have����g (t)� g�a+ b2
����� � H

����t� a+ b

2

����r :
This implies that



g (t)� g�a+ b2

�




1
� H sup

t2[a;b]

����t� a+ b

2

����r = 1

2r
H (b� a)r ;
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g (t)� g�a+ b2
�





q

=

 Z b

a

����g (t)� g�a+ b2
�����q dt

!1=q

� H

 Z b

a

����t� a+ b

2

����qr dt
!1=q

= H

 
(b� a)qr+1

2qr (qr + 1)

!1=q
=

1

2r (qr + 1)
1=q

H (b� a)r+1=q

and 



g (t)� g�a+ b2
�





1

� 1

2r (r + 1)
H (b� a)r+1 :

By making use of (2.14) for 
 = g
�
a+b
2

�
we deduce

jC (f; g)j

�

8>>>>>>><>>>>>>>:

1
2rH (b� a)

r
R (f) if g 2 L1 [a; b] and f 2 L [a; b] ;

1
(b�a)1=q

1
2r(qr+1)1=q

H (b� a)r+1=q Rp (f) ; g 2 Lq [a; b] ; f 2 Lp [a; b] ;
and p; q > 1 with 1

p +
1
q = 1;

1
b�a

1
2r(r+1)H (b� a)

r+1
R1 (f) if g 2 L [a; b] and f 2 L1 [a; b] ;

and the desired inequality (3.6) is proved. �

We say that the function h : [a; b] ! C is K-s-Hölder continuous in the middle
with the constant K > 0 and power s > 0 if

(3.8)

����h (t)� h�a+ b2
����� � K

����t� a+ b

2

����s
for any t 2 [a; b] : We observe that if h : [a; b] ! C is H-r-Hölder continuous with
the constant H > 0 and power r 2 (0; 1]; then is Hölder continuous in the middle
with the same constants.

Remark 2. Assume that g : [a; b] ! C is K-s-Hölder continuous in the middle
with the constant K > 0 and power s > 0: Using a similar argument as above, we
get

(3.9) jC (f; g)j �

8>>>>>>><>>>>>>>:

1
2sK (b� a)

s
R (f) if f 2 L [a; b] ;

1
2s(qs+1)1=q

K (b� a)sRp (f) if f 2 Lp [a; b] ; p; q > 1;
and 1

p +
1
q = 1;

1
2s(s+1)K (b� a)

s
R1 (f) if f 2 L1 [a; b] :

4. Examples Via Wirtinger�s Inequality

In 1916 a remarkable result of W. Wirtinger that compares the integral of a
square of a function with that of the square of its �rst derivative was published in
W. Blaschke�s book "Kreis und Kugel", [2, p. 105]:
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Let f be a real-valued function with period 2� and
R 2�
0

f (t) dt = 0: If f 0 2
L2 [0; 2�] ; then

(4.1)
Z 2�

0

[f (t)]
2
dt �

Z 2�

0

[f 0 (t)]
2
dt

with equality holding if and only if

f (t) = A cos t+B sin t; A; B 2 R.

The following version for complex functions holds:

Lemma 2. Let f be a complex-valued function with period 2� and
R 2�
0

f (t) dt = 0:
If f 0 2 L2 [0; 2�] ; then

(4.2)
Z 2�

0

jf (t)j2 dt �
Z 2�

0

jf 0 (t)j2 dt:

The inequality is sharp.

Proof. Let f = Re f+i Im f: Since f is periodical with the period 2� and
R 2�
0

f (t) dt =
0 it follows that Re f and Im f have the same properties and by (4.1) we getZ 2�

0

[Re f (t)]
2
dt �

Z 2�

0

[Re f 0 (t)]
2
dt

and Z 2�

0

[Im f (t)]
2
dt �

Z 2�

0

[Im f 0 (t)]
2
dt:

If we add these inequalities we get (4.2). �

For a complex-valued function h : [0; 2�]! C, consider the dispersion

D[0;2�] (h) :=

"
1

2�

Z 2�

0

jh (t)j2 dt�
���� 12�

Z 2�

0

h (t) dt

����2
#1=2

:

We have:

Lemma 3. Let h be a complex-valued function with period 2�: If h0 2 L2 [0; 2�] ;
then

(4.3) D2
[0;2�] (h) �

1

2�

Z 2�

0

jh0 (t)j2 dt:

The inequality is sharp.

Proof. Let f := h� 1
2�

R 2�
0

h (s) ds: Then f has the period 2� and
R 2�
0

f (t) dt = 0:
Then by (4.2) we get

(4.4)
1

2�

Z 2�

0

����h (t)� 1

2�

Z 2�

0

h (s) ds

����2 dt � 1

2�

Z 2�

0

jh0 (t)j2 dt:

Since
1

2�

Z 2�

0

����h (t)� 1

2�

Z 2�

0

h (s) ds

����2 dt = D2
[0;2�] (h) ;

then for (4.4). �
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Remark 3. By Lupaş�s inequality (2.8) we have for a = 0; b = 2� that

(4.5) D2
[0;2�] (h) �

2

�

Z 2�

0

jh0 (t)j2 dt;

provided h0 2 L2 [0; 2�] : In this inequality no periodicity condition for the function
h is postulated. However, if the periodicity is assumed, then the inequality (4.3)
holds and this provides a better upper bound for D2

[0;2�] (h) than (4.5).

Proposition 4. Let f be a complex-valued function with period 2� and f 0 2
L2 [0; 2�] ; then for g 2 L2 [0; 2�] ;��C[0;2�] (f; g)�� � 1p

2�
inf

2C

kg � 
k[0;2�];2D[0;2�] (f)(4.6)

� 1

2�
inf

2C

kg � 
k[0;2�];2 kf
0k[0;2�];2 ;

where

C[0;2�] (f; g) =
1

2�

Z 2�

0

f (t) g (t) dt� 1

2�

Z 2�

0

f (t) dt
1

2�

Z 2�

0

g (t) dt:

In particular,

(4.7)
��C[0;2�] (f; g)�� � 1p

2�
kgk[0;2�];2D[0;2�] (f) �

1

2�
kgk[0;2�];2 kf

0k[0;2�];2 :

Proof follows by (2.14) for p = q = 2 and a = 0; b = 2�:

Corollary 3. Let f; g be a complex-valued functions with period 2� and f 0; g0 2
L2 [0; 2�] ; then

(4.8)
��C[0;2�] (f; g)�� � D[0;2�] (g)D[0;2�] (f) �

1

2�
kg0k[0;2�];2 kf

0k[0;2�];2 :

We also have:

Proposition 5. Assume that g : [0; 2�] ! C is measurable on [0; 2�] and g 2
��[0;2�] ( ;	) for some distinct complex numbers  ; 	: Let f be a complex-valued
function with period 2� and f 0 2 L2 [0; 2�] ; then

(4.9)
��C[0;2�] (f; g)�� � 1

2
j	�  jD[0;2�] (f) �

1

2
p
2�
j	�  j kf 0k[0;2�];2 :

Proof follows by (3.1) for p = 2 and a = 0; b = 2�:

Proposition 6. Assume that g : [0; 2�]! C is of bounded variation on [0; 2�] : Let
f be a complex-valued function with period 2� and f 0 2 L2 [0; 2�] ; then

(4.10)
��C[0;2�] (f; g)�� � 1

2

2�_
0

(g)D[0;2�] (f) �
1

2
p
2�

2�_
0

(g) kf 0k[0;2�];2 :

Proof follows by (3.3) for p = 2 and a = 0; b = 2�:

Proposition 7. Assume that g : [0; 2�] ! C is H-r-Hölder continuous with the
constant H > 0 and power r 2 (0; 1] on [0; 2�] : Let f be a complex-valued function
with period 2� and f 0 2 L2 [0; 2�] ; then

(4.11)
��C[0;2�] (f; g)�� � �rp

2r + 1
HD[0;2�] (f) �

�r�1=2p
2 (2r + 1)

H kf 0k[0;2�];2 :
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In particular, if g : [0; 2�]! C is L-Lipschitzian on [0; 2�] ; then

(4.12)
��C[0;2�] (f; g)�� � �p

3
LD[0;2�] (f) �

r
�

6
L kf 0k[0;2�];2 :

5. Examples Via Alzer�s Inequality

In 1992, H. Alzer [1] obtained the following variant of Wirtinger�s inequality:

(5.1) max
t2[0;2�]

[h (t)]
2 � �

6

Z 2�

0

[h0 (t)]
2
dt;

provided that h is a real-valued continuously di¤erentiable function with period 2�
and

R 2�
0

h (t) dt = 0: Equality holds in (5.1) if and only if

h (t) = C

"
3

�
t� �
�

�2
� 1
#
; t 2 [0; 2�] :

The following version for complex functions holds:

Lemma 4. Let f be a continuously di¤erentiable complex-valued function with
period 2� and

R 2�
0

f (t) dt = 0: Then

(5.2) max
t2[0;2�]

jf (t)j2 � �

6

Z 2�

0

jf 0 (t)j2 dt:

The inequality is sharp.

Proof. Let f = Re f+i Im f: Since f is continuously di¤erentiable function with pe-
riod 2� and

R 2�
0

f (t) dt = 0; it follows that Re f and Im f have the same properties
and by (1.3) we get

max
t2[0;2�]

[Re f (t)]
2 � �

6

Z 2�

0

[Re f 0 (t)]
2
dt;

and

max
t2[0;2�]

[Im f (t)]
2 � �

6

Z 2�

0

[Im f 0 (t)]
2
dt:

If we add these inequalities we get

(5.3) max
t2[0;2�]

[Re f (t)]
2
+ max
t2[0;2�]

[Im f (t)]
2 � �

6

Z 2�

0

jf 0 (t)j2 dt:

By the properties of maximum, we also have

max
t2[0;2�]

jf (t)j2 = max
t2[0;2�]

�
[Re f (t)]

2
+ [Im f (t)]

2
�

(5.4)

� max
t2[0;2�]

[Re f (t)]
2
+ max
t2[0;2�]

[Im f (t)]
2
:

On utilising the inequalities (5.3) and (5.4) we get the desired result (5.2). �

Lemma 5. Let h be a continuously di¤erentiable complex-valued function with
period 2�. Then

(5.5) max
t2[0;2�]

����h (t)� 1

2�

Z 2�

0

h (s) ds

����2 � �

6

Z 2�

0

jh0 (t)j2 dt:

The inequality is sharp.
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Proof. Let f := h � 1
2�

R 2�
0

h (s) ds: Then f continuously di¤erentiable, has the

period 2� and
R 2�
0

f (t) dt = 0: By using (5.2) we then get the desired result (5.5).
�

Proposition 8. Let g : [0; 2�]! C be integrable on [0; 2�] and f be a continuously
di¤erentiable complex-valued function with period 2�: Then��C[0;2�] (f; g)�� � 1

2�
inf

2C

kg � 
k[0;2�];1 max
t2[0;2�]

����f (t)� 1

2�

Z 2�

0

f (s) ds

����(5.6)

� 1

2
p
6�

inf

2C

kg � 
k[0;2�];1 kf
0k[0;2�];2 :

In particular,��C[0;2�] (f; g)�� � 1

2�
kgk[0;2�];1 max

t2[0;2�]

����f (t)� 1

2�

Z 2�

0

f (s) ds

����(5.7)

� 1

2
p
6�
kgk[0;2�];1 kf

0k[0;2�];2

and ��C[0;2�] (f; g)��(5.8)

� 1

2�





g � 1

2�

Z 2�

0

g (s) ds






[0;2�];1

max
t2[0;2�]

����f (t)� 1

2�

Z 2�

0

f (s) ds

����
� 1

2
p
6�





g � 1

2�

Z 2�

0

g (s) ds






[0;2�];1

kf 0k[0;2�];2 :

The proof follows by the third inequality in (2.14) and we omit the details.
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