
INEQUALITIES OF JENSEN�S TYPE FOR GENERALIZED
k-g-FRACTIONAL INTEGRALS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish some inequalities of Jensen and Hermite-
Hadamard type for the k-g-fractional integrals of convex functions de�ned
an interval [a; b]. Some examples for the generalized left- and right-sided
Riemann-Liouville fractional integrals of a function f with respect to another
function g on [a; b] and for classical Riemann-Liouville fractional integrals are
also given.

1. Introduction

The following integral inequality

(1.1) f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt � f (a) + f (b)

2
;

which holds for any convex function f : [a; b] ! R; is well known in the literature
as the Hermite-Hadamard inequality.
There is an extensive amount of literature devoted to this simple and nice result

which has many applications in Theory of Special Means and in Information The-
ory for divergence measures, from which we would like to refer the reader to the
monograph [22], the recent survey paper [15] and the references therein.
Let f : [a; b]! C be a complex valued Lebesgue integrable function on the real

interval [a; b] : The Riemann-Liouville fractional integrals are de�ned for � > 0 by

J�a+f (x) =
1

� (�)

Z x

a

(x� t)��1 f (t) dt

for a < x � b and

J�b�f (x) =
1

� (�)

Z b

x

(t� x)��1 f (t) dt

for a � x < b; where � is the Gamma function. For � = 0; they are de�ned as

J0a+f (x) = J
0
b�f (x) = f (x) for x 2 (a; b) :
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In the recent paper [16] we obtained the following Hermite-Hadamard type in-
equalities for convex functions and the Riemann-Liouville fractional integrals

1

�+ 1

�
1

�
f (x) +

f (a) + f (b)

2

�
� 1

2
� (�)

�
J�a+f (x)

(x� a)� +
J�b�f (x)

(b� x)�
�

(1.2)

�
Z 1

0

(1� s)��1 f
�
sx+ (1� s) a+ b

2

�
ds

� 1

�
f

�
�

�+ 1

�
x

�
+
a+ b

2

��
and

1

�+ 1

�
f (x) +

1

�

f (a) + f (b)

2

�
� 1

2
� (�)

�
J�x�f (a)

(x� a)� +
J�x+f (b)

(b� x)�
�

(1.3)

�
Z 1

0

s��1f

�
sx+ (1� s) a+ b

2

�
ds

� 1

�
f

�
�

�+ 1

�
x+

1

�

a+ b

2

��
for any x 2 (a; b) and � > 0:
In order to extend these type of inequalities for more general fractional integrals

we need the following preparations.
Assume that the kernel k is de�ned either on (0;1) or on [0;1) with complex

values and integrable on any �nite subinterval. We de�ne the function K : [0;1)!
C by

K (t) :=

8<:
R t
0
k (s) ds if 0 < t;

0 if t = 0:

As a simple example, if k (t) = t��1 then for � 2 (0; 1) the function k is de�ned on
(0;1) and K (t) := 1

� t
� for t 2 [0;1) : If � � 1, then k is de�ned on [0;1) and

K (t) := 1
� t
� for t 2 [0;1) :

Let g be a strictly increasing function on (a; b) ; having a continuous derivative
g0 on (a; b) : For the Lebesgue integrable function f : (a; b) ! C, we de�ne the
k-g-left-sided fractional integral of f by

(1.4) Sk;g;a+f (x) =

Z x

a

k (g (x)� g (t)) g0 (t) f (t) dt; x 2 (a; b]

and the k-g-right-sided fractional integral of f by

(1.5) Sk;g;b�f (x) =

Z b

x

k (g (t)� g (x)) g0 (t) f (t) dt; x 2 [a; b):

If we take k (t) = 1
�(�) t

��1; where � is the Gamma function, then

Sk;g;a+f (x) =
1

� (�)

Z x

a

[g (x)� g (t)]��1 g0 (t) f (t) dt(1.6)

=: I�a+;gf(x); a < x � b
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and

Sk;g;b�f (x) =
1

� (�)

Z b

x

[g (t)� g (x)]��1 g0 (t) f (t) dt(1.7)

=: I�b�;gf(x); a � x < b;

which are the generalized left- and right-sided Riemann-Liouville fractional integrals
of a function f with respect to another function g on [a; b] as de�ned in [25, p. 100].
For g (t) = t in (1.7) we have the classical Riemann-Liouville fractional integrals

while for the logarithmic function g (t) = ln t we have the Hadamard fractional
integrals [25, p. 111]

(1.8) H�
a+f(x) :=

1

� (�)

Z x

a

h
ln
�x
t

�i��1 f (t) dt
t

; 0 � a < x � b

and

(1.9) H�
b�f(x) :=

1

� (�)

Z b

x

�
ln

�
t

x

����1
f (t) dt

t
; 0 � a < x < b:

One can consider the function g (t) = �t�1 and de�ne the "Harmonic fractional
integrals" by

(1.10) R�a+f(x) :=
x1��

� (�)

Z x

a

f (t) dt

(x� t)1�� t�+1
; 0 � a < x � b

and

(1.11) R�b�f(x) :=
x1��

� (�)

Z b

x

f (t) dt

(t� x)1�� t�+1
; 0 � a < x < b:

Also, for g (t) = exp (�t) ; � > 0; we can consider the "�-Exponential fractional
integrals"

(1.12) E�a+;�f(x) :=
�

� (�)

Z x

a

[exp (�x)� exp (�t)]��1 exp (�t) f (t) dt;

for a < x � b and

(1.13) E�b�;�f(x) :=
�

� (�)

Z b

x

[exp (�t)� exp (�x)]��1 exp (�t) f (t) dt;

for a � x < b:
If we take g (t) = t in (1.4) and (1.5), then we can consider the following k-

fractional integrals

(1.14) Sk;a+f (x) =

Z x

a

k (x� t) f (t) dt; x 2 (a; b]

and

(1.15) Sk;b�f (x) =

Z b

x

k (t� x) f (t) dt; x 2 [a; b):

In [28], Raina studied a class of functions de�ned formally by

(1.16) F��;� (x) :=
1X
k=0

� (k)

� (�k + �)
xk; jxj < R; with R > 0
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for �; � > 0 where the coe¢ cients � (k) generate a bounded sequence of positive real
numbers. With the help of (1.16), Raina de�ned the following left-sided fractional
integral operator

(1.17) J �
�;�;a+;wf (x) :=

Z x

a

(x� t)��1 F��;� (w (x� t)
�
) f (t) dt; x > a

where �; � > 0, w 2 R and f is such that the integral on the right side exists.
In [1], the right-sided fractional operator was also introduced as

(1.18) J �
�;�;b�;wf (x) :=

Z b

x

(t� x)��1 F��;� (w (t� x)
�
) f (t) dt; x < b

where �; � > 0, w 2 R and f is such that the integral on the right side exists.
Several Ostrowski type inequalities were also established.
We observe that for k (t) = t��1F��;� (wt�) we re-obtain the de�nitions of (1.17)

and (1.18) from (1.14) and (1.15).
In [26], Kirane and Torebek introduced the following exponential fractional in-

tegrals

(1.19) T �a+f (x) :=
1

�

Z x

a

exp

�
�1� �

�
(x� t)

�
f (t) dt; x > a

and

(1.20) T �b�f (x) :=
1

�

Z b

x

exp

�
�1� �

�
(t� x)

�
f (t) dt; x < b

where � 2 (0; 1) :
We observe that for k (t) = 1

� exp
�
� 1��

� t
�
; t 2 R we re-obtain the de�nitions of

(1.19) and (1.20) from (1.14) and (1.15).
Let g be a strictly increasing function on (a; b) ; having a continuous derivative

g0 on (a; b) : We can de�ne the more general exponential fractional integrals

(1.21) T �g;a+f (x) :=
1

�

Z x

a

exp

�
�1� �

�
(g (x)� g (t))

�
g0 (t) f (t) dt; x > a

and

(1.22) T �g;b�f (x) :=
1

�

Z b

x

exp

�
�1� �

�
(g (t)� g (x))

�
g0 (t) f (t) dt; x < b

where � 2 (0; 1) :
Let g be a strictly increasing function on (a; b) ; having a continuous derivative g0

on (a; b) : Assume that � > 0:We can also de�ne the logarithmic fractional integrals

(1.23) L�g;a+f (x) :=
Z x

a

(g (x)� g (t))��1 ln (g (x)� g (t)) g0 (t) f (t) dt;

for 0 < a < x � b and

(1.24) L�g;b�f (x) :=
Z b

x

(g (t)� g (x))��1 ln (g (t)� g (x)) g0 (t) f (t) dt;

for 0 < a � x < b; where � > 0: These are obtained from (1.14) and (1.15) for the
kernel k (t) = t��1 ln t; t > 0:
For � = 1 we get

(1.25) Lg;a+f (x) :=
Z x

a

ln (g (x)� g (t)) g0 (t) f (t) dt; 0 < a < x � b
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and

(1.26) Lg;b�f (x) :=
Z b

x

ln (g (t)� g (x)) g0 (t) f (t) dt; 0 < a � x < b:

For g (t) = t; we have the simple forms

(1.27) L�a+f (x) :=
Z x

a

(x� t)��1 ln (x� t) f (t) dt; 0 < a < x � b;

(1.28) L�b�f (x) :=
Z b

x

(t� x)��1 ln (t� x) f (t) dt; 0 < a � x < b;

(1.29) La+f (x) :=
Z x

a

ln (x� t) f (t) dt; 0 < a < x � b

and

(1.30) Lb�f (x) :=
Z b

x

ln (t� x) f (t) dt; 0 < a � x < b:

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals
see [2]-[18], [23]-[36] and the references therein.
For k and g as at the beginning of Introduction, we consider the mixed operator

Sk;g;a+;b�f (x)(1.31)

:=
1

2
[Sk;g;a+f (x) + Sk;g;b�f (x)]

=
1

2

"Z x

a

k (g (x)� g (t)) g0 (t) f (t) dt+
Z b

x

k (g (t)� g (x)) g0 (t) f (t) dt
#

for the Lebesgue integrable function f : (a; b)! C and x 2 (a; b) :
Observe that

Sk;g;x+f (b) =

Z b

x

k (g (b)� g (t)) g0 (t) f (t) dt; x 2 [a; b)

and

Sk;g;x�f (a) =

Z x

a

k (g (t)� g (a)) g0 (t) f (t) dt; x 2 (a; b]:

We can de�ne also the dual mixed operator

�Sk;g;a+;b�f (x)

:=
1

2
[Sk;g;x+f (b) + Sk;g;x�f (a)]

=
1

2

"Z b

x

k (g (b)� g (t)) g0 (t) f (t) dt+
Z x

a

k (g (t)� g (a)) g0 (t) f (t) dt
#

for any x 2 (a; b) :
In this paper we establish some inequalities of Jensen and Hermite-Hadamard

type for the k-g-fractional integrals of convex functions de�ned an interval [a; b].
Some examples for the generalized left- and right-sided Riemann-Liouville fractional
integrals of a function f with respect to another function g on [a; b] and for classical
Riemann-Liouville fractional integrals are also given.
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2. The Main Results

We have the following bounds for the operator Sk;g;a+;b�f :

Theorem 1. Assume that the kernel k is de�ned either on (0;1) or on [0;1)
with nonnegative values and integrable on any �nite subinterval. Let g be a strictly
increasing function on (a; b) ; having a continuous derivative g0 on (a; b) : If f :
[a; b]! R is a convex function, then

(2.1)
1

2
[K (g (x)� g (a)) +K (g (b)� g (x))]

� f
�
K (g (x)� g (a)) a+K (g (b)� g (x)) b
K (g (x)� g (a)) +K (g (b)� g (x))

+

R x
a
K (g (x)� g (t)) dt�

R b
x
K (g (t)� g (x)) dt

K (g (x)� g (a)) +K (g (b)� g (x))

!

� 1

2

�
f

�
a+

1

K (g (x)� g (a))

Z x

a

K (g (x)� g (t)) dt
�
K (g (x)� g (a))

+f

 
b� 1

K (g (b)� g (x))

Z b

x

K (g (t)� g (x)) dt
!
K (g (b)� g (x))

#
� Sk;g;a+;b�f (x)

� 1

2
[K (g (x)� g (a)) f (a) +K (g (b)� g (x)) f (b)]

+
1

2

"
f (x)� f (a)

x� a

Z x

a

K (g (x)� g (t)) dt� f (b)� f (x)
b� x

Z b

x

K (g (t)� g (x)) dt
#

for x 2 (a; b) :

Proof. Since f : [a; b]! R is convex, then for x 2 (a; b)

(2.2) f (t) � t� a
x� af (x) +

x� t
x� af (a) ; t 2 [a; x]

and

(2.3) f (t) � t� x
b� xf (b) +

b� t
b� xf (x) ; t 2 [x; b] :

By (2.2) and (2.3) we have

Sk;g;a+;b�f (x)(2.4)

=
1

2

"Z x

a

k (g (x)� g (t)) g0 (t) f (t) dt+
Z b

x

k (g (t)� g (x)) g0 (t) f (t) dt
#

� 1

2

Z x

a

k (g (x)� g (t)) g0 (t)
�
t� a
x� af (x) +

x� t
x� af (a)

�
dt

+
1

2

Z b

x

k (g (t)� g (x)) g0 (t)
�
t� x
b� xf (b) +

b� t
b� xf (x)

�
dt

for x 2 (a; b) :
Using the chain rule we have

(K (g (x)� g (t)))0 = �K 0 (g (x)� g (t)) g0 (t) = �k (g (x)� g (t)) g0 (t)
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for t 2 (a; x) and
(K (g (t)� g (x)))0 = K 0 (g (t)� g (x)) g0 (t) = k (g (t)� g (x)) g0 (t)

for t 2 (x; b) :
Then, integrating by parts, we haveZ x

a

k (g (x)� g (t)) g0 (t)
�
t� a
x� af (x) +

x� t
x� af (a)

�
dt

= �
Z x

a

(K (g (x)� g (t)))0
�
t� a
x� af (x) +

x� t
x� af (a)

�
dt

= �
�
K (g (x)� g (t))

�
t� a
x� af (x) +

x� t
x� af (a)

�����x
a

�f (x)� f (a)
x� a

Z x

a

K (g (x)� g (t)) dt
�

= K (g (x)� g (a)) f (a) + f (x)� f (a)
x� a

Z x

a

K (g (x)� g (t)) dt

and Z b

x

k (g (t)� g (x)) g0 (t)
�
t� x
b� xf (b) +

b� t
b� xf (x)

�
dt

=

Z b

x

(K (g (t)� g (x)))0
�
t� x
b� xf (b) +

b� t
b� xf (x)

�
dt

= K (g (t)� g (x))
�
t� x
b� xf (b) +

b� t
b� xf (x)

�����b
x

� f (b)� f (x)
b� x

Z b

x

K (g (t)� g (x)) dt

= K (g (b)� g (x)) f (b)� f (b)� f (x)
b� x

Z b

x

K (g (t)� g (x)) dt

for x 2 (a; b) :
Therefore by (2.4) we have

Sk;g;a+;b�f (x)

� 1

2

�
f (x)� f (a)

x� a

Z x

a

K (g (x)� g (t)) dt+K (g (x)� g (a)) f (a)
�

+
1

2

"
K (g (b)� g (x)) f (b)� f (b)� f (x)

b� x

Z b

x

K (g (t)� g (x)) dt
#

=
1

2
[K (g (x)� g (a)) f (a) +K (g (b)� g (x)) f (b)]

+
1

2

"
f (x)� f (a)

x� a

Z x

a

K (g (x)� g (t)) dt� f (b)� f (x)
b� x

Z b

x

K (g (t)� g (x)) dt
#

for x 2 (a; b) ; which proves the third inequality in (2.1).
We use the Jensen inequality in the form

(2.5)

R d
c
w (t) f (t) dtR d
c
w (t) dt

� f
 R d

c
w (t) tdtR d

c
w (t) dt

!
;
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where f : [c; d]! R is convex and w (t) � 0; t 2 [c; d] is integrable with
R d
c
w (t) dt >

0:
ThereforeZ x

a

k (g (x)� g (t)) g0 (t) f (t) dt(2.6)

� f
 R x

a
k (g (x)� g (t)) g0 (t) tdtR x

a
k (g (x)� g (t)) g0 (t) dt

!Z x

a

k (g (x)� g (t)) g0 (t) dt

and Z b

x

k (g (t)� g (x)) g0 (t) f (t) dt(2.7)

� f
 R b

x
k (g (t)� g (x)) g0 (t) tdtR b

x
k (g (t)� g (x)) g0 (t) dt

!Z b

x

k (g (t)� g (x)) g0 (t) dt

for x 2 (a; b) :
We haveZ x

a

k (g (x)� g (t)) g0 (t) dt = �
Z x

a

(K (g (x)� g (t)))0 dt = K (g (x)� g (a))

andZ x

a

k (g (x)� g (t)) g0 (t) tdt = �
Z x

a

(K (g (x)� g (t)))0 tdt

= �
�
K (g (x)� g (t)) tjxa �

Z x

a

K (g (x)� g (t)) dt
�

= K (g (x)� g (a)) a+
Z x

a

K (g (x)� g (t)) dt

for x 2 (a; b) :
AlsoZ b

x

k (g (t)� g (x)) g0 (t) dt =
Z b

x

(K (g (t)� g (x)))0 dt = K (g (b)� g (x))

and Z b

x

k (g (t)� g (x)) g0 (t) tdt =
Z b

x

(K (g (t)� g (x)))0 tdt

= K (g (t)� g (x)) tjbx �
Z b

x

K (g (t)� g (x)) dt

= K (g (b)� g (x)) b�
Z b

x

K (g (t)� g (x)) dt

for x 2 (a; b) :
Then by (2.6) and (2.7) we haveZ x

a

k (g (x)� g (t)) g0 (t) f (t) dt(2.8)

� f
�
a+

1

K (g (x)� g (a))

Z x

a

K (g (x)� g (t)) dt
�
K (g (x)� g (a))
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and Z b

x

k (g (t)� g (x)) g0 (t) f (t) dt(2.9)

� f
 
b� 1

K (g (b)� g (x))

Z b

x

K (g (t)� g (x)) dt
!
K (g (b)� g (x))

for x 2 (a; b) :
Using the inequalities (2.8) and (2.9) we have

Sk;g;a+;b�f (x)

=
1

2

"Z x

a

k (g (x)� g (t)) g0 (t) f (t) dt+
Z b

x

k (g (t)� g (x)) g0 (t) f (t) dt
#

� 1

2
f

�
a+

1

K (g (x)� g (a))

Z x

a

K (g (x)� g (t)) dt
�
K (g (x)� g (a))

+
1

2
f

 
b� 1

K (g (b)� g (x))

Z b

x

K (g (t)� g (x)) dt
!
K (g (b)� g (x)) ;

which proves the second inequality in (2.1).
By the convexity of f we have for �; � � 0 with �+ � > 0; that

(2.10)
�f (c) + �f (d)

�+ �
� f

�
�c+ �d

�+ �

�
:

Then for

� =
K (g (x)� g (a))

2
; � =

K (g (b)� g (x))
2

and

c = a+
1

K (g (x)� g (a))

Z x

a

K (g (x)� g (t)) dt;

d = b� 1

K (g (b)� g (x))

Z b

x

K (g (t)� g (x)) dt

we have

f

�
a+

1

K (g (x)� g (a))

Z x

a

K (g (x)� g (t)) dt
�
K (g (x)� g (a))

2

+ f

 
b� 1

K (g (b)� g (x))

Z b

x

K (g (t)� g (x)) dt
!
K (g (b)� g (x))

2

� 1

2
[K (g (x)� g (a)) +K (g (b)� g (x))]

� f
�
K (g (x)� g (a)) a+K (g (b)� g (x)) b
K (g (x)� g (a)) +K (g (b)� g (x))

+

R x
a
K (g (x)� g (t)) dt�

R b
x
K (g (t)� g (x)) dt

K (g (x)� g (a)) +K (g (b)� g (x))

!
;

which proves the �rst inequality in (2.1). �
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If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can de�ne the g-mean of two numbers
a; b 2 I as

Mg (a; b) := g
�1
�
g (a) + g (b)

2

�
:

If I = R and g (t) = t is the identity function, then Mg (a; b) = A (a; b) :=
a+b
2 ;

the arithmetic mean. If I = (0;1) and g (t) = ln t; thenMg (a; b) = G (a; b) :=
p
ab,

the geometric mean. If I = (0;1) and g (t) = 1
t ; then Mg (a; b) = H (a; b) :=

2ab
a+b ; the harmonic mean. If I = (0;1) and g (t) = tp; p 6= 0; then Mg (a; b) =

Mp (a; b) :=
�
ap+bp

2

�1=p
; the power mean with exponent p. Finally, if I = R and

g (t) = exp t; then

Mg (a; b) = LME (a; b) := ln

�
exp a+ exp b

2

�
;

the LogMeanExp function.

Corollary 1. With the assumptions of Theorem 1 we have

(2.11) K

�
g (b)� g (a)

2

�

� f

0@a+ b
2

+

RMg(a;b)

a
K
�
g(a)+g(b)

2 � g (t)
�
dt�

R b
Mg(a;b)

K
�
g (t)� g(a)+g(b)

2

�
dt

2K
�
g(b)�g(a)

2

�
1A

� 1

2

24f
0@a+ 1

K
�
g(b)�g(a)

2

� Z Mg(a;b)

a

K

�
g (a) + g (b)

2
� g (t)

�
dt

1A
+f

0@b� 1

K
�
g(b)�g(a)

2

� Z b

Mg(a;b)

K

�
g (t)� g (a) + g (b)

2

�
dt

1A35K �g (b)� g (a)
2

�
� Sk;g;a+;b�f (Mg (a; b))

� 1

2
[f (a) + f (b)]K

�
g (b)� g (a)

2

�
+
1

2

f (Mg (a; b))� f (a)
Mg (a; b)� a

Z Mg(a;b)

a

K

�
g (a) + g (b)

2
� g (t)

�
dt

� 1
2

f (b)� f (Mg (a; b))

b�Mg (a; b)

Z b

Mg(a;b)

K

�
g (t)� g (a) + g (b)

2

�
dt:

For the dual operator �Sk;g;a+;b�f we also have the following bounds:

Theorem 2. Assume that the kernel k is de�ned either on (0;1) or on [0;1)
with nonnegative values and integrable on any �nite subinterval. Let g be a strictly
increasing function on (a; b) ; having a continuous derivative g0 on (a; b) : If f :
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[a; b]! R is a convex function, then

(2.12)
1

2
[K (g (x)� g (a)) +K (g (b)� g (x))]

� f
 
x+

R b
x
K (g (b)� g (t)) dt�

R x
a
K (g (t)� g (a)) dt

K (g (x)� g (a)) +K (g (b)� g (x))

!

� 1

2

�
f

�
x� 1

K (g (x)� g (a))

Z x

a

K (g (t)� g (a)) dt
�
K (g (x)� g (a))

+ f

 
x+

1

K (g (b)� g (x))

Z b

x

K (g (b)� g (t)) dt
!
K (g (b)� g (x))

#
� �Sk;g;a+;b�f (x)

� 1

2
[K (g (x)� g (a)) +K (g (b)� g (x))] f (x)

+
1

2

"
f (b)� f (x)

b� x

Z b

x

K (g (b)� g (t)) dt� f (x)� f (a)
x� a

Z x

a

K (g (t)� g (a)) dt
#

for x 2 (a; b) :

Proof. Using (2.2) and (2.3) we have

�Sk;g;a+;b�f (x)(2.13)

=
1

2

Z x

a

k (g (t)� g (a)) g0 (t) f (t) dt+ 1
2

Z b

x

k (g (b)� g (t)) g0 (t) f (t) dt

� 1

2

Z x

a

k (g (t)� g (a)) g0 (t)
�
t� a
x� af (x) +

x� t
x� af (a)

�
dt

+
1

2

Z b

x

k (g (b)� g (t)) g0 (t)
�
t� x
b� xf (b) +

b� t
b� xf (x)

�
dt

for x 2 (a; b) :
Using the chain rule we have

(K (g (b)� g (t)))0 = �K 0 (g (b)� g (t)) g0 (t) = �k (g (b)� g (t)) g0 (t)

for t 2 (x; b) and

(K (g (t)� g (a)))0 = K 0 (g (t)� g (a)) g0 (t) = k (g (t)� g (a)) g0 (t)

for t 2 (a; x) :
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Then we haveZ x

a

k (g (t)� g (a)) g0 (t)
�
t� a
x� af (x) +

x� t
x� af (a)

�
dt

=

Z x

a

(K (g (t)� g (a)))0
�
t� a
x� af (x) +

x� t
x� af (a)

�
dt

= K (g (t)� g (a))
�
t� a
x� af (x) +

x� t
x� af (a)

�����x
a

� f (x)� f (a)
x� a

Z x

a

K (g (t)� g (a)) dt

= K (g (x)� g (a)) f (x)� f (x)� f (a)
x� a

Z x

a

K (g (t)� g (a)) dt

and Z b

x

k (g (b)� g (t)) g0 (t)
�
t� x
b� xf (b) +

b� t
b� xf (x)

�
dt

= �
Z b

x

(K (g (b)� g (t)))0
�
t� x
b� xf (b) +

b� t
b� xf (x)

�
dt

= �
"
K (g (b)� g (t))

�
t� x
b� xf (b) +

b� t
b� xf (x)

�����b
x

�f (b)� f (x)
b� x

Z b

x

K (g (b)� g (t)) dt
#

= K (g (b)� g (x)) f (x) + f (b)� f (x)
b� x

Z b

x

K (g (b)� g (t)) dt

for x 2 (a; b) :
From (2.13) we get

�Sk;g;a+;b�f (x)

� 1

2

�
K (g (x)� g (a)) f (x)� f (x)� f (a)

x� a

Z x

a

K (g (t)� g (a)) dt
�

+
1

2

"
K (g (b)� g (x)) f (x) + f (b)� f (x)

b� x

Z b

x

K (g (b)� g (t)) dt
#

=
1

2
[K (g (x)� g (a)) +K (g (b)� g (x))] f (x)

+
1

2

"
f (b)� f (x)

b� x

Z b

x

K (g (b)� g (t)) dt� f (x)� f (a)
x� a

Z x

a

K (g (t)� g (a)) dt
#
;

which proves the third inequality in (2.12).
By Jensen�s inequality (2.5) we also haveZ x

a

k (g (t)� g (a)) g0 (t) f (t) dt(2.14)

� f
 R x

a
k (g (t)� g (a)) g0 (t) tdtR x

a
k (g (t)� g (a)) g0 (t) dt

!Z x

a

k (g (t)� g (a)) g0 (t) dt
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and Z b

x

k (g (b)� g (t)) g0 (t) f (t) dt(2.15)

� f
 R b

x
k (g (b)� g (t)) g0 (t) tdtR b

x
k (g (b)� g (t)) g0 (t) dt

!Z b

x

k (g (b)� g (t)) g0 (t) dt

for x 2 (a; b) :
Observe thatZ x

a

k (g (t)� g (a)) g0 (t) dt =
Z x

a

(K (g (t)� g (a)))0 dt = K (g (x)� g (a))

and Z x

a

k (g (t)� g (a)) g0 (t) tdt =
Z x

a

(K (g (t)� g (a)))0 tdt

= K (g (t)� g (a)) tjxa �
Z x

a

K (g (t)� g (a)) dt

= K (g (x)� g (a))x�
Z x

a

K (g (t)� g (a)) dt

for x 2 (a; b) :
AlsoZ b

x

k (g (b)� g (t)) g0 (t) dt = �
Z b

x

(K (g (b)� g (t)))0 dt = K (g (b)� g (x))

andZ b

x

k (g (b)� g (t)) g0 (t) tdt = �
Z b

x

(K (g (b)� g (t)))0 tdt

= �
"
K (g (b)� g (t)) tjbx �

Z b

x

K (g (b)� g (t)) dt
#

= K (g (b)� g (x))x+
Z b

x

K (g (b)� g (t)) dt

for x 2 (a; b) :
Therefore, by (2.14) and (2.15) we have

�Sk;g;a+;b�f (x)

=
1

2

Z x

a

k (g (t)� g (a)) g0 (t) f (t) dt+ 1
2

Z b

x

k (g (b)� g (t)) g0 (t) f (t) dt

� 1

2
f

�
x� 1

K (g (x)� g (a))

Z x

a

K (g (t)� g (a)) dt
�
K (g (x)� g (a))

+
1

2
f

 
x+

1

K (g (b)� g (x))

Z b

x

K (g (b)� g (t)) dt
!
K (g (b)� g (x)) ;

which prove the second inequality in (2.12).
Using the inequality (2.10) for

� =
K (g (x)� g (a))

2
; � =

K (g (b)� g (x))
2
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and

c = x� 1

K (g (x)� g (a))

Z x

a

K (g (t)� g (a)) dt;

d = x+
1

K (g (b)� g (x))

Z b

x

K (g (b)� g (t)) dt

we have

f

�
x� 1

K (g (x)� g (a))

Z x

a

K (g (t)� g (a)) dt
�
K (g (x)� g (a))

2

+ f

 
x+

1

K (g (b)� g (x))

Z b

x

K (g (b)� g (t)) dt
!
K (g (b)� g (x))

2

� 1

2
[K (g (x)� g (a)) +K (g (b)� g (x))]

� f
 
x+

R b
x
K (g (b)� g (t)) dt�

R x
a
K (g (t)� g (a)) dt

K (g (x)� g (a)) +K (g (b)� g (x))

!
;

which proves the �rst inequality in (2.12). �

Corollary 2. With the assumptions of Theorem 2, we have

(2.16) K

�
g (b)� g (a)

2

�

� f

0@Mg (a; b) +

R b
Mg(a;b)

K (g (b)� g (t)) dt�
RMg(a;b)

a
K (g (t)� g (a)) dt

2K
�
g(b)�g(a)

2

�
1A

� 1

2

24f
0@Mg (a; b)�

1

K
�
g(b)�g(a)

2

� Z Mg(a;b)

a

K (g (t)� g (a)) dt

1A
+ f

0@Mg (a; b) +
1

K
�
g(b)�g(a)

2

� Z b

Mg(a;b)

K (g (b)� g (t)) dt

1A35K �g (b)� g (a)
2

�
� �Sk;g;a+;b�f (Mg (a; b))

� K
�
g (b)� g (a)

2

�
f (Mg (a; b))

+
1

2

f (b)� f (Mg (a; b))

b�Mg (a; b)

Z b

Mg(a;b)

K (g (b)� g (t)) dt

� 1
2

f (Mg (a; b))� f (a)
Mg (a; b)� a

Z Mg(a;b)

a

K (g (t)� g (a)) dt:

3. Applications for Generalized Riemann-Liouville Fractional
Integrals

If we take k (t) = 1
�(�) t

��1; where � is the Gamma function, then

Sk;g;a+f (x) = I
�
a+;gf(x) :=

1

� (�)

Z x

a

[g (x)� g (t)]��1 g0 (t) f (t) dt
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for a < x � b and

Sk;g;b�f (x) = I
�
b�;gf(x) :=

1

� (�)

Z b

x

[g (t)� g (x)]��1 g0 (t) f (t) dt

for a � x < b; which are the generalized left- and right-sided Riemann-Liouville
fractional integrals of a function f with respect to another function g on [a; b] as
de�ned in [25, p. 100].
We consider the mixed operators

(3.1) I�g;a+;b�f (x) :=
1

2

�
I�a+;gf(x) + I

�
b�;gf(x)

�
and

(3.2) �I�g;a+;b�f (x) :=
1

2

�
I�x+;gf (b) + I

�
x�;gf(a)

�
for x 2 (a; b) :
We observe that for � > 0 we have

K (t) =
1

� (�)

Z t

0

s��1ds =
t�

�� (�)
=

t�

� (�+ 1)
; t � 0:

In what follows we assume that f : [a; b]! R is a convex function on [a; b] : Using
the inequality (2.1) we get

(3.3)
1

2� (�+ 1)
[(g (x)� g (a))� + (g (b)� g (x))�]

�f
 
(g (x)� g (a))� a+(g (b)� g (x))� b+

R x
a
(g (x)� g (t))� dt�

R b
x
(g (t)� g (x))� dt

(g (x)� g (a))�+(g (b)� g (x))�

!

� 1

2� (�+ 1)

�
f

�
a+

1

(g (x)� g (a))�
Z x

a

(g (x)� g (t))� dt
�
(g (x)� g (a))�

+f

 
b� 1

(g (b)� g (x))�
Z b

x

(g (t)� g (x))� dt
!
(g (b)� g (x))�

#
� I�g;a+;b�f (x)

� 1

2� (�+ 1)
[(g (x)� g (a))� f (a) + (g (b)� g (x))� f (b)]

+
1

2� (�+ 1)

"
f (x)� f (a)

x� a

Z x

a

(g (x)� g (t))� dt� f (b)� f (x)
b� x

Z b

x

(g (t)� g (x))� dt
#
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while from (2.12) we get

(3.4)
1

2� (�+ 1)
[(g (x)� g (a))� + (g (b)� g (x))�]

� f
 
x+

R b
x
(g (b)� g (t))� dt�

R x
a
(g (t)� g (a))� dt

(g (x)� g (a))� + (g (b)� g (x))�

!

� 1

2� (�+ 1)

�
f

�
x� 1

(g (x)� g (a))�
Z x

a

(g (t)� g (a))� dt
�
(g (x)� g (a))�

+ f

 
x+

1

(g (b)� g (x))�
Z b

x

(g (b)� g (t))� dt
!
(g (b)� g (x))�

#
� �I�g;a+;b�f (x)

� 1

2� (�+ 1)
[(g (x)� g (a))� + (g (b)� g (x))�] f (x)

+
1

2� (�+ 1)

"
f (b)� f (x)

b� x

Z b

x

(g (b)� g (t))� dt� f (x)� f (a)
x� a

Z x

a

(g (t)� g (a))� dt
#

for x 2 (a; b) :
Also, by (2.11) and (2.16) we have

(3.5)
1

2�� (�+ 1)
(g (b)� g (a))�

� f

0@a+ b
2

+

RMg(a;b)

a

�
g(a)+g(b)

2 � g (t)
��
dt�

R b
Mg(a;b)

�
g (t)� g(a)+g(b)

2

��
dt

21�� (g (b)� g (a))�

1A
� 1

2�+1� (�+ 1)

24f
0@a+ 1�

g(b)�g(a)
2

�� Z Mg(a;b)

a

�
g (a) + g (b)

2
� g (t)

��
dt

1A
+f

0@b� 1�
g(b)�g(a)

2

�� Z b

Mg(a;b)

�
g (t)� g (a) + g (b)

2

��
dt

1A35 (g (b)� g (a))�
� I�g;a+;b�f (Mg (a; b))

� 1

2�+1� (�+ 1)
[f (a) + f (b)] (g (b)� g (a))�

+
1

2� (�+ 1)

f (Mg (a; b))� f (a)
Mg (a; b)� a

Z Mg(a;b)

a

�
g (a) + g (b)

2
� g (t)

��
dt

� 1

2� (�+ 1)

f (b)� f (Mg (a; b))

b�Mg (a; b)

Z b

Mg(a;b)

�
g (t)� g (a) + g (b)

2

��
dt
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and

(3.6)
1

2�� (�+ 1)
(g (b)� g (a))�

� f

0@Mg (a; b) +

R b
Mg(a;b)

(g (b)� g (t))� dt�
RMg(a;b)

a
(g (t)� g (a))� dt

21�� (g (b)� g (a))

1A
� 1

2�+1� (�+ 1)

24f
0@Mg (a; b)�

1�
g(b)�g(a)

2

�� Z Mg(a;b)

a

(g (t)� g (a))� dt

1A
+ f

0@Mg (a; b) +
1�

g(b)�g(a)
2

�� Z b

Mg(a;b)

(g (b)� g (t))� dt

1A35 (g (b)� g (a))�
� �I�g;a+;b�f (Mg (a; b))

� 1

2�� (�+ 1)
(g (b)� g (a))� f (Mg (a; b))

+
1

2� (�+ 1)

f (b)� f (Mg (a; b))

b�Mg (a; b)

Z b

Mg(a;b)

(g (b)� g (t))� dt

� 1

2� (�+ 1)

f (Mg (a; b))� f (a)
Mg (a; b)� a

Z Mg(a;b)

a

(g (t)� g (a))� dt:

If we take g (t) = t; t 2 [a; b] in (3.3) and (3.4), then we get

(3.7)
1

2� (�+ 1)
[(x� a)� + (b� x)�] f

 
a�+x
�+1 (x� a)

�
+ x+�b

�+1 (b� x)
�

(x� a)�+(b� x)�

!

� 1

2� (�+ 1)

�
f

�
a�+ x

�+ 1

�
(x� a)� + f

�
x+ �b

�+ 1

�
(b� x)�

�
� J�a+;b�f (x)

� 1

2� (�+ 1)
[(x� a)� f (a) + (b� x)� f (b)]

+
1

2� (�+ 2)
[(f (x)� f (a)) (x� a)� � (f (b)� f (x)) (b� x)�]

while from (2.12) we get

(3.8)
1

2� (�+ 1)
[(x� a)� + (b� x)�] f

 
�x+a
�+1 (x� a)

�
+ b+�x

�+1 (b� x)
�

(x� a)� + (b� x)�

!

� 1

2� (�+ 1)

�
f

�
�x+ a

�+ 1

�
(x� a)� + f

�
b+ �x

�+ 1

�
(b� x)�

�
� �J�a+;b�f (x)

� 1

2� (�+ 1)
[(x� a)� + (b� x)�] f (x)

+
1

2� (�+ 2)
[(f (b)� f (x)) (b� x)� � (f (x)� f (a)) (x� a)�]
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for x 2 (a; b) ; where

J�a+;b�f (x) :=
1

2

�
J�a+f(x) + J

�
b�f(x)

�
and

�J�a+;b�f (x) :=
1

2

�
J�x+f (b) + J

�
x�f(a)

�
for x 2 (a; b) :
If we take x = a+b

2 in (3.7) and (3.8), then we get, after required calculations

(3.9)
(b� a)�

2�� (�+ 1)
f

�
a+ b

2

�
� (b� a)�

2�+1� (�+ 1)

�
f

�
(2�+ 1) a+ b

2 (�+ 1)

�
+ f

�
a+ (2�+ 1) b

2 (�+ 1)

��
� J�a+;b�f

�
a+ b

2

�
� (b� a)�

2�� (�+ 2)
f

�
a+ b

2

�
+
� (b� a)�

2�� (�+ 2)

f (a) + f (b)

2

� (b� a)�

2�� (�+ 1)

f (a) + f (b)

2

and

(3.10)
(b� a)�

2�� (�+ 1)
f

�
a+ b

2

�
� (b� a)�

2�+1� (�+ 1)

�
f

�
(�+ 2) a+ �b

2 (�+ 1)

�
+ f

�
�a+ (�+ 2) b

2 (�+ 1)

��
� �J�a+;b�f

�
a+ b

2

�
� � (b� a)�

2�� (�+ 2)
f

�
a+ b

2

�
+

(b� a)�

2�� (�+ 2)

f (b) + f (a)

2

� (b� a)�

2�� (�+ 1)

f (a) + f (b)

2
:

The last inequalities follow by the fact that

f

�
a+ b

2

�
� f (b) + f (a)

2
:
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