IMPROVING SCHWARZ INEQUALITY IN INNER PRODUCT SPACES

SILVESTRU SEVER DRAGOMIR^{1,2}

Abstract. Some improvements of the celebrated Schwarz inequality in complex inner product spaces are given. Applications for n-tuples of complex numbers are provided.

1. Introduction

Let $(H, \langle \cdot, \cdot \rangle)$ be an inner product space over the real or complex numbers field \mathbb{K} . The following inequality is well known in literature as the *Schwarz inequality*

(1.1)
$$||x||^2 ||y||^2 \ge |\langle x, y \rangle|^2$$

for any $x, y \in H$. The equality case holds in (1.1) if and only if there exists a constant $\lambda \in \mathbb{K}$ such that $x = \lambda y$. This inequality can be written in an equivalent form as

$$(1.2) ||x|| ||y|| \ge |\langle x, y \rangle|.$$

Assume that $P: H \to H$ is an orthogonal projection on H, namely, it satisfies the condition $P^2 = P = P^*$. We obviously have in the operator order of B(H), the Banach algebra of all linear bounded operators on H, that $0 \le P \le 1_H$.

In the recent paper [5, Eq. (2.6)] we established among others that

$$||x|| \, ||y|| \ge \left\langle Px, x \right\rangle^{1/2} \left\langle Py, y \right\rangle^{1/2} + \left| \left\langle x, y \right\rangle - \left\langle Px, y \right\rangle \right|$$

for any $x, y \in H$. Since by the triangle inequality we have

$$|\langle x,y\rangle - \langle Px,y\rangle| \ge |\langle x,y\rangle| - |\langle Px,y\rangle|$$

and by the Schwarz inequality for nonnegative selfadjoint operators we have

$$\langle Px, x \rangle^{1/2} \langle Py, y \rangle^{1/2} \ge |\langle Px, y \rangle|$$

for any $x, y \in H$, then we get from (1.3) the following refinement of (1.2)

(1.4)
$$||x|| ||y|| - |\langle x, y \rangle| \ge \langle Px, x \rangle^{1/2} \langle Py, y \rangle^{1/2} - |\langle Px, y \rangle| \ge 0$$

for any $x, y \in H$.

In 1985 the author [1] (see also [2] or [4, p. 36]) established the following inequality related to Schwarz inequality

$$(1.5) \left(\|x\|^2 \|z\|^2 - |\langle x, z \rangle|^2 \right) \left(\|y\|^2 \|z\|^2 - |\langle y, z \rangle|^2 \right) \ge \left| \langle x, y \rangle \|z\|^2 - \langle x, z \rangle \langle z, y \rangle \right|^2$$

1991 Mathematics Subject Classification. 46C05; 26D15.

Key words and phrases. Inner product spaces, Schwarz's inequality.

for any $x, y, z \in H$ and obtained, as a consequence, the following refinement of (1.2):

$$(1.6) ||x|| ||y|| \ge |\langle x, y \rangle - \langle x, e \rangle \langle e, y \rangle| + |\langle x, e \rangle \langle e, y \rangle| \ge |\langle x, y \rangle|$$

for any $x, y, e \in H$ with ||e|| = 1.

If we take the square root in (1.5) and use the triangle inequality, we get for x, $y, z \in H \setminus \{0\}$ that

$$\left(\|x\|^{2} \|z\|^{2} - |\langle x, z \rangle|^{2} \right)^{1/2} \left(\|y\|^{2} \|z\|^{2} - |\langle y, z \rangle|^{2} \right)^{1/2}$$

$$\geq \left| \langle x, y \rangle \|z\|^{2} - \langle x, z \rangle \langle z, y \rangle \right| \geq \left| \langle x, z \rangle \langle z, y \rangle| - \left| \langle x, y \rangle | \|z\|^{2}$$

which by division with $||x|| ||y|| ||z||^2 \neq 0$ produces

$$(1.7) \qquad \frac{|\langle x, y \rangle|}{\|x\| \|y\|} \ge \frac{|\langle x, z \rangle|}{\|x\| \|z\|} \frac{|\langle z, y \rangle|}{\|z\| \|y\|} - \sqrt{1 - \frac{|\langle x, z \rangle|^2}{\|x\|^2 \|z\|^2}} \sqrt{1 - \frac{|\langle y, z \rangle|^2}{\|y\|^2 \|z\|^2}}.$$

If the angle between the vectors $x,\,y,\,\Psi_{x,y}\in[0,\pi/2]\,,$ is defined by [8]

(1.8)
$$\cos \Psi_{x,y} = \frac{|\langle x, y \rangle|}{\|x\| \|y\|}, \ x, \ y \neq 0,$$

then the function $\Psi_{x,y}$ is a natural metric on complex projective space, since is satisfies the inequality [8]

(1.9)
$$\Psi_{x,y} \leq \Psi_{x,z} + \Psi_{z,y} \text{ for any } x, y, z \neq 0.$$

By using (1.8) we have by (1.7) that

$$\cos \Psi_{x,y} > \cos \Psi_{x,z} \cos \Psi_{z,x} - \sin \Psi_{x,z} \sin \Psi_{z,x} = \cos (\Psi_{x,z} + \Psi_{z,x})$$

which is equivalent to (1.9) since the function cos is decreasing on $[0, \pi]$. This provides a different proof of (1.9) than the one from [8] where it was done by utilising the celebrated Kreĭn's inequality [7], see also [6, p. 56],

(1.10)
$$\Phi_{x,y} \le \Phi_{x,z} + \Phi_{z,y} \text{ for any } x, \ y, \ z \ne 0,$$

obtained for angles $\Phi_{x,y}$ between two vectors x, y, where in this case $\Phi_{x,y}$ is defined by

$$\cos \Phi_{x,y} = \frac{\operatorname{Re} \langle x, y \rangle}{\|x\| \|y\|}, \ x, \ y \neq 0.$$

The following inequality has been obtained by Wang and Zhang in [10] (see also [11, p. 195])

(1.11)
$$\sqrt{1 - \frac{\left|\langle x, y \rangle\right|^2}{\left\|x\right\|^2 \left\|y\right\|^2}} \le \sqrt{1 - \frac{\left|\langle x, z \rangle\right|^2}{\left\|x\right\|^2 \left\|z\right\|^2}} + \sqrt{1 - \frac{\left|\langle y, z \rangle\right|^2}{\left\|y\right\|^2 \left\|z\right\|^2}}$$

for any $x, y, z \in H \setminus \{0\}$. Using the above notations the inequality (1.11) can be written as [8]

$$(1.12) \sin \Psi_{x,y} \le \sin \Psi_{x,z} + \sin \Psi_{z,y}$$

for any $x, y, z \in H \setminus \{0\}$. It also provides another triangle type inequality complementing the Kreĭn and Lin inequalities above.

The corresponding result for the angle $\Phi_{x,y}$ was obtained by Lin in [8] as

(1.13)
$$\sin \Phi_{x,y} \le \sin \Phi_{x,z} + \sin \Phi_{z,y}, \text{ for any } x, y, z \ne 0,$$

or, equivalently, as

$$(1.14) \qquad \sqrt{1 - \frac{|\operatorname{Re}\langle x, y\rangle|^2}{\|x\|^2 \|y\|^2}} \le \sqrt{1 - \frac{|\operatorname{Re}\langle x, z\rangle|^2}{\|x\|^2 \|z\|^2}} + \sqrt{1 - \frac{|\operatorname{Re}\langle y, z\rangle|^2}{\|y\|^2 \|z\|^2}}$$

for any $x, y, z \neq 0$.

In [8] the author has also shown that, in fact, the inequalities (1.11) and (1.14) can be extended for any power p > 2, namely as

$$(1.15) \qquad \left(1 - \frac{|\langle x, y \rangle|^p}{\|x\|^p \|y\|^p}\right)^{1/p} \leq \left(1 - \frac{|\langle x, z \rangle|^p}{\|x\|^p \|z\|^p}\right)^{1/p} + \left(1 - \frac{|\langle y, z \rangle|^p}{\|y\|^p \|z\|^p}\right)^{1/p}$$

and

$$(1.16) \qquad \left(1 - \frac{\left|\operatorname{Re}\langle x, y\rangle\right|^{p}}{\|x\|^{p} \|y\|^{p}}\right)^{1/p} \leq \left(1 - \frac{\left|\operatorname{Re}\langle x, z\rangle\right|^{p}}{\|x\|^{p} \|z\|^{p}}\right)^{1/p} + \left(1 - \frac{\left|\operatorname{Re}\langle y, z\rangle\right|^{p}}{\|y\|^{p} \|z\|^{p}}\right)^{1/p}$$

for any $x, y, z \neq 0$.

In this paper we obtain some improvements of Schwarz inequality in complex inner product spaces as follows. For various inequalities related to this famous result see the monographs [3] and [4].

2. Main Results

Employing Lin's inequalities (1.15) and (1.16) we can obtain the following refinements of Schwarz's inequality.

Theorem 1. Let $x, y, e \in H$ with ||e|| = 1 and $p \ge 2$. Then we have the following refinements of Schwarz inequality

$$(2.1) ||x||^p ||y||^p - |\langle x, y \rangle|^p \ge \left| \det \left[\begin{array}{c} ||x|| & (||x||^p - |\langle x, e \rangle|^p)^{1/p} \\ ||y|| & (||y||^p - |\langle y, e \rangle|^p)^{1/p} \end{array} \right] \right|^p$$

and

$$(2.2) ||x||^p ||y||^p - |\operatorname{Re}\langle x, y\rangle|^p \ge \left| \det \left[||x|| (||x||^p - |\operatorname{Re}\langle x, e\rangle|^p)^{1/p} \right] \right|^p.$$

Proof. We observe that, by (1.15) and (1.16)

$$d_{p}\left(x,y\right):=\left(1-\frac{\left|\left\langle x,y\right\rangle \right|^{p}}{\left\|x\right\|^{p}\left\|y\right\|^{p}}\right)^{1/p}\text{ and }\delta_{p}\left(x,y\right):=\left(1-\frac{\left|\operatorname{Re}\left\langle x,y\right\rangle \right|^{p}}{\left\|x\right\|^{p}\left\|y\right\|^{p}}\right)^{1/p}$$

are distances and by the continuity property of the distance d, namely

$$|d(x,z) - d(y,z)| \le d(x,y)$$

we get

$$\left|\left(1-\frac{\left|\left\langle x,e\right\rangle\right|^{p}}{\left\|x\right\|^{p}}\right)^{1/p}-\left(1-\frac{\left|\left\langle y,e\right\rangle\right|^{p}}{\left\|y\right\|^{p}}\right)^{1/p}\right|\leq\left(1-\frac{\left|\left\langle x,y\right\rangle\right|^{p}}{\left\|x\right\|^{p}\left\|y\right\|^{p}}\right)^{1/p}$$

and

$$\left| \left(1 - \frac{\left| \operatorname{Re} \left\langle x, e \right\rangle \right|^p}{\left\| x \right\|^p} \right)^{1/p} - \left(1 - \frac{\left| \operatorname{Re} \left\langle y, e \right\rangle \right|^p}{\left\| y \right\|^p} \right)^{1/p} \right| \le \left(1 - \frac{\left| \operatorname{Re} \left\langle x, y \right\rangle \right|^p}{\left\| x \right\|^p \left\| y \right\|^p} \right)^{1/p}$$

for any $x, y \neq 0$ and $e \in H$ with ||e|| = 1.

If we take the power p in (2.3) and (2.4) and multiply with $||x||^p ||y||^p > 0$, then we get the desired results (2.1) and (2.2).

The following similar result can be stated as well:

Theorem 2. Let $x, y, e \in H$ with ||e|| = 1. Then we have the following refinement of Schwarz inequality

$$(2.5) ||x||^2 ||y||^2 - |\langle x, y \rangle|^2 \ge \left(\det \begin{bmatrix} |\langle x, e \rangle| & (||x||^2 - |\langle x, e \rangle|^2)^{1/2} \\ & & \\ |\langle y, e \rangle| & (||y||^2 - |\langle y, e \rangle|^2)^{1/2} \end{bmatrix} \right)^2.$$

Proof. We have by Schwarz's inequality that

$$\left|\left\langle x - \alpha e, y - \overline{\beta} e \right\rangle\right|^{2} \leq \left\|x - \alpha e\right\|^{2} \left\|y - \overline{\beta} e\right\|^{2}$$

for any $x, y, e \in H$ and $\alpha, \beta \in \mathbb{C}$.

Since ||e|| = 1, then

(2.7)
$$\langle x - \alpha e, y - \overline{\beta} e \rangle = \langle x, y \rangle - \alpha \langle e, y \rangle - \beta \langle x, e \rangle + \alpha \beta$$
$$||x - \alpha e||^2 = ||x||^2 - \left(2 \operatorname{Re} \left[\overline{\alpha} \langle x, e \rangle\right] - |\alpha|^2\right)$$

and

$$\|y - \overline{\beta}e\|^2 = \|y\|^2 - \left(2\operatorname{Re}\left[\beta\langle y, e\rangle\right] - |\beta|^2\right).$$

This implies that

$$(2.8) \quad \|x - \alpha e\|^{2} \|y - \overline{\beta} e\|^{2}$$

$$= \left[\|x\|^{2} - \left(2\operatorname{Re}\left[\overline{\alpha}\left\langle x, e\right\rangle\right] - |\alpha|^{2} \right) \right] \left[\|y\|^{2} - \left(2\operatorname{Re}\left[\beta\left\langle x, e\right\rangle\right] - |\beta|^{2} \right) \right]$$

$$= \|x\|^{2} \|y\|^{2} - \|y\|^{2} \left(2\operatorname{Re}\left[\overline{\alpha}\left\langle x, e\right\rangle\right] - |\alpha|^{2} \right) - \|x\|^{2} \left(2\operatorname{Re}\left[\beta\left\langle y, e\right\rangle\right] - |\beta|^{2} \right)$$

$$+ \left(2\operatorname{Re}\left[\overline{\alpha}\left\langle x, e\right\rangle\right] - |\alpha|^{2} \right) \left(2\operatorname{Re}\left[\beta\left\langle y, e\right\rangle\right] - |\beta|^{2} \right)$$

$$= \|x\|^{2} \|y\|^{2} - \left(\|y\|^{2} - |\langle y, e\rangle|^{2} \right) \left(2\operatorname{Re}\left[\overline{\alpha}\left\langle x, e\right\rangle\right] - |\alpha|^{2} \right)$$

$$- \left(\|x\|^{2} - |\langle x, e\rangle|^{2} \right) \left(2\operatorname{Re}\left[\beta\left\langle y, e\right\rangle\right] - |\beta|^{2} \right)$$

$$- |\langle y, e\rangle|^{2} \left(2\operatorname{Re}\left[\overline{\alpha}\left\langle x, e\right\rangle\right] - |\alpha|^{2} \right) - |\langle x, e\rangle|^{2} \left(2\operatorname{Re}\left[\beta\left\langle y, e\right\rangle\right] - |\beta|^{2} \right)$$

$$+ \left(2\operatorname{Re}\left[\overline{\alpha}\left\langle x, e\right\rangle\right] - |\alpha|^{2} \right) \left(2\operatorname{Re}\left[\beta\left\langle y, e\right\rangle\right] - |\beta|^{2} \right)$$

$$+ |\langle y, e\rangle|^{2} |\langle x, e\rangle|^{2} - |\langle y, e\rangle|^{2} |\langle x, e\rangle|^{2}$$

$$= \|x\|^{2} \|y\|^{2} - \left(\|y\|^{2} - |\langle y, e\rangle|^{2} \right) \left(2\operatorname{Re}\left[\overline{\alpha}\left\langle x, e\right\rangle\right] - |\alpha|^{2} \right)$$

$$- \left(\|x\|^{2} - |\langle x, e\rangle|^{2} \right) \left(2\operatorname{Re}\left[\beta\left\langle y, e\right\rangle\right] - |\beta|^{2} \right)$$

$$+ \left[|\langle x, e\rangle|^{2} - \left(2\operatorname{Re}\left[\overline{\alpha}\left\langle x, e\right\rangle\right] - |\alpha|^{2} \right) \right] \left[|\langle y, e\rangle|^{2} - \left(2\operatorname{Re}\left[\beta\left\langle y, e\right\rangle\right] - |\beta|^{2} \right) \right]$$

$$- |\langle y, e\rangle|^{2} |\langle x, e\rangle|^{2}.$$

Observe that

$$\left|\left\langle x,e\right\rangle \right|^{2}-\left(2\operatorname{Re}\left[\overline{\alpha}\left\langle x,e\right\rangle \right]-\left|\alpha\right|^{2}\right)=\left|\left\langle x,e\right\rangle -\alpha\right|^{2}$$

and

$$\left|\left\langle y,e\right\rangle \right|^{2}-\left(2\operatorname{Re}\left[\beta\left\langle y,e\right\rangle \right]-\left|\beta\right|^{2}\right)=\left|\left\langle y,e\right\rangle -\overline{\beta}\right|^{2}.$$

Therefore, by (2.8) we get

Let $\alpha \in \mathbb{C}$ with $\alpha \neq \langle x, e \rangle$ and put

(2.10)
$$\beta := \frac{\alpha \overline{\langle y, e \rangle}}{\alpha - \langle x, e \rangle}.$$

Then

$$\begin{aligned} \left| \langle x, e \rangle - \alpha \right|^2 \left| \langle y, e \rangle - \overline{\beta} \right|^2 &= \left| \langle x, e \rangle - \alpha \right|^2 \left| \langle y, e \rangle - \overline{\left(\frac{\alpha \overline{\langle y, e \rangle}}{\alpha - \langle x, e \rangle} \right)} \right|^2 \\ &= \left| \langle x, e \rangle - \alpha \right|^2 \left| \langle y, e \rangle - \frac{\overline{\alpha} \langle y, e \rangle}{\overline{\alpha} - \overline{\langle x, e \rangle}} \right|^2 \\ &= \left| \langle y, e \rangle \right|^2 \left| \langle x, e \rangle - \alpha \right|^2 \left| \frac{\overline{\langle x, e \rangle}}{\overline{\alpha} - \overline{\langle x, e \rangle}} \right|^2 \\ &= \left| \langle y, e \rangle \right|^2 \left| \langle x, e \rangle \right|^2 \end{aligned}$$

and

$$\alpha\beta = \alpha \langle e, y \rangle + \beta \langle x, e \rangle$$
.

For these choices of α and β we have by (2.6)-(2.9) that

$$(2.11) |\langle x, y \rangle|^2 \le ||x||^2 ||y||^2 - (||y||^2 - |\langle y, e \rangle|^2) \left(2 \operatorname{Re} \left[\overline{\alpha} \langle x, e \rangle \right] - |\alpha|^2 \right) - (||x||^2 - |\langle x, e \rangle|^2) \left(2 \operatorname{Re} \left[\beta \langle y, e \rangle \right] - |\beta|^2 \right).$$

By (2.10) we also have

$$(2.12) 2\operatorname{Re}\left[\beta\left\langle y,e\right\rangle\right] - \left|\beta\right|^2 = \left|\left\langle y,e\right\rangle\right|^2 \left[2\operatorname{Re}\left[\frac{\alpha}{\alpha-\left\langle x,e\right\rangle}\right] - \left|\frac{\alpha}{\alpha-\left\langle x,e\right\rangle}\right|^2\right].$$

Take

(2.13)
$$\alpha = \langle x, e \rangle + t \text{ with } t \in \mathbb{R}, \ t \neq 0.$$

Then by (2.12) we have

$$\begin{split} B\left(x,y,e,t\right) &:= \left(\left\|y\right\|^2 - \left|\langle y,e\rangle\right|^2\right) \left(2\operatorname{Re}\left[\overline{\alpha}\left\langle x,e\right\rangle\right] - \left|\alpha\right|^2\right) \\ &+ \left(\left\|x\right\|^2 - \left|\langle x,e\rangle\right|^2\right) \left(2\operatorname{Re}\left[\beta\left\langle y,e\rangle\right] - \left|\beta\right|^2\right) \\ &= \left(\left\|y\right\|^2 - \left|\langle y,e\rangle\right|^2\right) \left(2\operatorname{Re}\left[\left(\overline{\langle x,e\rangle+t}\right)\langle x,e\rangle\right] - \left|\langle x,e\rangle+t\right|^2\right) \\ &+ \left(\left\|x\right\|^2 - \left|\langle x,e\rangle\right|^2\right) \left|\langle y,e\rangle\right|^2 \left[2\operatorname{Re}\left[\frac{\langle x,e\rangle+t}{t}\right] - \left|\frac{\langle x,e\rangle+t}{t}\right|^2\right]. \end{split}$$

Since

$$2\operatorname{Re}\left[\left(\overline{\langle x,e\rangle+t}\right)\langle x,e\rangle\right] - \left|\langle x,e\rangle+t\right|^{2}$$

$$= 2\operatorname{Re}\left[\left|\langle x,e\rangle\right|^{2} + t\langle x,e\rangle\right] - \left|\langle x,e\rangle\right|^{2} - 2t\operatorname{Re}\langle x,e\rangle - t^{2}$$

$$= \left|\langle x,e\rangle\right|^{2} - t^{2}$$

and

$$2\operatorname{Re}\left[\frac{\langle x,e\rangle+t}{t}\right] - \left|\frac{\langle x,e\rangle+t}{t}\right|^{2}$$

$$= 2\operatorname{Re}\left[\frac{\langle x,e\rangle}{t}+1\right] - \left|\frac{\langle x,e\rangle}{t}+1\right|^{2}$$

$$= \frac{2\operatorname{Re}\langle x,e\rangle}{t} + 2 - \frac{\left|\langle x,e\rangle\right|^{2}}{t^{2}} - \frac{2\operatorname{Re}\langle x,e\rangle}{t} - 1 = 1 - \frac{\left|\langle x,e\rangle\right|^{2}}{t^{2}}.$$

then we get

$$B(x, y, e, t) = (\|y\|^{2} - |\langle y, e \rangle|^{2}) (|\langle x, e \rangle|^{2} - t^{2})$$

$$+ (\|x\|^{2} - |\langle x, e \rangle|^{2}) |\langle y, e \rangle|^{2} \left(1 - \frac{|\langle x, e \rangle|^{2}}{t^{2}}\right)$$

$$= (\|y\|^{2} - |\langle y, e \rangle|^{2}) (|\langle x, e \rangle|^{2} - t^{2})$$

$$- (\|x\|^{2} - |\langle x, e \rangle|^{2}) |\langle y, e \rangle|^{2} \left(\frac{|\langle x, e \rangle|^{2} - t^{2}}{t^{2}}\right)$$

$$= (|\langle x, e \rangle|^{2} - t^{2}) \left[\|y\|^{2} - |\langle y, e \rangle|^{2} - \frac{(\|x\|^{2} - |\langle x, e \rangle|^{2}) |\langle y, e \rangle|^{2}}{t^{2}}\right]$$

for $t \in \mathbb{R}$, $t \neq 0$.

Assume that $\langle x,e \rangle$, $\langle y,e \rangle \neq 0$ and $||x|| \neq |\langle x,e \rangle|$, $||y|| \neq |\langle y,e \rangle|$. If we take $t=t_0 \neq 0$ with

$$t_{0}^{2}=\left|\left\langle x,e\right\rangle \left\langle y,e\right\rangle \right|\sqrt{\frac{\left\Vert x\right\Vert ^{2}-\left|\left\langle x,e\right\rangle \right|^{2}}{\left\Vert y\right\Vert ^{2}-\left|\left\langle y,e\right\rangle \right|^{2}}}$$

then we get

$$B(x, y, e, t_{0})$$

$$= \left(\left| \langle x, e \rangle \right|^{2} - \left| \langle x, e \rangle \langle y, e \rangle \right| \sqrt{\frac{\left\| x \right\|^{2} - \left| \langle x, e \rangle \right|^{2}}{\left\| y \right\|^{2} - \left| \langle y, e \rangle \right|^{2}}} \right)$$

$$\times \left[\left\| y \right\|^{2} - \left| \langle y, e \rangle \right|^{2} - \frac{\left(\left\| x \right\|^{2} - \left| \langle x, e \rangle \right|^{2} \right) \left| \langle y, e \rangle \right|^{2}}{\left| \langle x, e \rangle \langle y, e \rangle \right| \sqrt{\frac{\left\| x \right\|^{2} - \left| \langle x, e \rangle \right|^{2}}{\left\| y \right\|^{2} - \left| \langle y, e \rangle \right|^{2}}} \right]$$

$$= \frac{\left| \langle x, e \rangle \right|}{\sqrt{\left\| y \right\|^{2} - \left| \langle y, e \rangle \right|^{2}}} \left(\left| \langle x, e \rangle \right| \sqrt{\left\| y \right\|^{2} - \left| \langle y, e \rangle \right|^{2}} - \left| \langle y, e \rangle \right| \sqrt{\left\| x \right\|^{2} - \left| \langle x, e \rangle \right|^{2}} \right)$$

$$\times \left[\frac{\left| \langle x, e \rangle \right| \sqrt{\left\| y \right\|^{2} - \left| \langle y, e \rangle \right|^{2}} - \sqrt{\left\| x \right\|^{2} - \left| \langle x, e \rangle \right|^{2}} \left| \langle y, e \rangle \right|}{\left| \langle x, e \rangle \right|} \right] \sqrt{\left\| y \right\|^{2} - \left| \langle y, e \rangle \right|^{2}}$$

$$= \left(\left| \langle x, e \rangle \right| \sqrt{\left\| y \right\|^{2} - \left| \langle y, e \rangle \right|^{2}} - \left| \langle y, e \rangle \right| \sqrt{\left\| x \right\|^{2} - \left| \langle x, e \rangle \right|^{2}}} \right)^{2}.$$

By using the inequality (2.11) we then have

$$|\langle x, y \rangle|^{2} \leq ||x||^{2} ||y||^{2} - B(x, y, e, t_{0})$$

$$= ||x||^{2} ||y||^{2} - \left(|\langle x, e \rangle| \sqrt{||y||^{2} - |\langle y, e \rangle|^{2}} - |\langle y, e \rangle| \sqrt{||x||^{2} - |\langle x, e \rangle|^{2}} \right)^{2},$$

which proves the desired result (2.5).

Now, if $\langle x, e \rangle = 0$ i.e. $x \perp e$, then (2.5) becomes

$$|\langle y, e \rangle|^2 ||x||^2 + |\langle x, y \rangle|^2 \le ||x||^2 ||y||^2$$

which is trivial for x = 0 and becomes the Bessel's inequality

$$\left|\left\langle y,e\right\rangle \right|^{2}+\left|\left\langle y,\frac{x}{\left\| x\right\| }\right\rangle \right|^{2}\leq \left\| y\right\| ^{2}$$

for the orthonormal family $\left\{e, \frac{x}{\|x\|}\right\}$. A similar argument applies for $\langle y, e \rangle = 0$. Also, if $\|x\|^2 = |\langle x, e \rangle|^2$ then by the equality case in Schwarz inequality for the vectors x and e we get that there exists a constant γ such that $x = \gamma e$. In this situation (2.5) becomes an equality.

A similar argument applies if
$$\|y\|^2 = |\langle y, e \rangle|^2$$
.

Remark 1. If $(H, \langle \cdot, \cdot \rangle)$ is a complex inner product space, then $(H, \langle \cdot, \cdot \rangle_r)$ with

$$\langle x, y \rangle_r := \operatorname{Re} \langle x, y \rangle$$

is a real inner product space and $\langle x, x \rangle^{1/2} = \langle x, x \rangle_r^{1/2} = ||x||$ for $x \in H$. Therefore by (2.5) for $\langle \cdot, \cdot \rangle_r$ we get

$$(2.14) \quad \|x\|^{2} \|y\|^{2} - |\operatorname{Re}\langle x, y\rangle|^{2}$$

$$\geq \left(\det \begin{bmatrix} |\operatorname{Re}\langle x, e\rangle| & (\|x\|^{2} - |\operatorname{Re}\langle x, e\rangle|^{2})^{1/2} \\ |\operatorname{Re}\langle y, e\rangle| & (\|y\|^{2} - |\operatorname{Re}\langle y, e\rangle|^{2})^{1/2} \end{bmatrix} \right)^{2}$$

for any $x, y, e \in H$ with ||e|| = 1.

3. An Application for n-Tuples of Complex Numbers

Let $x=(x_1,...,x_n)$, $y=(y_1,...,y_n)$, $e=(e_1,...,e_n)\in\mathbb{C}^n$ with $\sum_{k=1}^n |e_k|^2=1$. Then by writing the above inequalities (2.1) and (2.5) for the inner product $\langle x,y\rangle:=\sum_{k=1}^n x_k\overline{y}_k$ we have for $p\geq 2$, that

$$(3.1) \quad \left(\sum_{k=1}^{n} |x_{k}|^{2}\right)^{p/2} \left(\sum_{k=1}^{n} |y_{k}|^{2}\right)^{p/2} - \left|\sum_{k=1}^{n} x_{k} \overline{y}_{k}\right|^{p}$$

$$\geq \left|\det \left[\left(\sum_{k=1}^{n} |x_{k}|^{2}\right)^{1/2} - \left(\left(\sum_{k=1}^{n} |x_{k}|^{2}\right)^{p/2} - \left|\sum_{k=1}^{n} x_{k} \overline{e}_{k}\right|^{p}\right)^{1/p}\right]\right|^{p},$$

$$\left(\left(\sum_{k=1}^{n} |y_{k}|^{2}\right)^{1/2} - \left(\left(\sum_{k=1}^{n} |y_{k}|^{2}\right)^{p/2} - \left|\sum_{k=1}^{n} y_{k} \overline{e}_{k}\right|^{p}\right)^{1/p}\right|,$$

and

$$(3.2) \quad \sum_{k=1}^{n} |x_{k}|^{2} \sum_{k=1}^{n} |y_{k}|^{2} - \left| \sum_{k=1}^{n} x_{k} \overline{y}_{k} \right|^{2}$$

$$\geq \left(\det \begin{bmatrix} \left| \sum_{k=1}^{n} x_{k} \overline{e}_{k} \right| & \left(\sum_{k=1}^{n} \left| x_{k} \right|^{2} - \left| \sum_{k=1}^{n} x_{k} \overline{e}_{k} \right|^{2} \right)^{1/2} \\ \left| \sum_{k=1}^{n} y_{k} \overline{e}_{k} \right| & \left(\sum_{k=1}^{n} \left| y_{k} \right|^{2} - \left| \sum_{k=1}^{n} y_{k} \overline{e}_{k} \right|^{2} \right)^{1/2} \end{bmatrix} \right)^{2}.$$

If we take $e_m=1$ for $m\in\{1,...,n\}$ and $e_k=0$ for any $k\in\{1,...,n\}$, $k\neq m$, then $\sum_{k=1}^n \left|e_k\right|^2=1$ and by (3.1) and (3.2) we get

$$(3.3) \quad \left(\sum_{k=1}^{n} |x_{k}|^{2}\right)^{p/2} \left(\sum_{k=1}^{n} |y_{k}|^{2}\right)^{p/2} - \left|\sum_{k=1}^{n} x_{k} \overline{y}_{k}\right|^{p}$$

$$\geq \max_{m \in \{1, \dots, n\}} \left| \det \left[\left(\sum_{k=1}^{n} |x_{k}|^{2}\right)^{1/2} - \left(\left(\sum_{k=1}^{n} |x_{k}|^{2}\right)^{p/2} - |x_{m}|^{p}\right)^{1/p} \right] \left(\sum_{k=1}^{n} |y_{k}|^{2}\right)^{1/2} - \left(\left(\sum_{k=1}^{n} |y_{k}|^{2}\right)^{p/2} - |y_{m}|^{p}\right)^{1/p} \right] \right|^{p},$$

and

$$(3.4) \quad \sum_{k=1}^{n} |x_{k}|^{2} \sum_{k=1}^{n} |y_{k}|^{2} - \left| \sum_{k=1}^{n} x_{k} \overline{y}_{k} \right|^{2}$$

$$\geq \max_{m \in \{1, \dots, n\}} \left(\det \begin{bmatrix} |x_{m}| & \left(\sum_{1 \leq k \neq m \leq n} |x_{k}|^{2} \right)^{1/2} \\ |y_{m}| & \left(\sum_{1 \leq k \neq m \leq n} |y_{k}|^{2} \right)^{1/2} \end{bmatrix} \right)^{2}.$$

For p = 2 we get from (3.3) the simpler inequality

$$(3.5) \quad \sum_{k=1}^{n} |x_{k}|^{2} \sum_{k=1}^{n} |y_{k}|^{2} - \left| \sum_{k=1}^{n} x_{k} \overline{y}_{k} \right|^{2}$$

$$\geq \max_{m \in \{1, \dots, n\}} \left(\det \begin{bmatrix} \left(\sum_{k=1}^{n} |x_{k}|^{2} \right)^{1/2} & \left(\sum_{1 \leq k \neq m \leq n} |x_{k}|^{2} \right)^{1/2} \\ \left(\sum_{k=1}^{n} |y_{k}|^{2} \right)^{1/2} & \left(\sum_{1 \leq k \neq m \leq n} |y_{k}|^{2} \right)^{1/2} \end{bmatrix} \right)^{2}.$$

If we take $e_k = \frac{1}{\sqrt{n}}$ for $k \in \{1, ..., n\}$, then $\sum_{k=1}^{n} |e_k|^2 = 1$ and by (3.1) and (3.2) we get

$$(3.6) \quad \left(\sum_{k=1}^{n} |x_{k}|^{2}\right)^{p/2} \left(\sum_{k=1}^{n} |y_{k}|^{2}\right)^{p/2} - \left|\sum_{k=1}^{n} x_{k} \overline{y}_{k}\right|^{p}$$

$$\geq n^{p} \det \begin{bmatrix} \left(\frac{1}{n} \sum_{k=1}^{n} |x_{k}|^{2}\right)^{1/2} & \left(\left(\frac{1}{n} \sum_{k=1}^{n} |x_{k}|^{2}\right)^{p/2} - \left|\frac{1}{n} \sum_{k=1}^{n} x_{k}\right|^{p}\right)^{1/p} \\ \left(\frac{1}{n} \sum_{k=1}^{n} |y_{k}|^{2}\right)^{1/2} & \left(\left(\frac{1}{n} \sum_{k=1}^{n} |y_{k}|^{2}\right)^{p/2} - \left|\frac{1}{n} \sum_{k=1}^{n} y_{k}\right|^{p}\right)^{1/p} \end{bmatrix} \right|^{p}$$

and

$$(3.7) \quad \sum_{k=1}^{n} |x_{k}|^{2} \sum_{k=1}^{n} |y_{k}|^{2} - \left| \sum_{k=1}^{n} x_{k} \overline{y}_{k} \right|^{2}$$

$$\geq n^{2} \left(\det \begin{bmatrix} \left| \frac{1}{n} \sum_{k=1}^{n} x_{k} \right| & \left(\frac{1}{n} \sum_{k=1}^{n} |x_{k}|^{2} - \left| \frac{1}{n} \sum_{k=1}^{n} x_{k} \right|^{2} \right)^{1/2} \\ \left| \frac{1}{n} \sum_{k=1}^{n} y_{k} \right| & \left(\frac{1}{n} \sum_{k=1}^{n} |y_{k}|^{2} - \left| \frac{1}{n} \sum_{k=1}^{n} y_{k} \right|^{2} \right)^{1/2} \end{bmatrix} \right)^{2}.$$

The inequality (3.7) has been obtained recently for real numbers by S. G. Walker in [9], where some interesting applications for the celebrated Cramer-Rao inequality are provided as well.

Acknowledgement. The author would like to thank the anonymous referee for valuable suggestions that have been implemented in the final version of the paper.

References

- S. S. Dragomir, Some refinements of Schwarz inequality, Simpozionul de Matematici şi Aplicații, Timişoara, Romania, 1-2 Noiembrie 1985, 13-16. ZBL 0594.46018.
- [2] S. S. Dragomir and I. Sándor, Some inequalities in pre-Hilbertian spaces. Studia Univ. Babeş-Bolyai Math. 32 (1987), no. 1, 71–78.
- [3] S. S. Dragomir, Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces. Nova Science Publishers, Inc., Hauppauge, NY, 2005. viii+249 pp. ISBN: 1-59454-202-3.
- [4] S. S. Dragomir, Advances in Inequalities of the Schwarz, Triangle and Heisenberg Type in Inner Product Spaces. Nova Science Publishers, Inc., New York, 2007. xii+243 pp. ISBN: 978-1-59454-903-8; 1-59454-903-6.
- [5] S. S. Dragomir, Buzano's inequality holds for any projection, Bull. Aust. Math. Soc. 93 (2016), 504-510.
- [6] K. E. Gustafson and D. K. M. Rao, Numerical Range, Springer-Verlag, New York, Inc., 1997.
- [7] M. K. Krein, Angular localization of the spectrum of a multiplicative integral in a Hilbert space, Funct. Anal. Appl. 3 (1969), 89–90.
- [8] M. Lin, Remarks on Krein's inequality, The Math. Intelligencer, 34 (2012), No.1, 3-4.
- [9] S. G. Walker, A self-improvement to the Cauchy-Schwarz inequality, Statistics and Probability Letters 122 (2017), 86-89.
- [10] B. Wang, F. Zhang, A trace inequality for unitary matrices, Amer. Math. Monthly 101 (1994), 453–455.
- [11] F. Zhang, Matrix Theory: Basic Results and Techniques, Springer-Verlag, New York, 2011.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au

 URL : http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE, IN THE MATHEMATICAL AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA