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INTEGRAL GRUSS’ TYPE INEQUALITIES FOR
COMPLEX-VALUED FUNCTIONS

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we provide several upper bounds for the modulus of
the complex Cebysev functional

C(frg): —/ft)g dtf—/f(t)dt/gt dt

under various assumptions for the integrable functions f, g : [a,b] — C. Some
particular cases via Wirtinger and Alzer inequalities for complex-valued func-
tions are also given.

1. INTRODUCTION

For two Lebesgue integrable real-valued functions f, g : [a,b] — R, in order to
compare the integral mean of the product with the product of the integral means,
in 1934, G. Griiss [12] showed that

bia/f dt——/f dt—/ (1) dt

(M —m) (N —n),

(1.1)

»-lk\)—‘

provided m, M, n, N are real numbers with the property that
(1.2) —co<m< f<M<oo, —co<n<g<N<oo ae on [ab].

The constant i is best possible in (1.1) in the sense that it cannot be replaced
by a smaller one.

In order to extend this inequality for complex-valued functions we need the
following preparations.

For ¢, ® € C and [a, b] an interval of real numbers, define the sets of complex-
valued functions (see [7], [8] and [11])

Ula,p) (¢, ®)
= {g : [a,b] — C| Re {(@ —g(t) (m—@)] > 0 for almost every ¢t € [a,b]}

and

_ d
Baay(6.8) = {g: 0t~ [g0 - 5% < J 10~ ol forae. v € fatl |
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For any ¢, ® € C, ¢ # ®, we have that Uj, ) (¢, ®) and A, 4 (¢, ®) are non-
empty, convex and closed sets and

(1.3) Ula) (6, ®) = Ay (0, 9) .
We observe that for any z € C we have the equivalence
-2 Ly
2 2

if and only if

Re[(®—2) (2—¢)] > 0.
This follows by the equality
2

2 o Z—¢
ISR WA

that holds for any z € C.
The equality (1.3) is thus a simple consequence of this fact.
For any ¢, ® € C, ¢ # ®,we also have that

(14) U (@) ={g:[a,b] > C| (Re® —Reg(t)) (Reg (t) — Reg)
+(Im®—-Img(t)) (Img(t) —Ime¢) >0 for ae. t € [a,b]}.
Now, if we assume that Re (®) > Re (¢) and Im (®) > Im (¢) , then we can define
the following set of functions as well:
(1.5) Sap) (¢:®) :={g: [a,b] - C | Re(®) = Reg () > Re(¢)
and Im (®) > Img (¢t) > Im (¢) for a.e. t € [a,b]}.

One can easily observe that S[a,b} (¢, @) is closed, convex and

(16) 0 7é 51[0,,17] (¢7 (b) - U[a,b] (¢7 q)) .

This fact provides also numerous example of complex functions belonging to the
class A[%b] (¢, D).

For Lebesgue integrable functions f, g : [a,b] — C we consider the complex
Cebysev functional

cf .—/f dt——/f dt—/

In [7] we obtained the following complex version of Gruss’ inequality:

1
(17) O < 7120l [¥
provided f € A[a,b] (¢,®) and g € A[a,b] (v, ¥), where g denotes the complex
conjugate function of g.
We denote the variance of the complex-valued function f : [a,b] — C by D (f)

and defined as
X , 57 1/2
t) dt
e AL

D(f)=[c ()] = /|f 2t~ |

)

where f denotes the complex conjugate function of f.
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If we apply the inequality (1.7) for g = f, then we get
1
(1) D)< 1e—d.

We observe that, if g € A[a y (¥, ), then )g — M’ <! 5 |V —1| forae. te

[a, b] that is equivalent to |g (¢) D‘ <i ’\IJ z/J| meaning that § € Ay, 4 (¥, ¥)
and by 1.7, for g instead of g we also have

1
(19) C(F0)| < 1@ — o] W
provided f € A[a,b] (¢, @) and g € A[a’b] (¥, W).

We can also consider the following quantity associated with a complex-valued
function f : [a,b] — C,

b
E(f):=|C(f,HI'* = /f2(ﬁ @ia/fumg

By using (1.9) we also have

911/2

(1.10) B(f) <510 -4l

For an integrable function f : [a,b] — C, consider the mean deviation of f

defined by
I I
R =5 [0 =52 [ F@)as|ae

The following result holds (see [10] or the more extensive preprint version [9]).

Theorem 1. Let f : [a,b] — C be of bounded variation on [a,b] and g : [a,b] — C
a Lebesgue integrable function on [a,b]. Then

[
b
<5V

(1.11)

l\.')\»—t
[\D\»—A

b
where \/ (f) denotes the total variation of f on the interval [a,b]. The constant §

is best pbssible in (1.11).

Corollary 1. If f, g : [a,b] — C are of bounded variation on [a,b], then
b b b b
<s;VOR@ =5V (D@ <7V OV )
The constant % is best possible in (1.12).

We also have

(1.12)

l\DM—l
l\DM—l
»Jkﬁ—‘

(1.13) D(f) <

DN =

b
\ (),

and the constant % is best possible in (1.13).
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Utilising the above results we can state, for a function of bounded variation
f:]a,b] — C, that
b b
1 1
il < t
VRN < Vo0 <]

a

(1.14)

l\DM—l

Moreover, define

G (f) = |C(f, I

b b b
s [ rwlr ol [ rwag [l

then we also have, for a function of bounded variation f : [a,b] — C, that
b

1/2

b
WM<V ORI < O <V OV
1ab ) a a a
<4y

and

b b
116) @< VAMREN <5\ D) <

b

\b/ OV D

a

INA
| =

K
<3 [\/ (f)
Motivated by the above results, in this paper we provide several upper bounds for
the modulus of the complex Cebysev functional C (f, g) under various assumptions

for the integrable functions f, g : [a,b] — C. Some particular cases via Wirtinger
and Alzer inequalities for complex-valued functions are also given.

2. MAIN RESULTS

We have the following inequality for the complex Cebysev functional that extends
naturally the real case:

Lemma 1. If f, g : [a,b] — C are Lebesgue integrable on [a,b], then

(2.1) IC(f,9)| < D(f)D(g)
and
(22) IC(£,9 <D(f)D(g).
In particular
(2.3) E(f) <D(f) and G(f) < v D (f) D ([f])-
Proof. As in the real case, we have Korkine’s identity
C(f.0): / [ 0O-16) 6@ - g6y aas

that can be proved dlrectly by doing the calculations in the right hand side.
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Using the Cauchy-Bunyakovsky-Schwarz integral inequality for complex func-
tions, we have

(2.4) b% / b / ) - 1) 00— () o]
<o / / If () — £ (s)] dids
20— //|g s)|? dtds
and since

//|f s)|? dtds
:ﬁ [ [ 00~ TO- T
“sia // () (F(O) = T(5)) deds

—C(f,f) (f),

and a similar equality for g, hence we get from (2.4) the desired inequality (2.1).
Since D (g) = D (g) the inequality (2.2) follows by (2.1). Also, by (2.1) we have

E*(f):=|C(f,HI < D(f)D(f) =D*(f),
which produces the first inequality in (2.3). Similarly, by (2.1) we have

G*(f) =IC (£, 1N <D (F)D(fI),
which proves the second part of (2.3). O

We define the following Lebesgue norms for a measurable function f : [a,b] — C

[flloo := essup |f ()] < 00 if f € Log [a,b]

t€la,b]

and, for 8 > 1,

b 1/8
115 = (/ |f<t)|"dt> <ooit f € Lylad].

For real-valued functions h, k that are absolutely continuous on [a,b] and for
which the derivatives b/, k' € Ly [a, b] we have Lupas’s inequality

1
— (b= a) [l %]l

in which the constant W—g is best possible. For k = h we have from (2.5) that

(2.5) |C (h, k)| <

(26) D2 (h) < —5 (b—a) W3

The following version for complex-valued functions also holds:
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Theorem 2. Assume that the functions f, g : [a,b] — C are absolutely continuous
on [a,b] with the derivatives f', g’ € Ly [a,b]. Then

1
(2.7) C(f,91< 5 G =a)[Ifllz19'll>-
The constant # is best possible.

Proof. Let f =Re f+iIlm f. If we write (2.6) for Re f and Im f, then we get

1 b 9 1 b 2
p—a /) Ref®) dt—(b_a)z</a Ref(t)dt)
b
S%(b—a)/ (Re ' (1)) dt
and
L N - /bI far)
b—a a m (b—a)2 “ m

1 b 2
< 50— a)/a (Im £ (1))? dt.
If we add these inequalities we get

1
b—a

b
[ [(Re s 02 + @ g 7]

(Re/abf(t)dt>2+ (Im/:f(t)dtf]

(b—a) [ / ' [Res @) + am p )] dt] :

1
(b—a)’

namely

1 b 9 1
m/ﬂ Lf (2] dt*m

which can be written as

2 b
<50-a [ I1FOF e

/abf(t)dt

1 2
(2.8 D2(f) < 5 b-a) 73,
If we use the inequality (2.1), then we get the desired result (2.7). O

Another lesser known inequality for C (f, g) was derived in 1882 by Cebysev [5]
under the assumption that f/, ¢’ exist and are continuous on [a, b] , and is given by

(29) CU 9] < 75 1 o Il (0~ )

where ||| := maxiepqp | (¢)| < co. The constant {5 cannot be improved in
general in (1.5).
We have the following version for complex functions:
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Theorem 3. Assume that the complex-valued functions f, g : [a,b] — C are ab-
solutely continuous on [a,b] with the derivatives f', ¢’ € Lo [a,b]. Then

(210) CU9)I < 7506 0 1 9]

The constant % is best possible.

Proof. Since f is absolutely continuous on [a, b] with the derivative f’ € Ly [a, ],
we have
[f (@) = f(s)| =

"(u)du| <[t —s| essup [f(u)| < [|f"ll o |t = sl

u€e(t,s]([s,t])

for any ¢, s € [a,b].
This implies that

D?(f) = / / £ (t) = § ()] dtds
2 2
m”f ||oo/a /a (t —s)"dtds
, 1 b 1 b 2
15115 m/@ t2dt — <b_a/a tdt)

9 b2 + ba + a? b2 + 2ab + a? 1 9
=i (s - - a2 I

IN

and similarly,
1 2
D?(g) < *2(b*a) l9'll5
By using (2.1) we get (2.10). O

In [3], P. Cerone and S. S. Dragomir proved the following inequalities for real-
valued functions:

(2.11) IC(f,9)|
inf llg =1l i I f *fbf(S)dS‘dt
ﬂgeL [a,b], feL [ b]
<

~ ST B 1 b Y
inf llg — o, 5 (Ji [0 = 52 2 F () ds| " dt)
if g€ Lyla,b], f € Lyla,b], wherep>1, 1/p+1/¢g=1.

For v = 0, we get from the first inequality in (1.12)

b
£~ 5 [ £G)ds)de

for which the constant 1 cannot be replaced by a smaller conbtant
If m <g<M for ae. x € [ab], then ||g— 24| < (M —m) and by the
first inequality in (1.12) we can deduce the followmg result obtained by Cheng and

b

(2.12) ¢ (9l <9l -
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Sun [6] by a more complicated technique

b
3O =m) = [ "7

The constant % is best in (2.13) as shown by Cerone and Dragomir in [4] where a
general version for Lebesgue integral and measurable spaces was also given.
For a complex-valued function f : [a,b] — C we define the p-mean deviations of

f by
b b p b
rn= (2 o= [ s a)

where p > 1 and f € L, [a,b]. For p = 0o we define

b
O -5 [ 1)as
if € Lo lab].

For p = 2 we obviously have Ry (f) = D(f) and R, (f) = R, (f) for any
p € [1,00]. We denote R (f) for Ry (f).

By utilising a simpler technique than the one employed in [3] we can prove the
following result for complex-valued functions.

(2.13) 1C(f,9) < s)ds|dt

R (f) := essup
t€la,b]

Theorem 4. Let f, g: [a,b] — C be measurable on [a,b]. Then
inf [lg =l R(f) i g € Loc [a,8] and f € La,b],
e

a7 ik llg =7l By (F), g € Lylasbl, f € Lyab],

2.14) |C(f,9)| <
( ) e (n9)l= andp,q>1with%+%:1,

ﬁvifelgﬂg—v\hRoo (f) if g€ Lla,b] and f € Lo [a,b].
Proof. We use the following version of Sonin’s identity for complex-valued functions
1 b
Clro) =5 [ (10~ s | (9.(t) — ) dt

provided f, g : [a,b] — C are integrable on [a,b] and v € C. This can be easily
proved by performing the calculation in the right hand side of the equality.
We have for g € Lo, [a,b] and f € LJa,b] that

,7/]0 )ds
—7/f )ds|d

dt
|C (f, I_b lg (t) — |

< essup g (£) — | —
<essuplg (t) — | —
t€la,b] b—a a

= llg =l B(S)
which proves the first part of (2.14).
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By Holder’s integral inequality we have for g € L, [a,b] and f € L, [a,b], where
p,q>1with%—|—%:1,that

b
Cirol <y [

=1

= g —l, — ! /b
=g vq(b*a)l/q b—a ;

:w_zﬂmm—vaﬂﬂ,

IN

b
£ - 5= [ £)ds]lg(0) =] de

D 1/p b 1/q
ﬁ) (/Ig@)ﬂqﬁ>

1 b p 1/p
b_a/f(s)ds dt)

b
Oy AL

f) -

which proves the second part of (2.14).
We have for g € L[a,b] and f € L [a,b] that

1 b
cirol< = [

lg (t) —~|dt

b
0 -5 [ f

1 b b
< e 0~ [ F@as| [ g -alar
BEE) —a Jg a
— o llg =l R ()
- b* a g ’y 1 o0 )
which proves the last part of (2.14). O

An obvious particular case of interest is:
Corollary 2. Let f, g : [a,b] — C be measurable on [a,b]. Then
9lloc B(f) if g € Loo [a,b] and f € La,b],

m”g”qu(f)a geLq [a,b]a feL;D[aab],

(2.15) © (9l = and p, q > 1 with % + % =1,

722 lglly Roo (f) if g € La,b] and f € Lo [a,b]
and

Ry (9) R(f) if g € Lo [a,b] and f € L{a,b],

Rq(g)Rp(f)a gELq[a,b], fGLp[a,bL
(2.16) ICUD<A andp, g> 1 with lyl=g,

R(g) Reo (f) if g € L{a,b] and f € Lo [a,b].

3. SOME GENERAL EXAMPLES

We have the following result:
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Proposition 1. Assume that g : [a,b] — C is measurable on [a,b] and g €
Ala,5) (9, W) for some distinct complex numbers v, W. Then

LI — 4| R(f) if f € L[a,b],
(3.1) C(f,9)| < 31U —2|R,(f) if f € Lyla,b], p> 1,

3|V — | Ro (f) if f € Loo [a,1].

Proof. If g € A[u,b] (1, ), then ’g (t) — #’ < % |® — ¢| for a.e. t € [a,b], which
implies that

-|-(I> 1
o252 <5le-el.
1/q 1/q
¢+q) /b ¢+(b q /b 1
Ll | _rr= < -
-2 (agw ) < ([ (o0
=Sl —olb-a)
and
+@ ’ + @
o= 232 = [ o= 232 ar< Jro - ato-a),
1 a
By making use of (2.14) for v = @ we deduce (3.1). O

Remark 1. If f € L [a,b], then f € L, [a,b] forp > 1 and by Hdlder’s inequality
we have
R(f) <Ry (f) < R (f),
which shows that the first inequality in (8.1) is better than the second that is better
than the third.
If we assume that the following more general condition holds

' o+ d
g2~

(3.2) .

1
<5le-dlb-a)" g>1

for some distinct complex numbers 1, U, then the second inequality in (3.1) also
holds. Moreover, if the inequality (3.2) holds for ¢ = 1, then the third inequality in
(8.1) is valid as well.

Proposition 2. Assume that g : [a,b] — C is of bounded variation on [a,b]. Then

b
N (@R(f) if f€Llab],

b
(3-3) C(f.91<q sV @R (f) if feLylab], p>1,

b
1\ (9) Roo (f) if f € Loc [a,].
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Proof. For any t € [a,b] we have
g(a)+g(b)
)= 2

g(t

g(t)—g(a)+g(t)—g(b)’
2

IA
N —

b
llg (1) =g (@)l +1g (b) =g (O] < %\/(g)-

Using this inequality, we then have

Hg—g(a);rg(b)H <;\i/(g),

b
g (a) +yg 1 1/q
o =V
and ,
g(a)+g(b) 1
_9TIVN < 2 b—a).
o= 2520 < Voo
By making use of (2.14) for v = M we deduce (3.3). O

We say that the function h : [a,b] — R is H-r-Hélder continuous with the
constant H > 0 and power r € (0, 1] if

(3.5) h(t) — h(s)| < HIt— s
for any ¢, s € [a,b]. If r = 1 we call that h is L-Lipschitzian when H = L > 0.

Proposition 3. Assume that g : [a,b] — C is H-r-Holder continuous with the
constant H > 0 and power r € (0,1] on [a,b]. Then

+H(b—a)"R(f) if f € Lla,b],

36)  |C(f,9) < s (0= a) Ry (f) if f € Lyla.b], p.a>1,
. o)< E

s H (b= a) Reo (f) if f € Loo [a,1].
In particular, if g : [a,b] — C is L-Lipschitzian on [a,b], then
IL(b—a)R(f) if f € L[a,b],

71(1[/ b— Rp ) ELp ,b’ ,q > 17
I A OB et

iL(b—a)Rm (f) if f € Loo [a,b)].

Proof. For any t € [a,b] we have

o (352

This implies that

g(t)—g(a;b)H < H sup

t€la,b]

1
=5

a+0bl|"
2

t—

H(b_a')lrv
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1/q
a+b a+b\|?
gt)—g t)—g dt
2 2
ar 1/q
dg

r+1 1/a
b*a)q _ 1 H(b—a)r+1/q
27 (
1

qr—l—l)l/q
a-+b
— <
bo-0("3")], < 7e5m

By making use of (2.14) for v = g (%“$2) we deduce

C(f:9)l
+H (b—a)"R(f) if g € L [a,b] and f € La,b],

<

a+b
2

and

H®b—a) .

H(b—a)7‘+1/qu(f), g€ Lyla,b], f€Lyla,b],

1 1
(b—a)/1 27 (qr41)1/4

<
- andp,q>1with%+%:1,
e H (0—a) " R (f) if g € L[a,b] and f € Lo [a,8],
and the desired inequality (3.6) is proved. O

We say that the function h : [a,b] — C is K-s-Holder continuous in the middle
with the constant K > 0 and power s > 0 if

(3.8) ‘h(t)—h(a;b>

for any ¢ € [a,b]. We observe that if h : [a,b] — C is H-r-Hélder continuous with
the constant H > 0 and power r € (0, 1], then is Holder continuous in the middle
with the same constants.

S

a+b
2

<Ko

Remark 2. Assume that g : [a,b] — C is K-s-Hélder continuous in the middle
with the constant K > 0 and power s > 0. Using a similar argument as above, we
get

LK (b—a)*R(f) if f € L|a,b],

ﬁK(b_a)sR (f) ’LffEL [avb},p,q>]—v
(39) IC(hgl<q 2t ’ !
p q

mK(b—a)st(f) iffELoo[avb]'

4. EXAMPLES VIA WIRTINGER'S INEQUALITY

In 1916 a remarkable result of W. Wirtinger that compares the integral of a
square of a function with that of the square of its first derivative was published in
W. Blaschke’s book "Kreis und Kugel”, [2, p. 105]:
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Let f be a real-valued function with period 2w and fohf(t) dt = 0. If f' e
Lo [0,27], then

2m 2m
(41) [ ueras [P
0 0
with equality holding if and only if
f(t)=Acost+ Bsint, A, B €R.

The following version for complex functions holds:

Lemma 2. Let f be a complex-valued function with period 2w and f027r f@)dt=o0.
If f' € Ly 0,27, then

2m 2m

(42) JREC IR THOR
0 0

The inequality is sharp.

Proof. Let f = Re f+iIm f. Since f is periodical with the period 27 and fo% f@®)dt=
0 it follows that Re f and Im f have the same properties and by (4.1) we get

2m 2m
| Res@ras [ rer )
0 0
and
2 27
/ I f (£)]2 dt < / [ 7' (£)]2 dt.
0 0
If we add these inequalities we get (4.2). O

For a complex-valued function A : [0,27] — C, consider the dispersion

1 27\' 1 271' 2 1/2
Do oz (h) := [/0 |h(t)|2dt‘27r/0 h(t)dt ] )

27
Lemma 3. Let h be a complex-valued function with period 27. If b’ € L4 [0, 27],
then

‘We have:

27
(4.3) Dffy o (h) < % /O I (1)) dt.
The inequality is sharp.
Proof. Let f:=h— 5~ [Z"h(s)ds. Then f has the period 27 and [ f () dt = 0.
Then by (4.2) we get
1 2 1 2 2 1 2 ) )

(4.4) = | -5 [ nea dtg%/o W (1)) dt.
Since

1 2 1 2 2

o ), ht) = o i h(s)ds| dt =D}, (h),

then for (4.4). O
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Remark 3. By Lupas’s inequality (2.8) we have for a =0, b = 27 that
2 27 9

(45) Do ) < = [ 0P

provided h' € Lo [0,2x]. In this inequality no periodicity condition for the function
h is postulated. However, if the periodicity is assumed, then the inequality (4.3)
holds and this provides a better upper bound for D[0 or] (h) than (4.5).

Proposition 4. Let f be a complex-valued function with period 2m and f' €
Ly [0,27], then for g € Ly [0, 2],

1
(4.6) } 0,27 (f, )’ < \/? mf llg — ’Y||[o 2], Dio 27 (f)
< b
- 27
where
27 1 2 1 27
%mungofwww—gofow—Agww

In particular,
1
(4.7) | 0,27 (f, 9 ’ = \/7 lgll [0,27], Dio2n) (f) < P ||9||[0,27r],2 ||f/||[0,27r],2 :

Proof follows by (2.14) for p=¢ =2 and a =0, b = 2.

Corollary 3. Let f, g be a complex-valued functions with period 2w and f', ¢’ €
L5 [0,27], then

1
(4.8) |C[0,27r] (f, 9)| < Dio,2x] (9) Dip,2x) (f) < Gy ||9/||[o,27r],2 ||fl||[0,27'r],2 .

We also have:

Proposition 5. Assume that g : [0,27] — C is measurable on [0,27] and g €
Ao,27) (1, V) for some distinct complex numbers v, W. Let f be a complex-valued
function with period 2m and f' € Lo [0,27], then

1 1
(4.9) ‘ 0,27 (f, )| < B | — 9| Dig 2 (f) < o

Proof follows by (3.1) for p =2 and a =0, b = 2.

% — 1 .22

Proposition 6. Assume that g : [0,27] — C is of bounded variation on [0,2x]. Let
f be a complex-valued function with period 27 and [’ € Lo [0,27], then

1

Proof follows by (3.3) for p =2 and a =0, b = 2.

9 150,272

Proposition 7. Assume that g : [0,27] — C is H-r-Hélder continuous with the
constant H > 0 and power r € (0,1] on [0,27]. Let f be a complex-valued function
with period 2m and f' € Lo [0,27], then

" 7.l_’r—l/2

411 Cioant (f19)| < ————HDyg o (f) < ———_H||f’
( ) ’ [0,27] f )| \/m [0,2 ](f) 2(2T+1) Hf ||[O,27r],2
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In particular, if g : [0,27] — C is L-Lipschitzian on [0,2x], then
T T
(4.12) |Clo2n) (f19)| < %LD[O,%] (f) < \/;L ||f/||[0,27r],2'
5. EXAMPLES VIA ALZER’S INEQUALITY

In 1992, H. Alzer [1] obtained the following variant of Wirtinger’s inequality:

(5.1) tﬁgﬁmnsgl W (1) at,

provided that A is a real-valued continuously differentiable function with period 27
and fo% h (t) dt = 0. Equality holds in (5.1) if and only if

2
3C_W>—1
Vi

The following version for complex functions holds:

h(t)=C , te0,2n].

Lemma 4. Let f be a continuously differentiable complez-valued function with
period 27 and f027r f(t)dt =0. Then

27

™ 2
5.2 O < = " ()| dt.
(52) o (FOF < T [ 17 )
The inequality is sharp.
Proof. Let f = Re f+iIm f. Since f is continuously differentiable function with pe-
riod 27 and fo% f(t)dt =0, it follows that Re f and Im f have the same properties
and by (1.3) we get

9 T 2 , 9
max [Re (] < & /0 Re f' () dt,

te(0,27]
and )
o 2
Im f ()]° < =~ TIm f ()] dt.
o [ f (O < 5 [ 1)
If we add these inequalities we get
27
5.3 Re f (t))? I t2<3/ ") dt.
63 e Ref@F + max /0P <F [ 1F@)
By the properties of maximum, we also have
5.4 ) = Re f (1)]* + [Im f (£))
(5.4) o |F () = max ([Re f (0] + [im f (1))°)
2 2
< t I t)]”.
< Jax [Ref(B)]" + max [Im f(2)]
On utilising the inequalities (5.3) and (5.4) we get the desired result (5.2). O

Lemma 5. Let h be a continuously differentiable complex-valued function with
period 2. Then

9.5
59 telo.om

1 27 2 T 2 5
h(t)—%/o h(s)ds gg/o W ()] dt.

The inequality is sharp.
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Proof. Let f = h — 5 OQWh(S) ds. Then f continuously differentiable, has the

period 27 and fozﬂ f(t)dt = 0. By using (5.2) we then get the desired result (5.5).
([

Proposition 8. Let g : [0,27] — C be integrable on [0,27] and f be a continuously
differentiable complezx-valued function with period 2. Then

27
f@*iéf®®

IN

1
= inf llg —
2W¢2CH9 VHWQﬂJwéﬁg%

(5.6)  |Cro.2m (£:9)] o

1 . ,
< ﬁ irelgj lg — 'Y||[0,27r],1 If ||[(),27r],2 :

In particular,

1
(5.7) |Clo,2x1 (f,9)] < o I9llf0,277,1 , max

te[0,27] 2w

27
f@nizf@w

1
< izﬁingngwL1Hf/Mong2

and
(5.8) |Clo,2x] (f59)]
1 1 /27‘(‘ 1 27\'
— g — — s)ds max t) — — s)ds
=0 |97 2n 0 9(s) [0,27],1 t€10,27] 2m Jo ()
1

151l 10,2,2 -

[0,27],1

1 27
< — - — s)ds
< s7=|l %A g(s)

The proof follows by the third inequality in (2.14) and we omit the details.
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