
On several inequalities in an Inner Product Space 

Silvestru Sever Dragomir and Nicușor Minculete  

 

 

Abstract. The aim of this article is to establish some identity in an inner product 

space and to prove new results related to several inequalities in an inner product 

space. Also we obtain some applications of these equalities and inequalities. 

 

Keywords: Inner product space, Cauchy-Schwartz inequality 

2010 Mathematics Subject Classification. Primary 46C05; Secondary 26D15, 

26D10 

 

1. Introduction 

The many inequalities in inner product spaces have important applications in 

Mathematics in various fields, as: Linear Operators Theory, Nonlinear Analysis, 

Approximation Theory, Optimization Theory, Geometry, Probability Theory, 

Statistics and other fields. An important inequality is the triangle inequality, 

yxyx  , 

for all Xy,x  , where X is a complex normed space. Several refinements of this 

inequality can be find in [6] and [13]. 

 Another inequality which plays the central role in an inner product spaces 

is the inequality of Cauchy-Schwarz [3], namely: 

yxyx , , 

for all Xy,x  , where X is a complex inner product space. 

A proof of the Cauchy-Schwarz inequality in the complex case is given by Aldaz in 

[1]. Dragomir [5,8] studied the Cauchy-Schwarz inequality in the complex case. 

Many other proofs in the real case and in the complex case can be find in [2],[6], [7] 

and [12], [15]. Several improvements of this inequality can be find in [6] and [18]. 

We obtained some reverses of the Cauchy-Schwarz inequality from [6], [13], 

[14] and [19]. 

Clarkson [4] give the notion the angular distance  yx,  between nonzero 

vectors x and y in X , by   
y

y

x

x
yx ,  . A simple norm inequality related to 

 yx,  we can see in [9]. The Cauchy-Schwarz inequality can be deducted from the 

following equality, as in Aldaz [1] and Niculescu [17], in terms of the angular 

distance between two vectors, thus 
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for all Xy,x  , 0y,x . Kirk and Smiley in [12] give another characterization of 

inner product spaces by the angular distance between two vectors and improve a 

result from [14]. 

In [10], Ilišević and Varošaneć showed the Cauchy-Schwarz inequality and its 

reverse in semi-inner product C*-modules. 

The Schwarz, triangle, Bessel, Gram and most recently, Grüss type 

inequalities have been frequently used as powerful tools in obtaining bounds or 

estimating the errors for various approximation formulae [7].  

 

 

2. Main results 

In this section of this article we obtain several results related to the identities for 

complex inner product spaces, and thus we obtain a proof of the Cauchy-Schwarz 

inequality in the complex case. 

Let X be an inner product space over the field of real numbers R or complex 

numbers C. The inner product  ,  induces an associated norm, given by 

 xxx , , for all Xx  , thus X is a normed vector space. 

Theorem 1. In an inner product space X over the field of complex numbers C, we 

have 
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But, it easy to see that 
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x  . Therefore, we obtain the relation 

of the statement.

 
Corollary 1. In an inner product space X over the field of real numbers R, we have 
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Proof. Since yxyx ,,   and   , we apply Theorem1 and we deduce equality (2). 

Corollary 2. Let E3 be the Euclidean punctual space. Then  
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Proof. In relation (2), we use the relation    
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and the Lagrange identity, 
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, yxyxyx  , and we obtain the relation of the 

statement.  

Corollary 3. In an inner product space X over the field of complex numbers C, we 

have 
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Proof. We apply Theorem1 for   , and we deduce  
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Consequently, we deduce the statement. 
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Remark 1. It is easy to see that 
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Corollary 3. In an inner product space X over the field of complex numbers C, we 

have 
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the relation of the statement.  

□ 

Remark 2. From relation (6), for 0 , we obtain the inequality of Cauchy-

Schwarz:
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Corollary 4. In an inner product space X over the field of complex numbers C, we 

have 
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for all Xy,x  , , and 

(9)                                      222

2

1
,Re yxyxyx  , 

(10)                                    222

2

1
,Im iyxyxyx  , 

for all Xy,x  . 
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which prove relation (9). 

For 0y , equality (10) is true. Now, for 0y , using relation (4), for i , we 
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which implies relation (10). 
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Remark 3. From relation (8) applied in an inner product space X over the field of 

real numbers R, becomes 
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for all Xy,x  , . This implies the identity given in [1]. 0y



Remark 4. In relations (9) and (10), we make the substitutions 
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and, we deduce the relations, given by Aldaz in [1]: 
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for all non-zero vectors Xyx , .  

Remark 5. Adding equalities (9) and (10), and using the parallelogram identity,

 2222
2 yxyxyx  , we deduce  

(10)                                     22
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for all Xyx , . 

Finally, we present several applications of these identities and inequalities. 

Theorem 5. In an inner product space X over the field of complex numbers C, we 

have 
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which was used to prove various Grüss type inequalities (see [6]).  
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with 0 , , then we have the Grüss type inequality 
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2. We present some applications of above theorems to Sn numbers. Recall that if 
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Kechriniotis and Delibasis [11] give a generalization of Grüss inequality in inner 
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(28)                                     
2

222 4
cos

AC
ACAABBC


 . 

If we take ,,, aBCbACcAB  in relation (26), we deduce 

 (29)                                           
2

2
22 4

cos
b

bAca


 .  



Therefore, we use the cosine law, 
bc

acb
A

2
cos

222 
 , we find the relation 

(30)                                     2222222 164  bacba .  

From relation (30), we find two relations for the area of the triangle ABC. 

First, by squared, we deduce the following formula [16]: 

(31)                             4442222222 22216 cbaaccbba  . 

Second, equality (30) can be written as   2222222 164  bacba , which means that 

   2222222 1622  bacabbacab , it follows that 

      22222
16 baccba , and if s is the semi-perimeter, then 

(32)                                       csbsass  , 

which is the well known Heron formula( see e.g. [13], p.54), because 

Equality (5) becomes, for 1 , thus, 

(31)                            
2

222 4
cos

AC
ACAABACAB


 . 

If we take bACcAB  , and am - the length of the median from A, in relation (11), 

we obtain 

 (32)                                    
2

2
22 4

cos4
b

bAcma


 .  

References 

[1] Aldaz, J. M., Strengthened Cauchy-Schwarz and Hölder inequalities, JIPAM, 

vol. 10, iss. 4, art. 116, 2009. 

[2] Alzer, H, A Refinement of the Cauchy-Schwarz Inequality, Journal of 

Mathematical Analysis and Applications, 168, 1992, 596-604. 

[3] Cauchy, A.-L., Cours d’Analyse de l’École Royale Polytechnique, I ère partie, 

Analyse Algébrique, Paris, 1821. Reprinted by Ed. Jacques Gabay, Paris, 1989. 

[4] Clarkson, J. A., Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 

396-414, p.403]. 

[5] Dragomir, S.S.,  A potpourri of Schwarz related inequalities in inner product 

spaces (II), J. Inequal. Pure Appl. Math. 7 (1) (2006), Article 14. 



[6] Dragomir, S.S., Advances in Inequalities of the Schwarz, Grüss and Bessel Type 

in Inner Product Spaces, Nova Science Publishers, Inc., New York, 2005. 

[7] Dragomir, S.S., Advances in Inequalities of the Schwarz, Triangle and 

Heisenberg Type in Inner Product Spaces, Nova Science Publishers, Inc., New York, 

2007. 

[8] Dragomir, S.S.,  Refinements of Buzano’s and Kurepa’s inequalities in inner 

product spaces, FACTA UNIVERSITATIS (NIŠ) Ser. Math. Inform. 20 (2005), 65-

73. 

[9] Dunkl, C. F.,  Wiliams, K. S., A simple norm inequality, , The American 

Mathematical Monthly, 71, 1964, 53-54. 

[10] Ilišević, D.,Varošaneć, On the Cauchy-Schwarz inequality and its reverse in 

semi-inner product C*-modules, Banach J. Math. Anal. 1 (2007), no. 1, 78–84. 

[11] Kechriniotis A.I., Delibasis, K.K., On generalization of Grüss inequality in 

inner product spaces and applications, J. Inequal. Appl., vol. 2010, art. ID167091. 

[12] Kirk, W.A. and Smiley, M.F., Mathematical Notes: Another characterization of 

inner product spaces, Amer. Math. Monthly 71 (1964), no. 8, 890–891. 

[13] Maligranda, L., Simple Norm Inequalities, The American Mathematical 

Monthly, 113, March, 2006, 256-260. 

[14] Massera, J. L., Schäffer, J. J., Linear differential equations and functional 

analysis. I., Ann. of Math. 67 (1958), 517-573, Lemma 5.1. 

[15] Minculete, N., Păltănea, R., Improved estimates for the triangle inequality, J. 

Inequal. Appl. 2017:17, 2017. 

[16]  Mitrinović, D. S., Pečarić, J. E., Voleneć, V., Recent Adnances in Geometric 

Inequalities, Kluwer Academic  Publishers, Dordrecht, 1989. 

[17] Niculescu, C. P., Inequalities and Identities. A Journey into Mathematics., 

Mostar, November 11-15, 2015. 

[18] Ostrowski, A., Vorlesungen über Differential-und Integralrechnung, Vol. 2, 

Birkhauser, Basel, 1951. 

[19] Stoica, E., Minculete, N., Barbu, C., New aspects of Ionescu–Weitzenbock’s 

inequality, Balkan Journal of Geometry and Its Applications, Vol. 21, No. 2, 2016, 

95-101. 

 

Victoria University  

Mathematics, School of Engineering & Science,  

PO Box 14428, Melbourne City, MC 8001, Australia 

E-mail: Sever.Dragomir@vu.edu.au 

 

Transilvania University of Brașov 

Department of Mathematics and Informatics 

Iuliu Maniu Street no. 50, 500091, Brașov, Romania 

E-mail: minculeten@yahoo.com 

https://scholar.google.ro/citations?view_op=view_citation&hl=ro&user=KstflJgAAAAJ&cstart=40&citation_for_view=KstflJgAAAAJ:r0BpntZqJG4C



