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SOME WEIGHTED HERMITE-HADAMARD INEQUALITY FOR
r-PREINVEX FUNCTIONS ON AN INVEX SET

DAH-YAN HWANG! AND SILVESTRU SEVER DRAGOMIR?:3

ABSTRACT. In this paper, the weighted Hermite-Hadamard inequality for weakly
r-preinvex function on an invex set are established. As applications, some in-
equalities involving two-parameter mean are given.

1. INTRODUCTION

It is well-known that the concepts of means are important notions in mathemat-
ics, for instance, some definitions of norms are often special means and have explicit
geometric meanings [14], and have been applied in heat conduction, chemistry [16],
electrostatics [11] and medicine [4].

The classical Hermite-Hadamard inequality for convex functions states that if

f:a,b] = R is convex, then
)+f()
L ot

n [15], Sun and Yang extend Hermite-Hadamard mequahty to the weighted mean
of order s of a positive r-convex function on an interval [a, b].

Antezak [1, 2] introduced the concept of r-invex and r-preinvex function and
give a new method to solve nonlinear mathematical programing problems. In [10],
Noor gave some Hermite-Hadamard inequality for the preinvex and log-preinvex
functions. Moreover, in [17], Wasim Ui-Haq and Javed Igbal introduced Hermite-
Hadamard inequality for r-preinvex functions. Recently, Hwang and Dragomir [5]
establish the Hermite-Hadamard inequality to a relation of two extended means for
weakly r-preinvex functions on an invex set.

The main purpose of this paper is to generalise Hermite-Hadamard inequality
that involves weighted mean of two-parameters for weakly r-preinvex functions on
an invex set. The obtained results not only establish weighted inequality of the
inequality given in [10, 17], but also extend the results given in [12, 15].

2. PRELIMINARY DEFINITIONS

The power mean M,.(z,y; A) of order r of positive numbers x, y which is defined
by
A"+ (1= A T%, if r £ 0,
M, (2. g2 \) = ( (1=Xy") #
oy, ifr=0,

see [6].
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In [12, 13], Qi gave the following weighted mean values of a positive function f
defined on the interval between z and y with two parameters p, ¢ € R and nonneg-
ative weight w, is not equivalent 0, by

My 5(p,q; 2, y)

(S w@ e @t [ [ w@ fawar) ™7 if (p— 0)(x — y) £ 0,
exp ([Lwt)fo(t) I f)dt [ [V w®)fo(t)dt),  ifp=q.
and M, ;(p,q;x,x) = f(x). Let x,y,s € R, and w and f be positive and integrable

functions on the closed interval [x,y]. The weighted mean of order s of the function
f on [x,y] with the weight w is defined in [7] as

( Y w(t) £ (t)dt / I w(t)dt) ‘) if 5 £ 0,
exp (ffw(t) In f(t)dt/ff w(t)dt), if s = 0.

In addition, M (f, w;z,x) = f(z). By taking s = p — ¢,p,q¢ € R, and re-
placing w(t) by w(t)fi(t) in MB(f, w;z,y), we have that MP~9I(f wfe;z,y) =

My #(p,q;z,y). It is obvious that the weighted mean MU f,w;2,y) is equivalent
to the generalized weighted mean values M, ¢(p, ¢; ,y).

MU(f,wia,y) =

n [15], Sun and Yang gave the following theorem for the weighted mean of
r-convex functions.

Theorem 1. Let f(t) be a positive and continuous function on interval [x,y] with
continuous derivative f'(t) on [z,y], let w(t) be a positive and continuous function
on the range J of the function f(t), and let h(t) =t. Then if f is r-convez,

(2.1) MUl (fowo fia,y) < MEN(h,wh™Y; f(z), f(y))

For any real number s, while if f is r-concave, the inequality is reversed.

We begin with some definitions relating to r-preinvex function. The definitions
of invex sets and preinvex functions, see in [8, 9]. In [3], Antczak introduced the
following definition of an n-path on invex set.

Definition 1. Let K C R™ be a nonempty invex set with respect to n, u,v € K.
For x € K, a set Py := {u+ An(v,u) : X € [0,1]} is said to be a closed n-path
joining the points u and x = u + n(v,u) and P2, := {u+ An(v,u) : X € (0,1)} is
said to be a open n-path joining the points w and x = u + n(v,u) .

We note that if n(v, u) = v—u then the set P, = Py, = {A\v+(1-Nu: X € [0,1]}
is the line segment with the end points v and v.
In [1], Antczak introduced the class of r-preinvex function with respect to 7 on

the optimization theory.

Definition 2. Let K C R™ be a nonempty invex set with respect to n. A function
f: K — RY is said to be r-preinvex with respect to n, if there is a vector-value
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function n: K x K — R" such that
M)+ A =N, ifr#0,
) f(w)' =2, if r=0.

for every v,u € K and X € [0,1].

flu+An(v,u)) < {

Note that 0-preinvex functions are logarithmic preinvex and 1-preinvex functions
are preinvex functions. It is obvious that if f is r-preinvex , then f” is preinvex
function for positive r.

The following Condition C and Condition D were given in [8] and [18], respec-
tively.

Condition 1. (Condition C) Let K C R™ be a nonempty invexr set with respect to
n: K x K — R". We say that the function n satisfies the Condition C if for any
u,v € K and A € [0,1], the following two identities hold.

<> n(u, u (v, u)) = =An(v, w);
<t > nv,u+ An(v,u)) = (1 — (v, u).

Condition 2. (Condition D)Let K C R™ be a nonempty invex set with respect to
n: KxK — R" and let f : K — R be invex with respect to the same 1. we
say that the function f satisfies the Condition D if for any u,v € K, the following
inequality

flu+n(v,u)) < fv)
holds.

In [5], Hwang and Dragomir give the following definitions related to power means.

Definition 3. Let K C R™ be a nonempty invex set with respect to n. A function
f: K — R*" is said to be weakly r-preinver with respect to n, if there is a vector-
value function n: K x K — R™ such that

flu+ (v, u)) < My (f(u+n(v,u)), f(u);A)
for every v,u € K and X € [0,1].

We note that if f is weakly r-preinvex function, then f” is weakly preinvex func-
tion for positive r, if f is weakly O-preinvex function, then logo f is weakly preinvex
function, and if f is weakly 1-preinvex function, then f is weakly preinvex function.
We also note that, in Definition 3, if f further satisfies the Condition D, then f is
r-preinvex function.

In order to obtain our results, we introduce the following new definitions related
to weighted mean of two-parameters for weakly r-preinvex function on an invex set.

Definition 4. Let K C R" be a nonempty invex set with respect to a vector-value
function n : K x K — R™ and let f,w : K — RT be an integrable on n-path
Py for x = u+ n(v,u) where v,u € K, A € [0,1]. Set z(\) = u + Ip(v,u). We
define the weighted mean of the function f(u+An(v,w)) on [0, 1] with respect to A by
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Mpﬂ(fa w;u, w + 77(1}7 U))

(Jo w) P @()an/ f; wa <»mw“q) ir#a
exp (folw(x (M) f9(z(\) In f (= dA/fO fi@O)dr), =

In particular, when q = 0, M, o(f, w;u,u + n(v,u)) = MP(f, w;u,u+ n(v,u))
is the weighted mean of order p of the function f on [u, u+n(v,u)] with the weight w.

In [5], applying Condition C, Hwang and Dragomir have given the following
properties for weakly r-preinvex function.

Proposition 1. Let K C R" be a nonempty invex set with respect ton: K x K —
R™ and suppose that n satisfies Condition C. Let w € K and let f : Py, — R for
everyv € K, A € [0,1] and = u+ n(v,u) € K. Suppose that [ is continuous on
Py, and is twice-differentiable on P°_ and r > 0. Then f is a weakly r-preinvex
function with respect to n if and only if

" 2@ (r = (v, w)" V(@) + fu)n(o,w) V2 f(w)n(v,u)} >0

forr >0,

{n(v,w)"V2 f(w)n(v, w) f(u) = [n(0, )"V f(w)]?}/ 2 (u) > 0
forr=0.

3. WEIGHTED HERMITE-HADAMARD INEQUALITY

For simplicity, in this section, we assume that K C R™ be a nonempty invex set
with respect to a vector value function 1 : K x K — R"™. Applying the definitions,
conditions and proposition in section 2, we have the following theorems.

Theorem 2. Let f be a weakly r-preinvex function on invex K with r > 0. Assume
that f be a positive and continuous function on P,, and twice-differentiable on
PV for every a,b € K, A € [0,1] and a < 2 = a + n(b,a), and let n satisfy
Condition C. Let m and M be the minimum and maximum of f on P, respectively.
Further, let w,h be positive and continuous on [m, M| with h(xz) = x, and let
91,92 : (0,00) = R and suppose that g is a positive integrable on [m, M] and the
ratio g1/gs is integrable on [m, M]. If g1/gs is increasing on [m, M], then

iy w(f(a+ M(b,a)))g1(f(a + An(b,a)))dr

Joy w(f(a+ An(b,a)))ga(f(a+ A(b,a)))dx
fﬂﬁ*“b”> (@)h" = (2)g1 (b)) da

a b,a
ff((a;rn( D w(@)hr=1 () ga (h(x))d

for f(a) # f(a+n(b,a)); the right-hand side of (3.1) is defined by g1(f(a))/92(f(a))
for f(a) = f(a+n(b,a)). If g1/ge is decreasing, then the inequality (3.1) is reversed.

(3.1)

Proof. We give only the proof in the case of r > 0 and g;/g> is increasing. The
proof in the other case is analogous. Let ¢(\) = f"(a + An(b,a)) for r # 0 and
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d(A) = In f(a + M\(b,a)) for r = 0. For convenience, let () = f(a + An(b,a)).
Since f is weakly r-preinvex function with respect to n, Proposition 1 gives
¢"\) = rfC D@ = Dn®,a)" V(@) + fla)n(b,a)"V fa)n(b,a)}
is positive.
When f(a) ;é f( + n(b, a)) The inequality (3.1) is equivalent to
) Jo W@ (AN _ Jy wlb ()" (N)gr () (A)dA

(3.2 1 w_l 4 e
Jo ( ( ))g2( (X)) fo AP (N g2 (B (A) Y (A)dA

Consider

I= / Wb ()91 (B(A))dA / w(th () (1) g2 () (1)l

1 1
- / W (V) ga((A))dA / w(tb () (1)1 (4 () (1)l

e 1 (o [ g1 ()
=[] w0t o)e " w0 2755 - 2 v

Interchanging A and p in (3.3) and adding the resulting equation gives

ey [0 g (()
I=o / [ i a2 [ () = (7 ()] (24558 = B avdy.
If the derivative ¢'(\) = (" (\))’ > 0 for all A € (0, 1), from ¢ (\) = (" (\))” >0,

we have

A
[ () — @' (W))] [jﬁﬁﬁ Aii - %Eﬁm 0.

From (3.4), we get I < 0. This implies that the inequality (3.2) holds and then
(3.1) holds. If ¢'(X\) = (¥"(N\)) < 0 for all X € (0,1), a similar argument gives
I > 0 again the inequality (3.1) holds.

Now suppose that ¢'(A\) = (¥"()\))’ changes sign and ¢(0) < ¢(1). Then 9" (0) <
¥"(1) and there exist a point o € (0,1) such that ¢'(a) = (¥"(a)) = 0 and
(" (X)) <0 for all A € [0,a] and (¢"(A))’ > 0 for all A € [a, 1]. Therefore, there
exist 8 € (a, 1) such that ¥(0) = ¥(5). Thus

B
/O W ()L (W) gn () (\)dA

P(a) P(B)

- / wp(N)a" g1 (x)d + / Wb ()2 g (2)de = 0,
1(0) P(a)

and, similarly,

B
[ 0t g (yar <o,
Consequently, the inequality (3.1) is equivalent to
Jy w(®(N)g _ S5 @O e ()Y (V)

(3.5) T = / :
Ik w(w(A))gl fg P (A)g2(P(A) 9 (A)dA
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Consider

Iy = / w(1(N) g1 (Y (N))dA / w( ()" (1) g2 (Y (1) (1) dpe
0 B

1AmwwmwmewWWWmewwwmmi

(36)
L 1 (i [ 91 (w)
A RO e P O O Ol e b L

Split the double integral Is into two parts

8 1
e A A P e A Bl e e I

and

L i 1y (o [91E ) 1 ()
Iy = - /Q JQ (W) w (W (1)) g2 (1 (X)) g (4 (1) (u>¢)<u>[92(¢(A)) 92(¢(M))}dxd;e
When (A, ) € [0, ] x [8, 1], we have A <y and (" () = r¢)" ™" (1)¢ () > 0 for

all u € (3,1). Thus ¢’(u) > 0 for all x4 € (8,1) and

B0 _ n((8) _ gi(ww)

92(v(N) T 92(¥(8)) T g2(¥(w)
This gives Iz; < 0. By the result proved in case when ¢'(\) = (1»"(\)) > 0, we
see that Iy < 0. Therefore, Iy = Iy + Ioo < 0. It follows that (3.5) and also
(3.1) holds. Finally, if the sign of the derivative ¢'(\) = (¢"()\))’ changes and
¥(0) > (1) a similar proof again shows that (3.1) holds.

When f(a) = f(a+ n(b,a)), ¥(0) = (1), and so ¢(0) = ¢(1). Since ¢" =
(¥"(N))"” > 0, we see that ¢’ = (10" (\)) is continuous and increasing for A € (0, 1).
There exist a point o € (0,1) such that (¢"(«))’ = 0 and (¢" (X))’ < 0 for all
A€ (0,a), and (¥"(N)) >0 for all A € (o, 1). Hence

91(v(N) _ g1(v(1))
92(¥(N) ~ g2(v(1))’
for all A € (0,1). It follows that

/1 w(Y(A))g1(P(A))dA < 91(¥(1))
0

<

1
= g2(¥(1) /0 w(¥(N))g2(Y(N))dA.

Therefore, the inequality (3.1) is valid. This completes the proof of Theorem 2. I

Remark 1. If we take w =1 , we get the inequality (3.1) reduces to the inequality
(3.1) in [5].

Remark 2. If we take g1 (x) = aP, go(x) = x? for suitable real number p, q in (3.1),
we get the following weighted mean inequality for the twice-differentiable and weakly
r-preinver function f on an invex set with respect to n satisfying condition C,
(3.7) My q(f,wo fra,a+n(b,a)) < Myq(h,wh’™"; f(a), f(a+n(b, a))).
Moreover, if we take ¢ =0 in (3.7), we have the following weighted mean of order
P inequality

(3.8) MVI(f,wo fia,a+n(b,a)) < MP(h,wh™"; f(a), f(a+n(b,a))).
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Taking p =1 in (3.8), gives

faJrn(b,a) w(f(:z:))f(:z:)dx < f;((aa)-i-n(b,a)) fw(x)xrdx

L ws@nde s wertde

The inequality (3.9) is the weighted type of the inequality given by Ui-Haq and Igbal
in [17). Forr =1 orr =0 in (3.9), the inequality (3.9) is a weighted type of the
inequality given by Noor in [10].

(3.9)

Remark 3. If we take n(b,a) =b—a in (3.7), we have

(3.10) My q(f,wo fia,b)) < My g(h,wh'™1; f(a), f(b)).
We note that the (3.10) is equivalent to the following inequality

Muog,$ (P, a,b)) < Mypr—1 (P, q; f(a), £(b)).
Take ¢ = 0 in (3.10), the inequality (3.10) reduce to (2.1) in Theorem 1.
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