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Abstract

In this paper, we give an integral identity involving twice differentiable functions and conformable
fractional integral. Then, we utilize the convexity and s-convexity of a twice differentiable function
to this new established integral identity to obtain some new Hermite-Hadamard’s inequalities.
Keywords: Fractional Hermite-Hadamard inequality, Conformable fractional integral, Convex

functions.

1. Introduction

Tt is well known that the chain rule for Caputo and Riemann-Liouville fractional (global) deriva-
tives do not like the symmetrical results for the classical integer (local) derivative. Recently, a local
fractional derivative involving a stand limit process instead of a global singular integral called the
conformable fractional derivative appeared in [1, 2, 3, 4]. We also remark that there are many
basic properties of conformable fractional derivative in [2], which can be used to find a solution of
differential equations with conformable fractional derivative [5].

The Hermite-Hadamard inequality was firstly discovered by Hermite in 1881, which provides a
lower and an upper estimations for the integral average of any convex function defined on a compact
interval, involving the midpoint and the endpoints of the domain. Due to the widely application
of Hermite-Hadamard inequality, there are many generalized, improved, and extended work on this
fields, one can see [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] and references therein.

Next, we note that Anderson [18] investigated the following conformable integral version of

Hermite-Hadamard inequality.
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Theorem 1.1. (see [18, Corollary 5]) Let 0 < a < b, a € (0,1), f : [a,b] = R be a-integrable
function, i.e., Jo(f) exists. Then the following inequalities hold:

fla) + £(b)

Ja(f)(b) < 5

provided that f is a-differentiable on (a,b), i.e., Do (f) exists on (a,b), and it is increasing on [a, b];

P(“52) < o

provided that Do (f) exists on (a,b) and it is decreasing on [a, b], where Jo(f) and Dy (f) are defined
by

Jo(f)(z) = :Eaa /zf(t)dat, dut = £t

Here we note that D, (f) and J,(f) are called conformable fractional derivative and conformable
fractional integral of f of the order «, respectively.
Sarikaya et al. [19] present the following Hermite-Hadamard’s inequalities for conformable frac-

tional integral.

Theorem 1.2. (see [19, Theorem 11]) Let 0 < a < b, a € (0,1), f : [a,b] = R be a convex function

and Jof exists on [a,b]. Then one has

f<aa—2kb“>ba_ /ftadt< fla®) + f(ba).

Further, the following integral identity involving conformable fractional integral is presented.

Lemma 1.3. (see [19, Lemma 3]) Let 0 < a < b, o € (0,1), f : [a,b] = R and D,(f) exists on on
(a,b). If JoDof exists on [a,b], i.e., Do f is an a-integrable function on [a,b], then

o - L0+ S0

_ 1/ (1= 2™ Do () (%0 + (1 — £°)5%)dot (1)

2 Jo

We also emphasize that Wang et al. [15] give two fundamental integral identities involving
Riemann-Liouville fractional integrals for second order differentiable functions, then, establish many
interesting Hermite-Hadamard’s inequalities involving left-sided and right-sided Riemann-Liouville
fractional integrals.

Motivated by [15, 19], we generzlize (1) to be a fundamental integral identity involving twice



differentiable functions and conformable fractional integral (see Theorem 2.1). Based on this new
integral identity, we use convexity and s-convexity of a twice differentiable function to establish some
new Hermite-Hadamard’s inequalities.

2. Integral identities involving conformable fractional integral

In this section, we give two useful integral identities involving conformable fractional integral,

which will be used to establish the Hermite-Hadamard’s inequalities in the next section.

Theorem 2.1. Let 0 < a <b, a € (0,1), f:[a,b] = R and [ exists on (a,b). Then we have

b « (e
[ ot - HELEIO)

b* — av 2
_ _QL 0 ) Do ()0 + (1 — 96 dut, 2)
@ Jo
where
Dao(f)(t) =t f1 ()] = ' 72[(1 = ) f'(t) + ¢ (1)]- (3)

Proof. The proof is straightway, one can use the integration by parts to derive

/1(1 YD (F) (7 + (1 — 12)6)dut
0

N /1 lDa(f)(taaa + (1 —t))d(t™ — 1)
0 «&
1

= <(t“ — Do (f)(ta™ + (1 — to‘)ba)

«

0
1 1
—o [ = D) + (1

0
1 1

= —*/ (1 =t")tDa,o(f)(ta® + (1 = t*)bY)dqt. (4)
@ Jo

Now linking (1) and (4), the identity (2) holds. This complete the proof. O

Remark 2.2. If D, .(f) in (3) exists, then we can call f is a twice a-differentiable function. We
make some examples for special functions as follows:

(i) Dau(1) = 0;

(i) Du.o(e%%) = [(1 — a)z! 72 + az?(1=]ae®;

(iii) Do o(eS) = e .

The following lemma will be used in the sequel.



Lemma 2.3. Let 0 <a<b, a €(0,1), f,g:[a,b] = R and f" exists on on (a,b). Then we have

Daa(f 0 9)(t) = Da,a(g(t))(t) ' (9(1)) + f"(9) D2 (9)(t).-

Proof. Note that (3),

Daa(fog)t) = t727((1—a)f (g(t)g'(t) + tf"(g(t))(d'(t)* + tf'(g(t))g" (1)
= 71— a)g'(t) +tg" (1) f (9(t) + f"(g(0)) (¢ g (1))?
= Daalg®)(®)f (9(t) + f"(9) D2 (9)(1)-

This complete the proof. O

3. Hermite-Hadamard’s inequalities for twice differentiable convex functions

In this section, we recall the basic definition of convex and s-convex functions.

Definition 3.1. The function f : I C R — R is said to be convez, if for every xz,y € I and A € [0, 1],
we have f(Az + (1= A)y) < Af(x) + (1= A)f(y).
Definition 3.2. The function f : I CRT — R is said to be s-convex (in the second sense), where

€ (0,1], if for every x,y € I and X € [0,1], we have f(Ax + (L = N)y) < N f(z) + (1 = N)°f(y).

Now we are ready to apply the above convex functions via Theorem 2.1 to present some possible

Hermite-Hadamard’s inequalities.

Theorem 3.3. Let 0 <a <b, a € (0,1), f:[a,b] = R and f" exists on on (a,b). If | "] is convex

function, then we have

fla®) + f(0%)
e
c oy [a“(“‘” |Deca () (@] + 022D DeaN01)]
- 12 2 ’
Proof. According to the Theorem 2.1, we have
‘f(a”‘) f0) /
f(z
—/ (L )| Do ) (10 + (1~ £t (5)

According to (3) and Lemma 2.3 via the fact of |f”| is convex function, we have

‘Dw,t(f)(to‘aCY + (1 —t*)b%)




= |Daa(t™a® + (1=t f(t%” + (1 — £)b%)

P+ (1 ) [ Da(ta® + (1= 1))

= |72 — @) (a(a® = b)) + t(ala® = bY)(a — D)t D)) f/ (1% + (1 — t*)b%)

+f//(taaa 4 (1 o ta)ba)[tlfa(aaatafl _ abatafl)]

— OtQ(ba - aa)Zf//(taaa + (1 o ta)ba)

< @P( —a)? [talf”(a“)l - t%f"(ba)@

= o’(b" —a®)? [t“am(a_”Da,a(f)(a“) + (L=t @D Do o (£ (V)] ] (6)

Submitting (6) into (5), we have

fa®) + f(b%) a e
el L

IN

o go / (1 )62 {t(’ 200=1) D, o (f)(a®)]

. t“)bw-”|Da,a<f><ba>|} dat

2 b — g 2
_ a( a ) |:a2a(u—1)|Daa |/ | ta|tad t
200

1B D, () ()] / (1= )21 — t2)dat,

where we use the fact

1 1

1
1 — )t [t dyt = 1— ) (1 = )t = ——.
/Ol( )| /O\( )t ( ) B

This complete the proof. O

Theorem 3.4. Let0 < a <b, a € (0,1), f:[a,b] = R and " exists on on (a,b). If |f"|? is convex

function, then we have

fa®) + f(b%) a L
2 _bo‘—ao‘/af(x Jdo

f [<> Do (F)(@)|? + 52991 D, L (F)(62)]1]
. .

=
Q
=




where

A =T,

k=0
1 1 _

Proof. By Theorem 2.1 and Holder inequality, we have

‘f(a“) (" / i

< L / (1 — )12 [ D (F) (%% + (1 — £2)6)|dot

([ eeya) % ([ 1Peatsrera + (1= ey g

According to (3) and Lemma 2.3 via the fact of |f”|? is convex function, we have

IN

[Daa(f)(%a® + (1 = 1%)b%)
— |a2(ba _ aa)Qf//(taaa + (1 _ ta)ba”q

a®1(b™ — a9 (| £ (@) + (1 = )] (6)])

IA

IN

By using (8), we have

fa®) + fb°) a b e
2 B ba—aa/a f(@®)dax

< W(/{)l(u—tma)pdat);
<[ (a0 D, () (@) + (1 t%b?qa(a-”|Da,a<f><ba>|Q>dat)‘1’
< W(/{)l(u—tma)pdat);

)

) <a2w<a-1>|pa,a<f><aa>|q T 200D, o (£)(5°)]%) )3
2c

where

/ 1((1 — t)Y)Pdyt
0

_ ;/01(1—2)1’2%2—/0 <§: )17k ( )dz

k=0

(b — a)?4(t*a®* D | D o () (@) + (1= t7)6% 7D Dy o (£)(57)]9).



= @) [ =L ym S
o« k o : T — Mp+k+1)
This complete the proof. O

Theorem 3.5. Let 0 < a < b, a € (0,1), f : [a,b] = R and f" exists on on (a,b). If |f"] is

s-convex function, then we have

fla™) + F07)

‘ 5 /f Vdox

(" = a2)” ( Dpasise o) V1Dl
(s+2)(s+3) 2 '

Proof. By Theorem 2.1, we have

‘f(a‘*)+f( oy

7/ (1= %)% | Do () (E%0® + (1 — £9)5%) | dna

According to (3) and Lemma 2.3 via the fact of |f”| is s-convex function, we have

Do)t + (1= 1))

Q2 (b — a®)? " (t%a® + (1 — t)b%)]

03 (0 — a2 £ (@) + (1= #)° |1 (0%)])

< @207 — @)D, o ()(@®)] + (1= 1) 0D D W (O (9)

IN

By using (9), we have

IO o [ e

1
< gm0 =D () (1= 1)) dat

< PO [ e 1 D ()0 (1 1) D (106
_ M[am(“‘”IDa, |/ (1= ) todt
el D, () / (1= el = )t
Since

1 1
1 — Nt dt = e AL e —
/0 I )t /0 ( ) a(s+2)(s+3)



and

1 1
T—t) (1 = t*)odpt = | (1=t tgp =~
[ ey = [fa—em TP

we have

1 1
/|(1—t“)t"|(1—t“)sdat:/ (1= $9)2 (193 .
0 0

This complete the proof. O

Theorem 3.6. Let 0 < a < b, a € (0,1), f : [a,b] = R and f" exists on on (a,b). If |f"|? is

s-convex function, then we have

Fa)+ 067 a [t
2 B bo‘—aa/a f(@®)dax

(@D, L (£)(a)]9 + 90D Dy o ()7
(A(a))P< (s+ )a ) ’

where % + % =1, and A(a) is given in (7).

Proof. By Theorem 2.1 and Holder’s integral inequality, we have

+ f(0°) a [,
) _ba—a"‘/aﬂx )dal‘

’f(a“)

< o [0 N D0 + (1 )
< 22((/01((1—ta)ta)pdat>’l’</ol |Da,a(f)(t°‘ao‘+(1—t0‘)b°‘)|qdat>é.

According to (3) and Lemma 2.3 via the fact of |f”|? is a s-convex function, we have

| Dao (£ + (1= t4)6)|7 = [a?(b™ — a®)?f" (t%a™ + (1 — t%)p%)|

< Qb — a®) [t“awa-“|Da,a<f><a@>|q fa- t@>3b2qa<@-1>|Da,a<f><b@>|ﬂ o)

By using (10), then

S+ [0 o
‘ 2 b — g /a F@®)dox

< OW(/;(Q - ta)ta)pdat>

3 =

1

y ( / (1o a0 @D D, (F) (@) + (1 - ta>8b2qa<a-“|Da,a<f><ba>|q>dat)
0



Finally, note that
1 o k
1 (=1
1 —t)tY)Pdt = — Py .
| a=ee ) (0 55)

This complete the proof. O

4. Numerical examples

Let @ = %, f(z) = z*. Obviously, |f”| = 1222, | f”| is convex function on (1,4), |f”| is a s-convex
4

1
2
function on [1,4] via s = 0.5, and |f”'|? is a s-convex function on [1,4] via s = 0.5.

Example 4.1. Using Theorem 3.3, the following comfortable integral inequality holds:

23 1+16 1 4
0 - ‘ 2 "zi]w[ w'dyz
[ f@) + f(0%) a " .
- ‘ 5 b —an ), f@®)dox
_ (b —ay? [“Qa(a‘”lDa o(£)(a)] + 0> DDy o (£)(5)]
= 12 2
. (-2 {ID;,;(f)(lﬂ + D;,;(f)@)]
= 12 2
35
T 12

Example 4.2. Using Theorem 3.4, the following comfortable integral inequality holds:

23 1416 L
0 - ’ 2 _2i1A‘ﬁwx
_ @) ey«
= ’ 5 T ), f(z®)doz
o oalr—a? s ( @22V Dy o () ()] + b?qa<“>|Da,a(f)(ba)|Q>5
- 2 20
12— 1) 1 :
< 22 gt (10 (R + 1Dy 4 (D@P)
7V/255

_1)k _1\k
w@mwm%p:q:zA@yzéz;ﬁ@wig]:ﬁmgzzz;{@gﬁg]

Example 4.3. Using Theorem 3.5, the following inequality is satisfied:

23 |1+16 4 4 |D 1) + 0.5|D 2
_‘ + _0_5/ Py 4 [Do.5,0.5(f)(1)] + 0.5[Do.5,0.5(f)(2)]
1

35 2

=4

i <
10 2 -




Example 4.4. Using Theorem 3.6, the following inequality is satisfied:

1 [Do.5,05(f)(1)[2 +0.25[Do.5.0.5(f)(2) > _ 7v/85
= 4\/‘4(0'5) e o.5(o.5+1)0505 15

23 [1+16 4
10’ 5 —0.5/1 22dosx| <
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