SOME GENERALIZATIONS OF SCHWARZ INEQUALITY IN INNER PRODUCT SPACES

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Some two complex parameters generalizations of the celebrated Schwarz inequality in inner product spaces are given. Applications for *n*-tuples of complex numbers are provided.

1. Introduction

Let $(H, \langle \cdot, \cdot \rangle)$ be an inner product space over the real or complex numbers field \mathbb{K} . The following inequality is well known in literature as the *Schwarz inequality*

(1.1)
$$||x||^2 ||y||^2 \ge |\langle x, y \rangle|^2$$

for any $x, y \in H$. The equality case holds in (1.1) if and only if there exists a constant $\lambda \in \mathbb{K}$ such that $x = \lambda y$. This inequality can be written in an equivalent form as

$$(1.2) ||x|| ||y|| \ge |\langle x, y \rangle|.$$

Assume that $P: H \to H$ is an orthogonal projection on H, namely, it satisfies the condition $P^2 = P = P^*$. We obviously have in the operator order of B(H), the Banach algebra of all linear bounded operators on H, that $0 \le P \le 1_H$.

In the recent paper [8, Eq. (2.6)] we established among others that

$$||x|| \, ||y|| \ge \left\langle Px, x \right\rangle^{1/2} \left\langle Py, y \right\rangle^{1/2} + \left| \left\langle x, y \right\rangle - \left\langle Px, y \right\rangle \right|$$

for any $x, y \in H$. Since by the triangle inequality we have

$$|\langle x, y \rangle - \langle Px, y \rangle| \ge |\langle x, y \rangle| - |\langle Px, y \rangle|$$

and by the Schwarz inequality for nonnegative selfadjoint operators we have

$$\langle Px, x \rangle^{1/2} \langle Py, y \rangle^{1/2} \ge |\langle Px, y \rangle|$$

for any $x, y \in H$, then we get from (1.3) the following refinement of (1.2)

(1.4)
$$||x|| ||y|| - |\langle x, y \rangle| \ge \langle Px, x \rangle^{1/2} \langle Py, y \rangle^{1/2} - |\langle Px, y \rangle| \ge 0$$

for any $x, y \in H$.

In 1985 the author [2] (see also [3] or [6, p. 36]) established the following inequality related to Schwarz inequality

$$(1.5) \left(\|x\|^2 \|z\|^2 - |\langle x, z \rangle|^2 \right) \left(\|y\|^2 \|z\|^2 - |\langle y, z \rangle|^2 \right) \ge \left| \langle x, y \rangle \|z\|^2 - \langle x, z \rangle \langle z, y \rangle \right|^2$$

1991 Mathematics Subject Classification. 46C05; 26D15.

 $Key\ words\ and\ phrases.$ Inner product spaces, Schwarz's inequality.

1

for any $x, y, z \in H$ and obtained, as a consequence, the following refinement of (1.2):

$$(1.6) ||x|| ||y|| \ge |\langle x, y \rangle - \langle x, e \rangle \langle e, y \rangle| + |\langle x, e \rangle \langle e, y \rangle| \ge |\langle x, y \rangle|$$

for any $x, y, e \in H$ with ||e|| = 1.

If we take the square root in (1.5) and use the triangle inequality, we get for x, $y, z \in H \setminus \{0\}$ that

$$\left(\left\| x \right\|^2 \left\| z \right\|^2 - \left| \left\langle x, z \right\rangle \right|^2 \right)^{1/2} \left(\left\| y \right\|^2 \left\| z \right\|^2 - \left| \left\langle y, z \right\rangle \right|^2 \right)^{1/2}$$

$$\geq \left| \left\langle x, y \right\rangle \left\| z \right\|^2 - \left\langle x, z \right\rangle \left\langle z, y \right\rangle \right| \geq \left| \left\langle x, z \right\rangle \left\langle z, y \right\rangle \right| - \left| \left\langle x, y \right\rangle \right| \left\| z \right\|^2$$

which by division with $\|x\|^2 \|y\|^2 \|z\|^2 \neq 0$ produces

$$(1.7) \qquad \frac{|\langle x,y\rangle|}{\|x\| \, \|y\|} \geq \frac{|\langle x,z\rangle|}{\|x\| \, \|z\|} \frac{|\langle z,y\rangle|}{\|z\| \, \|y\|} - \sqrt{1 - \frac{|\langle x,z\rangle|^2}{\|x\|^2 \, \|z\|^2}} \sqrt{1 - \frac{|\langle y,z\rangle|^2}{\|y\|^2 \, \|z\|^2}}.$$

For other results connected with Schwarz inequality in inner product spaces see the monographs [5] and [6]. For various results related to Cauchy-Bunyakovsky-Schwarz inequality for the *n*-tuples of numbers see the survey [7] and the monograph [4]. For recent results in connection to Schwarz inequality, see [1], [11] and [13]-[15].

In this paper we obtain some two complex parameters generalizations of the celebrated Schwarz inequality in inner product spaces. Applications for n-tuples of complex numbers are provided.

2. Main Results

We can state the following two complex parameters generalization of Schwarz's inequality:

Theorem 1. Let $x, y, e \in H$ with ||e|| = 1 and $\alpha, \beta \in C$. Then

$$(2.1) \quad \left| \langle x, y \rangle - \langle x, e \rangle \langle e, y \rangle \left(1 - \alpha \overline{\beta} \right) \right|^{2} \\ \leq \left[\left\| x \right\|^{2} + \left(\left| \alpha \right|^{2} - 1 \right) \left| \langle x, e \rangle \right|^{2} \right] \left[\left\| y \right\|^{2} + \left(\left| \beta \right|^{2} - 1 \right) \left| \langle e, y \rangle \right|^{2} \right].$$

Proof. We start with Schwarz inequality for the vectors $x - \gamma e$ and $y - \delta e$ with γ , $\delta \in C$, namely

$$(2.2) |\langle x - \gamma e, y - \delta e \rangle|^2 \le ||x - \gamma e||^2 ||y - \delta e||^2.$$

Observe that

$$||x - \gamma e||^2 = ||x||^2 - 2\operatorname{Re}(\overline{\gamma}\langle x, e \rangle) + |\gamma|^2$$

$$= ||x||^2 - |\langle x, e \rangle|^2 + |\langle x, e \rangle|^2 - 2\operatorname{Re}(\overline{\gamma}\langle x, e \rangle) + |\gamma|^2$$

$$= ||x||^2 - |\langle x, e \rangle|^2 + |\gamma - \langle x, e \rangle|^2$$

and, similarly

$$||y - \delta e||^2 = ||y||^2 - |\langle y, e \rangle|^2 + |\delta - \langle y, e \rangle|^2.$$

We also have

$$\begin{split} \langle x - \gamma e, y - \delta e \rangle &= \langle x, y \rangle - \gamma \, \langle e, y \rangle - \overline{\delta} \, \langle x, e \rangle + \gamma \overline{\delta} \\ &= \langle x, y \rangle - \langle x, e \rangle \, \langle e, y \rangle + \gamma \overline{\delta} + \langle x, e \rangle \, \langle e, y \rangle - \gamma \, \langle e, y \rangle - \overline{\delta} \, \langle x, e \rangle \\ &= \langle x, y \rangle - \langle x, e \rangle \, \langle e, y \rangle + (\gamma - \langle x, e \rangle) \, \overline{(\delta - \langle e, y \rangle)}. \end{split}$$

Now, if we take

$$\gamma = \langle x, e \rangle + \langle x, e \rangle \alpha$$

and

$$\delta = \langle y, e \rangle + \langle y, e \rangle \beta,$$

then we get

$$||x - \gamma e||^2 = ||x||^2 + (|\alpha|^2 - 1) |\langle x, e \rangle|^2,$$

 $||y - \delta e||^2 = ||y||^2 + (|\beta|^2 - 1) |\langle y, e \rangle|^2$

and

$$\begin{aligned} \langle x - \gamma e, y - \delta e \rangle &= \langle x, y \rangle - \langle x, e \rangle \langle e, y \rangle + \langle x, e \rangle \alpha \overline{(\langle y, e \rangle \beta)} \\ &= \langle x, y \rangle - \langle x, e \rangle \langle e, y \rangle + \langle x, e \rangle \langle e, y \rangle \alpha \overline{\beta} \\ &= \langle x, y \rangle - \langle x, e \rangle \langle e, y \rangle (1 - \alpha \overline{\beta}) \end{aligned}$$

and by (2.2) we get (2.1).

Remark 1. In particular, for $\beta = \alpha$ we get

$$\left| \langle x, y \rangle + \langle x, e \rangle \langle e, y \rangle \left(|\alpha|^2 - 1 \right) \right|^2$$

$$\leq \left[\|x\|^2 + \left(|\alpha|^2 - 1 \right) |\langle x, e \rangle|^2 \right] \left[\|y\|^2 + \left(|\alpha|^2 - 1 \right) |\langle y, e \rangle|^2 \right]$$

and by taking $t = |\alpha|^2 - 1 \in [-1, \infty)$ then we get the simpler inequality of interest

$$(2.3) \qquad \left|\left\langle x,y\right\rangle + t\left\langle x,e\right\rangle \left\langle e,y\right\rangle \right|^{2} \leq \left[\left\|x\right\|^{2} + t\left|\left\langle x,e\right\rangle \right|^{2}\right] \left[\left\|y\right\|^{2} + t\left|\left\langle y,e\right\rangle \right|^{2}\right],$$

for any $x, y, e \in H$ with ||e|| = 1 and $t \in [-1, \infty)$.

We observe that if α , $\beta \in C$ with $|\alpha|$, $|\beta| \leq 1$, then by (2.1) we get the family of Schwarz inequalities

$$(2.4) \left| \langle x, y \rangle - \langle x, e \rangle \langle e, y \rangle \left(1 - \alpha \overline{\beta} \right) \right| \le ||x|| \, ||y||,$$

where $x, y, e \in H$ with ||e|| = 1.

If we take in (2.4) $\alpha = \beta = 1$, then we get the classical Schwarz inequality, while for $\alpha = 1$, $\beta = -1$ we get

$$(2.5) |\langle x, y \rangle - 2 \langle x, e \rangle \langle e, y \rangle| \le ||x|| \, ||y||.$$

By the triangle inequality we have

$$(2.6) 2|\langle x, e \rangle \langle e, y \rangle| - |\langle x, y \rangle| \le |\langle x, y \rangle - 2 \langle x, e \rangle \langle e, y \rangle|$$

and then by (2.5) and (2.6) we get the celebrated Buzano's inequality

$$(2.7) |\langle x, e \rangle \langle e, y \rangle| \le \frac{1}{2} [|\langle x, y \rangle| + ||x|| ||y||]$$

where $x, y, e \in H$ with ||e|| = 1.

We observe that if $|\alpha|$, $|\beta| \geq 1$ then by (2.1) we also get

$$\begin{aligned} \left| \left\langle x,y \right\rangle - \left\langle x,e \right\rangle \left\langle e,y \right\rangle \left(1 - \alpha \overline{\beta} \right) \right| &\leq \left| \alpha \right| \left| \beta \right| \left\| x \right\| \left\| y \right\| \\ where \ x, \ y, \ e &\in H \ with \ \|e\| = 1. \end{aligned}$$

Corollary 1. With the assumptions of Theorem 1 we have

$$(2.9) \quad |\langle x, y \rangle| \le |\langle x, e \rangle \langle e, y \rangle| \left| 1 - \alpha \overline{\beta} \right| \\ + \left[\|x\|^2 + \left(|\alpha|^2 - 1 \right) |\langle x, e \rangle|^2 \right]^{1/2} \left[\|y\|^2 + \left(|\beta|^2 - 1 \right) |\langle y, e \rangle|^2 \right]^{1/2}$$

and

$$(2.10) \quad |\langle x, e \rangle \langle e, y \rangle| \left| 1 - \alpha \overline{\beta} \right| \le |\langle x, y \rangle|$$

$$+ \left[\|x\|^2 + \left(|\alpha|^2 - 1 \right) |\langle x, e \rangle|^2 \right]^{1/2} \left[\|y\|^2 + \left(|\beta|^2 - 1 \right) |\langle y, e \rangle|^2 \right]^{1/2}.$$

Proof. By taking the square root in (2.1) we get

$$(2.11) \quad \left| \langle x, y \rangle - \langle x, e \rangle \langle e, y \rangle \left(1 - \alpha \overline{\beta} \right) \right|$$

$$\leq \left[\left\| x \right\|^2 + \left(\left| \alpha \right|^2 - 1 \right) \left| \langle x, e \rangle \right|^2 \right]^{1/2} \left[\left\| y \right\|^2 + \left(\left| \beta \right|^2 - 1 \right) \left| \langle y, e \rangle \right|^2 \right]^{1/2}.$$

By the continuity of the modulus inequality we also have

(2.12)
$$\left| \left| \langle x, y \rangle \right| - \left| \langle x, e \rangle \langle e, y \rangle \right| \left| 1 - \alpha \overline{\beta} \right| \right| \le \left| \langle x, y \rangle - \langle x, e \rangle \langle e, y \rangle \left(1 - \alpha \overline{\beta} \right) \right|.$$
 Since, obviously

$$\left| \langle x,y \rangle \right| - \left| \langle x,e \rangle \left\langle e,y \right\rangle \right| \left| 1 - \alpha \overline{\beta} \right| \leq \left| \left| \langle x,y \rangle \right| - \left| \langle x,e \rangle \left\langle e,y \rangle \right| \left| 1 - \alpha \overline{\beta} \right| \right|,$$
 then by (2.11) and (2.12) we get (2.9).

Also, since

$$\left| \left\langle x,e \right\rangle \left\langle e,y \right\rangle \right| \left| 1-\alpha \overline{\beta} \right| - \left| \left\langle x,y \right\rangle \right| \leq \left| \left| \left\langle x,y \right\rangle \right| - \left| \left\langle x,e \right\rangle \left\langle e,y \right\rangle \right| \left| 1-\alpha \overline{\beta} \right| \right|$$
 then by (2.11) and (2.12) we get (2.10). \qed

Remark 2. In particular, if we take $\beta = \alpha$ above, we get

$$|\langle x, y \rangle| \le |\langle x, e \rangle \langle e, y \rangle| \left| |\alpha|^2 - 1 \right|$$

$$+ \left[||x||^2 + \left(|\alpha|^2 - 1 \right) |\langle x, e \rangle|^2 \right]^{1/2} \left[||y||^2 + \left(|\alpha|^2 - 1 \right) |\langle y, e \rangle|^2 \right]^{1/2}$$

and

$$|\langle x, e \rangle \langle e, y \rangle| ||\alpha|^{2} - 1| \leq |\langle x, y \rangle| + \left[||x||^{2} + \left(|\alpha|^{2} - 1 \right) |\langle x, e \rangle|^{2} \right]^{1/2} \left[||y||^{2} + \left(|\alpha|^{2} - 1 \right) |\langle y, e \rangle|^{2} \right]^{1/2}$$

and by taking $t = |\alpha|^2 - 1 \in [-1, \infty)$ then we get the simpler inequalities of interest

$$(2.13) |\langle x, y \rangle| \le |\langle x, e \rangle \langle e, y \rangle| |t| + \left[||x||^2 + t |\langle x, e \rangle|^2 \right]^{1/2} \left[||y||^2 + t |\langle y, e \rangle|^2 \right]^{1/2}$$
and

$$(2.14) \quad \left| \left\langle x, e \right\rangle \left\langle e, y \right\rangle \right| \left| t \right| \leq \left| \left\langle x, y \right\rangle \right| + \left[\left\| x \right\|^2 + t \left| \left\langle x, e \right\rangle \right|^2 \right]^{1/2} \left[\left\| y \right\|^2 + t \left| \left\langle y, e \right\rangle \right|^2 \right]^{1/2},$$
 where $x, \ y, \ e \in H \ with \ \|e\| = 1 \ and \ t \in [-1, \infty).$

Corollary 2. Let $x, y, e \in H$ with ||e|| = 1 and $\alpha, \beta \in C$ with $|\alpha| \le 1$ and $|\beta| \le 1$. Then we have

$$(2.15) \quad \left| \langle x, y \rangle - \langle x, e \rangle \langle e, y \rangle \left[\left(1 - \alpha \overline{\beta} \right) \pm \left(1 - |\alpha|^2 \right)^{1/2} \left(1 - |\beta|^2 \right)^{1/2} \right] \right|$$

$$\leq \left| \langle x, y \rangle - \langle x, e \rangle \langle e, y \rangle \left(1 - \alpha \overline{\beta} \right) \right|$$

$$+ \left| \langle x, e \rangle \langle e, y \rangle \right| \left(1 - |\alpha|^2 \right)^{1/2} \left(1 - |\beta|^2 \right)^{1/2} \leq \|x\| \|y\|.$$

Proof. The first inequality follows by the triangle inequality for modulus. We use the following elementary inequality

$$(a^2 - b^2)(c^2 - d^2) \le (ac - bd)^2$$

for any real numbers a, b, c, d.

Therefore

$$\begin{split} & \left[\|x\|^2 + \left(|\alpha|^2 - 1 \right) |\langle x, e \rangle|^2 \right] \left[\|y\|^2 + \left(|\beta|^2 - 1 \right) |\langle y, e \rangle|^2 \right] \\ & = \left[\|x\|^2 - \left(1 - |\alpha|^2 \right) |\langle x, e \rangle|^2 \right] \left[\|y\|^2 - \left(1 - |\beta|^2 \right) |\langle y, e \rangle|^2 \right] \\ & \leq \left[\|x\| \|y\| - |\langle x, e \rangle \langle e, y \rangle| \left(1 - |\alpha|^2 \right)^{1/2} \left(1 - |\beta|^2 \right)^{1/2} \right]^2. \end{split}$$

Since by Schwarz's inequality and the fact that $|\alpha| \leq 1$ and $|\beta| \leq 1$, we have

$$||x|| \ge |\langle x, e \rangle| \ge |\langle x, e \rangle| \left(1 - |\alpha|^2\right)^{1/2}$$

and

$$||y|| \ge |\langle e, y \rangle| \ge \left(1 - |\beta|^2\right)^{1/2} |\langle e, y \rangle|$$

implying that

$$(2.16) \quad \left[\|x\|^2 - \left(1 - |\alpha|^2\right) |\langle x, e \rangle|^2 \right]^{1/2} \left[\|y\|^2 - \left(1 - |\beta|^2\right) |\langle y, e \rangle|^2 \right]^{1/2} \\ \leq \|x\| \|y\| - |\langle x, e \rangle \langle e, y \rangle| \left(1 - |\alpha|^2\right)^{1/2} \left(1 - |\beta|^2\right)^{1/2}.$$

From (2.1) we also have

$$(2.17) \quad \left| \langle x, y \rangle - \langle x, e \rangle \langle e, y \rangle \left(1 - \alpha \overline{\beta} \right) \right|$$

$$\leq \left[\left\| x \right\|^2 - \left(1 - \left| \alpha \right|^2 \right) \left| \langle x, e \rangle \right|^2 \right]^{1/2} \left[\left\| y \right\|^2 - \left(1 - \left| \beta \right|^2 \right) \left| \langle y, e \rangle \right|^2 \right]^{1/2}.$$

Now, by making use of (2.16) and (2.17) we deduce the second inequality in (2.15).

Remark 3. If we take $\beta = \alpha$ above, then we get

$$\begin{aligned} \left| \langle x, y \rangle - 2 \, \langle x, e \rangle \, \langle e, y \rangle \, \left(1 - |\alpha|^2 \right) \right| \\ & \leq \left| \langle x, y \rangle - \langle x, e \rangle \, \langle e, y \rangle \, \left(1 - |\alpha|^2 \right) \right| + \left| \langle x, e \rangle \, \langle e, y \rangle \, \left(1 - |\alpha|^2 \right) \leq \|x\| \, \|y\| \end{aligned}$$

and

$$\left| \left\langle x,y \right\rangle \right| \leq \left| \left\langle x,y \right\rangle - \left\langle x,e \right\rangle \left\langle e,y \right\rangle \left(1 - \left| \alpha \right|^2 \right) \right| + \left| \left\langle x,e \right\rangle \left\langle e,y \right\rangle \right| \left(1 - \left| \alpha \right|^2 \right) \leq \left\| x \right\| \left\| y \right\|,$$

and by taking $s = 1 - |\alpha|^2 \in [0, 1]$ we get the following inequalities of interest

$$\begin{array}{ll} (2.18) \ |\langle x,y\rangle - 2s\, \langle x,e\rangle\, \langle e,y\rangle| \leq |\langle x,y\rangle - s\, \langle x,e\rangle\, \langle e,y\rangle| + s\, |\langle x,e\rangle\, \langle e,y\rangle| \leq \|x\|\, \|y\| \\ and \end{array}$$

$$\begin{split} & (2.19) \qquad |\langle x,y\rangle| \leq |\langle x,y\rangle - s\,\langle x,e\rangle\,\langle e,y\rangle| + s\,|\langle x,e\rangle\,\langle e,y\rangle| \leq \|x\|\,\|y\|\,,\\ & where \; x,\; y,\; e \in H \; with \; \|e\| = 1 \; and \; s \in [0,1]. \end{split}$$

If we take $s = \frac{1}{2}$ in (2.18) and (2.19), then we get

$$(2.20) \quad \left| \left\langle x, y \right\rangle - \left\langle x, e \right\rangle \left\langle e, y \right\rangle \right| \leq \left| \left\langle x, y \right\rangle - \frac{1}{2} \left\langle x, e \right\rangle \left\langle e, y \right\rangle \right| + \frac{1}{2} \left| \left\langle x, e \right\rangle \left\langle e, y \right\rangle \right| \leq \|x\| \|y\|$$
and

$$\left| \left\langle x,y \right\rangle \right| \leq \left| \left\langle x,y \right\rangle - \frac{1}{2} \left\langle x,e \right\rangle \left\langle e,y \right\rangle \right| + \frac{1}{2} \left| \left\langle x,e \right\rangle \left\langle e,y \right\rangle \right| \leq \left\| x \right\| \left\| y \right\|,$$

where $x, y, e \in H$ with ||e|| = 1.

If we take s=1 in (2.19) then we recapture the inequality (1.6) from the introduction.

3. Applications for n-Tuples of Complex Numbers

Let $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$, $e = (e_1, ..., e_n) \in \mathbb{C}^n$ with $\sum_{k=1}^n |e_k|^2 = 1$. Then by writing the above inequality (2.1) for the inner product $\langle x, y \rangle := \sum_{k=1}^n x_k \overline{y}_k$ we get

$$(3.1) \left| \sum_{k=1}^{n} x_{k} \overline{y}_{k} - \left(1 - \alpha \overline{\beta} \right) \sum_{k=1}^{n} x_{k} \overline{e}_{k} \sum_{k=1}^{n} e_{k} \overline{y}_{k} \right|^{2}$$

$$\leq \left[\sum_{k=1}^{n} |x_{k}|^{2} + \left(|\alpha|^{2} - 1 \right) \left| \sum_{k=1}^{n} x_{k} \overline{e}_{k} \right|^{2} \right] \left[\sum_{k=1}^{n} |y_{k}|^{2} + \left(|\beta|^{2} - 1 \right) \left| \sum_{k=1}^{n} e_{k} \overline{y}_{k} \right|^{2} \right],$$

for any $\alpha, \beta \in \mathbb{C}$.

If we take $e_m=1$ for $m\in\{1,...,n\}$ and $e_k=0$ for any $k\in\{1,...,n\}$, $k\neq m$, then $\sum_{k=1}^n |e_k|^2=1$ and by (3.1) we get

$$(3.2) \left| \sum_{k=1}^{n} x_{k} \overline{y}_{k} - \left(1 - \alpha \overline{\beta}\right) x_{m} \overline{y}_{m} \right|^{2}$$

$$\leq \left[\sum_{k=1}^{n} |x_{k}|^{2} + \left(|\alpha|^{2} - 1\right) |x_{m}|^{2} \right] \left[\sum_{k=1}^{n} |y_{k}|^{2} + \left(|\beta|^{2} - 1\right) |y_{m}|^{2} \right],$$

for any $\alpha, \beta \in \mathbb{C}$

If we take $e_k = \frac{1}{\sqrt{n}}$ for $k \in \{1, ..., n\}$, then $\sum_{k=1}^{n} |e_k|^2 = 1$ and by (3.1) we get

$$(3.3) \quad \left| \frac{1}{n} \sum_{k=1}^{n} x_k \overline{y}_k - \left(1 - \alpha \overline{\beta} \right) \frac{1}{n} \sum_{k=1}^{n} x_k \frac{1}{n} \sum_{k=1}^{n} \overline{y}_k \right|^2$$

$$\leq \left[\frac{1}{n} \sum_{k=1}^{n} |x_k|^2 + \left(|\alpha|^2 - 1 \right) \left| \frac{1}{n} \sum_{k=1}^{n} x_k \right|^2 \right] \left[\frac{1}{n} \sum_{k=1}^{n} |y_k|^2 + \left(|\beta|^2 - 1 \right) \left| \frac{1}{n} \sum_{k=1}^{n} \overline{y}_k \right|^2 \right],$$
for any $\alpha, \beta \in \mathbb{C}$.

From (3.1) we have the family of Cauchy-Bunyakovsky-Schwarz inequalities

(3.4)
$$\left| \sum_{k=1}^{n} x_{k} \overline{y}_{k} - \left(1 - \alpha \overline{\beta} \right) \sum_{k=1}^{n} x_{k} \overline{e}_{k} \sum_{k=1}^{n} e_{k} \overline{y}_{k} \right|^{2} \leq \sum_{k=1}^{n} |x_{k}|^{2} \sum_{k=1}^{n} |y_{k}|^{2},$$

for any $\alpha, \beta \in \mathbb{C}$ with $|\alpha|, |\beta| \leq 1$.

From (3.4) we get

(3.5)
$$\max_{m \in \{1, ..., n\}} \left| \sum_{k=1}^{n} x_k \overline{y}_k - \left(1 - \alpha \overline{\beta}\right) x_m \overline{y}_m \right|^2 \le \sum_{k=1}^{n} \left| x_k \right|^2 \sum_{k=1}^{n} \left| y_k \right|^2,$$

and

$$(3.6) \qquad \left| \frac{1}{n} \sum_{k=1}^{n} x_{k} \overline{y}_{k} - \left(1 - \alpha \overline{\beta} \right) \frac{1}{n} \sum_{k=1}^{n} x_{k} \frac{1}{n} \sum_{k=1}^{n} \overline{y}_{k} \right|^{2} \leq \frac{1}{n} \sum_{k=1}^{n} \left| x_{k} \right|^{2} \frac{1}{n} \sum_{k=1}^{n} \left| y_{k} \right|^{2},$$

for any α , $\beta \in \mathbb{C}$ with $|\alpha|$, $|\beta| \leq 1$.

If, for instance we take $\alpha = \beta = \frac{\sqrt{2}}{2}$ in (3.4), then we get

(3.7)
$$\left| \sum_{k=1}^{n} x_{k} \overline{y}_{k} - \frac{1}{2} \sum_{k=1}^{n} x_{k} \overline{e}_{k} \sum_{k=1}^{n} e_{k} \overline{y}_{k} \right|^{2} \leq \sum_{k=1}^{n} |x_{k}|^{2} \sum_{k=1}^{n} |y_{k}|^{2},$$

while for $\alpha = -\beta = \frac{\sqrt{2}}{2}$, then we get

(3.8)
$$\left| \sum_{k=1}^{n} x_k \overline{y}_k - \frac{3}{2} \sum_{k=1}^{n} x_k \overline{e}_k \sum_{k=1}^{n} e_k \overline{y}_k \right|^2 \le \sum_{k=1}^{n} |x_k|^2 \sum_{k=1}^{n} |y_k|^2,$$

for $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$, $e = (e_1, ..., e_n) \in \mathbb{C}^n$ with $\sum_{k=1}^n |e_k|^2 = 1$. From the inequality (2.19) we get the following refinement of Cauchy-Bunyakovsky-

Schwarz inequality

$$(3.9) \quad \left| \sum_{k=1}^{n} x_{k} \overline{y}_{k} \right| \leq \left| \sum_{k=1}^{n} x_{k} \overline{y}_{k} - s \sum_{k=1}^{n} x_{k} \overline{e}_{k} \sum_{k=1}^{n} e_{k} \overline{y}_{k} \right| + s \left| \sum_{k=1}^{n} x_{k} \overline{e}_{k} \sum_{k=1}^{n} e_{k} \overline{y}_{k} \right| \\ \leq \left(\sum_{k=1}^{n} \left| x_{k} \right|^{2} \right)^{1/2} \left(\sum_{k=1}^{n} \left| y_{k} \right|^{2} \right)^{1/2},$$

for any $s \in [0,1]$, where $x=(x_1,...,x_n)$, $y=(y_1,...,y_n)$, $e=(e_1,...,e_n) \in \mathbb{C}^n$ with $\sum_{k=1}^n |e_k|^2=1$. This implies the following inequalities

$$(3.10) \quad \left| \sum_{k=1}^{n} x_k \overline{y}_k \right| \le \left| \sum_{k=1}^{n} x_k \overline{y}_k - s x_m \overline{y}_m \right| + s \left| x_m \overline{y}_m \right|$$

$$\le \left(\sum_{k=1}^{n} \left| x_k \right|^2 \right)^{1/2} \left(\sum_{k=1}^{n} \left| y_k \right|^2 \right)^{1/2},$$

and

$$(3.11) \quad \left| \frac{1}{n} \sum_{k=1}^{n} x_{k} \overline{y}_{k} \right| \leq \left| \frac{1}{n} \sum_{k=1}^{n} x_{k} \overline{y}_{k} - s \frac{1}{n} \sum_{k=1}^{n} x_{k} \frac{1}{n} \sum_{k=1}^{n} \overline{y}_{k} \right| + s \left| \frac{1}{n} \sum_{k=1}^{n} x_{k} \frac{1}{n} \sum_{k=1}^{n} \overline{y}_{k} \right| \\ \leq \left(\frac{1}{n} \sum_{k=1}^{n} |x_{k}|^{2} \right)^{1/2} \left(\frac{1}{n} \sum_{k=1}^{n} |y_{k}|^{2} \right)^{1/2},$$

for any $s \in [0, 1]$, where $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n) \in \mathbb{C}^n$.

References

- D. Choi, A generalization of the Cauchy-Schwarz inequality. J. Math. Inequal. 10 (2016), no. 4, 1009-1012.
- [2] S. S. Dragomir, Some refinements of Schwarz inequality, Simpozionul de Matematici şi Aplicații, Timişoara, Romania, 1-2 Noiembrie 1985, 13-16. ZBL 0594.46018.
- [3] S. S. Dragomir and I. Sándor, Some inequalities in pre-Hilbertian spaces. Studia Univ. Babeş-Bolyai Math. 32 (1987), no. 1, 71–78.
- [4] S. S. Dragomir, Discrete Inequalities of the Cauchy-Bunyakovsky-Schwarz Type. Nova Science Publishers, Inc., Hauppauge, NY, 2004. x+225 pp. ISBN: 1-59454-049-7.
- [5] S. S. Dragomir, Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces. Nova Science Publishers, Inc., Hauppauge, NY, 2005. viii+249 pp. ISBN: 1-59454-202-3.
- [6] S. S. Dragomir, Advances in Inequalities of the Schwarz, Triangle and Heisenberg Type in Inner Product Spaces. Nova Science Publishers, Inc., New York, 2007. xii+243 pp. ISBN: 978-1-59454-903-8; 1-59454-903-6.
- [7] S. S. Dragomir, A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities. J. Inequal. Pure Appl. Math. 4 (2003), no. 3, Article 63, 142 pp. [Online https://www.emis.de/journals/JIPAM/article301.html?sid=301].
- [8] S. S. Dragomir, Buzano's inequality holds for any projection, Bull. Aust. Math. Soc. 93 (2016), 504-510.
- [9] S. S. Dragomir, Improving Schwarz inequality in inner product spaces, Preprint RGMIA Res. Rep. Coll. 20 (2017), Art. See also http://arxiv.org/abs/1709.02029
- [10] S. S. Dragomir and B. Mond, On the superadditivity and monotonicity of Schwarz's inequality in inner product spaces, Contributions, Macedonian Acad. of Sci and Arts, 15(2) (1994), 5-22.
- [11] Y. Han, Refinements of the Cauchy-Schwarz inequality for τ-measurable operators. J. Math. Inequal. 10 (2016), no. 4, 919–931
- [12] N. J. A. Harvey, A generalization of the Cauchy-Schwarz inequality involving four vectors. J. Math. Inequal. 9 (2015), no. 2, 489–491.
- [13] E. Omey, On Xiang's observations concerning the Cauchy-Schwarz inequality. Amer. Math. Monthly 122 (2015), no. 7, 696–698.
- [14] I. Pinelis, On the Hölder and Cauchy-Schwarz inequalities. Amer. Math. Monthly 122 (2015), no. 6, 593-595.
- [15] L. Tuo, Generalizations of Cauchy-Schwarz inequality in unitary spaces. J. Inequal. Appl. 2015, 2015:201, 6 pp.
- [16] S. G. Walker, A self-improvement to the Cauchy-Schwarz inequality, Statistics and Probability Letters 122 (2017), 86–89.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E ext{-}mail\ address: sever.dragomir@vu.edu.au}$

URL: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE, IN THE MATHEMATICAL AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA