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Abstract. In this work, we study some properties and inequalities involving
derivatives of a generalized form of the Wallis’ cosine (sine) formula. Among
other things, log-convexity, monotonicity, subadditivity and subhomogeneity
properties of the function are discussed.

1. Introduction

The classical Euler’s Gamma function is usually defined as

Γ(x) =

∫ ∞
0

tx−1e−t dt

for x > 0. Closely associated with the Gamma function is the digamma (or
Psi) function ψ(x), which is defined as the logarithmic derivative of the Gamma
function. That is,

ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)

= −γ − 1

x
+
∞∑
n=1

x

n(n+ x)
,

where γ = limn→∞
(∑n

k=1
1
k
− lnn

)
= 0.577215664... is the Euler-Mascheroni’s

constant.
In 1956, Kazarinoff [3] defined the function

H(x) =

∫ π
2

0

cosx t dt =

∫ π
2

0

sinx t dt =

√
π

2

Γ(x
2

+ 1
2
)

Γ(x
2

+ 1)
, (1)

for real numbers x ∈ (−1,∞). It is clear that this function is a geralization of
the Wallis’ cosine (sine) formula [5]:

In =

∫ π
2

0

cosn t dt =

∫ π
2

0

sinn t dt =

√
π

2

Γ(n
2

+ 1
2
)

Γ(n
2

+ 1)
, (2)

which is defined for n ∈ N. Lately, the function (2) has been applied in [2], [6] and
[7] to study some properties of a sequence originating from geometric probability
for pairs of hyperplanes intersecting with a convex body. Also, in the recent work
[4], the author studied some interesting properties and inequalities involving the
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generalized function (1). In the present work, our objective is to derive some
properties and inequalities involving derivatives of the generalized function. We
present our results in the following section.

2. Main Results

By differentiating m times of the generalized function (1), we obtain

H(m)(x) =

∫ π
2

0

(ln cos t)m cosx t dt =
dm

dxm

{√
π

2

Γ(x
2

+ 1
2
)

Γ(x
2

+ 1)

}
, (3)

for x ∈ (−1,∞) and m ∈ N0, where H(0)(x) = H(x). In particular, if x = 0, then
we obtain

H(m)(0) =

∫ π
2

0

(ln cos t)m dt = Cm (4)

which is known in the literature as the log-cosine function [8]. Also, the right
hand side of (3) gives

H ′(x) =
H(x)

2

{
ψ

(
x

2
+

1

2

)
− ψ

(x
2

+ 1
)}

,

H ′′(x) =
H(x)

4

{[
ψ

(
x

2
+

1

2

)
− ψ

(x
2

+ 1
)]2

+

[
ψ′
(
x

2
+

1

2

)
− ψ′

(x
2

+ 1
)]}

,

from which we derive the following few special cases.

H(0)(0) =
π

2
, (5)

H ′(0) =

∫ π
2

0

ln cos t dt = −π
2

ln 2, (6)

H ′(1) =

∫ π
2

0

(ln cos t) cos t dt = −1 + ln 2, (7)

H ′(2) =

∫ π
2

0

(ln cos t) cos2 t dt =
π

8
− 1

4
ln 2, (8)

H ′′(0) =

∫ π
2

0

(ln cos t)2 dt =
π3

24
+
π

2
(ln 2)2, (9)

H ′′(1) =

∫ π
2

0

(ln cos t)2 cos t dt = 1− π2

12
+ (ln 2− 1)2, (10)

H ′′(2) =

∫ π
2

0

(ln cos t)2 cos2 t dt =
π

4
(ln 2− 1)2 +

π3

48
− 3π

16
, (11)

H ′′′(0) =

∫ π
2

0

(ln cos t)3 dt = −π
3

8
ln 2− π

2
(ln 2)3 − 3π

4
ζ(3), (12)

where ζ(x) is the Riemann zeta function.

Remark 2.1. Some families of these type of integrals have been studied in [1] and
as pointed out in that work, these types of integrals have a wide range potential
applications in mathematical and physical problems.
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In what follows, we present some inequalities involving the function H(m)(x).
We begin with the following well-known definition.

Definition 2.2. A function f : I → R is said to be logarithmically convex or in
short log-convex if ln f is convex on I. That is if

ln f(αx+ βy) ≤ α ln f(x) + β ln f(y)

or equivalently

f(αx+ βy) ≤ (f(x))α(f(y))β

for each x, y ∈ I and α, β > 0 such that α + β = 1.

Theorem 2.3. Let m,n ∈ N0 be even, a > 1, 1
a

+ 1
b

= 1 and m
a

+ n
b
∈ N0. Then

the inequality

H(m
a
+n
b
)
(x
a

+
y

b

)
≤
(
H(m)(x)

) 1
a
(
H(n)(y)

) 1
b (13)

is satisfied for x, y ∈ (−1,∞).

Proof. The main tool of this proof is the Hölders inequality for integrals. Notice
that since x, y ∈ (−1,∞), a > 1 and 1

a
+ 1

b
= 1, then x

a
+ y

b
∈ (−1,∞). Then by

(3), we obtain

H(m
a
+n
b
)
(x
a

+
y

b

)
=

∫ π
2

0

(ln cos t)
m
a
+n
b cos

x
a
+ y
b t dt

=

∫ π
2

0

(ln cos t)
m
a cos

x
a t · (ln cos t)

n
b cos

y
b t dt

≤

(∫ π
2

0

(ln cos t)m cosx t dt

) 1
a
(∫ π

2

0

(ln cos t)n cosy t dt

) 1
b

=
(
H(m)(x)

) 1
a
(
H(n)(y)

) 1
b

which completes the proof.

Remark 2.4. If m = n in (13), then we obtain

H(m)
(x
a

+
y

b

)
≤
(
H(m)(x)

) 1
a
(
H(m)(y)

) 1
b (14)

which is implies that the function H(m)(x) is log-convex on (−1,∞).

Remark 2.5. If m = n and a = b = 2 in (13), then we obtain

H(m)

(
x+ y

2

)
≤
√
H(m)(x)H(m)(y). (15)

Remark 2.6. If n = m + 2, a = b = 2 and x = y in (13), then we obtain the
Turan-type inequality

H(m)(x)H(m+2)(x) ≥
(
H(m+1)(x)

)2
. (16)
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Corollary 2.7. The function

h(x) =
H(m+1)(x)

H(m)(x)
(17)

is increasing on x ∈ (−1,∞) for m ∈ N0 even.

Proof. Let m ∈ N0 be even. Then direct differentiation yields

h′(x) =
H(m+2)(x)H(m)(x)−

(
H(m+1)(x)

)2
[H(m)(x)]2

≥ 0,

which follows easily from the result (16).

Theorem 2.8. Let m ∈ N0 be even and x, y ∈ (−1,∞) with x ≤ y. Then the
inequality (

H(m)(y)

H(m)(x)

)λ
≤ H(m)(λy)

H(m)(λx)
(18)

holds if λ ≥ 1 and reverses if 0 < λ < 1.

Proof. Define a function G for m ∈ N0 even and x, y ∈ (−1,∞) with x ≤ y by

G(x) =
H(m)(λx)

[H(m)(x)]
λ
,

where λ > 0. Next, let g(x) = lnG(x). Then,

g′(x) = λ

[
H(m+1)(λx)

H(m)(λx)
− H(m+1)(x)

H(m)(x)

]
.

Suppose that λ ≥ 1. Then since h(x) is increasing, it follows that g′(x) ≥ 0,
which implies that g(x) is increasing. As a result G is increasing and for x ≤ y,
we obtain G(x) ≤ G(y) which gives (18). The case for 0 < λ < 1 follows the
same procedure.

Theorem 2.9. Let m ∈ N0, u ∈ N0, such that m and u are even and m ≥ u.
Then the Turan-type inequality

exp
{
H(m−u)(x)

}
· exp

{
H(m+u)(x)

}
≥
[
exp

{
H(m)(x)

}]2
(19)

holds for x ∈ (−1,∞).
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Proof. By using (3), we obtain the following estimation.

H(m−u)(x)

2
+
H(m+u)(x)

2
−H(m)(x)

=
1

2

[∫ π
2

0

(ln cos t)m−u cosx t dt+

∫ π
2

0

(ln cos t)m+u cosx t dt

]

−
∫ π

2

0

(ln cos t)m cosx t dt

=
1

2

∫ π
2

0

[
1

(ln cos t)u
+ (ln cos t)u + 2

]
(ln cos t)m cosx t dt

=
1

2

∫ π
2

0

[1 + (ln cos t)u]2 (ln cos t)m−u cosx t dt

≥ 0.

Thus
H(m−u)(x)

2
+
H(m+u)(x)

2
≥ H(m)(x),

and by taking exponents, we obtain the result (19).

Theorem 2.10. Let m ∈ N0 be even. Then the inequality

H(m)(x+ y) ≤ H(m)(x) +H(m)(y) (20)

holds for x, y ∈ [0,∞). In other words, H(m)(x) is subadditive for m ∈ N0 even.

Proof. Let a > 1, b > 1 and 1
a

+ 1
b

= 1. Then by the Hölder’s inequality, we
obtain

H(m)(x+ y) =

∫ π
2

0

(ln cos t)
m
a
+m
b cosx+y t dt

=

∫ π
2

0

(ln cos t)
m
a cosx t · (ln cos t)

m
b cosy t dt

≤

(∫ π
2

0

(ln cos t)m cosax t dt

) 1
a
(∫ π

2

0

(ln cos t)m cosby t dt

) 1
b

=
(
H(m)(ax)

) 1
a
(
H(m)(by)

) 1
b .

That is

H(m)(x+ y) ≤
(
H(m)(ax)

) 1
a
(
H(m)(by)

) 1
b . (21)

Then by the Young’s inequality:

S
1
aT

1
b ≤ S

a
+
T

b
,

where S, T ≥ 0, a > 1, 1
a

+ 1
b

= 1, we obtain(
H(m)(ax)

) 1
a
(
H(m)(by)

) 1
b ≤ H(m)(ax)

a
+
H(m)(by)

b
. (22)
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Furthermore, since a > 1, b > 1 and H(m)(x) is decreasing for even m, we have

H(m)(ax)

a
+
H(m)(by)

b
≤ H(m)(x) +H(m)(y). (23)

Finally, by combining (21), (22) and (23), we obtain the result (20).

Remark 2.11. If x = y in (20), then we obtain

H(m)(2x) ≤ 2H(m)(x). (24)

By repeated applications of (20) and (24), we obtain

H(m)(nx) ≤ nH(m)(x), n ∈ N, (25)

which implies that H(m)(x) is N-subhomogeneous for m ∈ N0 even.

Remark 2.12. Note that H(0)(n) = In for n ∈ N. Then as a special case, by
letting m = 0, x = r ∈ N and y = s ∈ N in (20), we obtain

Ir+s ≤ Ir + Is

which implies that the Wallis’ sequence In is subadditive.

Theorem 2.13. Let m ∈ N0 be even.Then the inequality

H(m)(x)H(m)(y) ≤ CmH
(m)(x+ y) (26)

holds for x, y > 0, where Cm is as defined by (4).

Proof. Let T be defined for m ∈ N0 even by

T (x, y) =
H(m)(x)H(m)(y)

H(m)(x+ y)
, x > 0, y > 0,

and let δ(x, y) = lnT (x, y). With no loss of generality, let y be fixed. Then,

δ′(x, y) =
H(m+1)(x)

H(m)(x)
− H(m+1)(x+ y)

H(m)(x+ y)
≤ 0,

since H(m+1)(x)

H(m)(x)
is increasing (see Corollary 2.7). Thus, δ(x, y) is decreasing and

consequently, T (x, y) is also decreasing. Then for x > 0, we obtain

H(m)(x)H(m)(y)

H(m)(x+ y)
≤ H(m)(0) = Cm,

which gives the result (26).
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