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Abstract. We examine Wilker and Huygens-type inequalities involving trigonometric func-
tions making use of results derived in Part I. The Papenfuss-Bach inequality representing upper

and lower bounds for the function x sec2 x − tanx for 0 ≤ x < π/2 is also investigated. An

open problem posed by Sun and Zhu concerning this last inequality is established.

1. Introduction

In Part I [6] we derived series representations of the remainders in the expansions of certain
trigonometric and hyperbolic functions and discussed some inequalities involving these functions.
In Part II we apply some of the results obtained in [6] in the discussion of further trigonometric
inequalities that are related to the Wilker, Huygens and Papenfuss-Bach inequalities.

In [24], Wilker proposed the following two open problems: Show that if 0 < x < π/2, then(
sinx

x

)2

+
tanx

x
> 2 (1.1)

and also find the largest constant c when the right-hand side of (1.1) is replaced by 2 + cx3 tanx.
This was proved in [22] and further extended by Chen and Cheung in [5], where it was shown
that for 0 < x < π/2,

2 +
8

45
x4 +

16

315
x5 tanx <

(
sinx

x

)2

+
tanx

x
< 2 +

8

45
x4 +

(
2

π

)6

x5 tanx,

with the constants 16/315 and (2/π)6 being the best possible. The Wilker-type inequality (1.1)
has attracted much interest from many mathematicians and has motivated a large number of
research papers involving different proofs, various generalizations and improvements (see [3–5,8,
11,14–18,21,22,25–29,31,33–35] and the references cited therein).

A related inequality that is of interest to us is Huygens’ inequality [12], which asserts that

2

(
sinx

x

)
+

tanx

x
> 3, 0 < |x| < π

2
. (1.2)

Chen and Cheung [5] showed that for 0 < x < π/2,

3 +
3

20
x3 tanx < 2

(
sinx

x

)
+

tanx

x
< 3 +

(
2

π

)4

x3 tanx, (1.3)
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where the constants 3/20 and (2/π)4 are the best possible, and obtained a further improvement
with the addition of terms involving x5 tanx. These authors also posed three conjectures on
Wilker and Huygens-type inequalities. As far as we know, these conjectures have not yet been
proved.

Zhu [32] established some new inequalities of the Huygens-type for trigonometric and hyper-
bolic functions. Baricz and Sándor [3] pointed out that inequalities (1.1) and (1.2) are simple
consequences of the arithmetic-geometric mean inequality, together with the well-known Lazare-
vić-type inequality [13, p. 238] given by (cosx)1/3 < sinx/x (0 < |x| < π/2), or equivalently(

sinx

x

)2
tanx

x
> 1, 0 < |x| < π

2
. (1.4)

Wu and Srivastava [27, Lemma 3] established another inequality, in which the trigonometric
ratios in (1.1) are inverted, namely( x

sinx

)2
+

x

tanx
> 2, 0 < |x| < π

2
(1.5)

and Chen and Sándor [8] established the following inequality chain:

(sinx/x)
2

+ tanx/x

2
>

(
sinx

x

)2(
tanx

x

)
>

2 (sinx/x) + tanx/x

3

>

(
sinx

x

)2/3(
tanx

x

)1/3

>
1

2

[( x

sinx

)2
+

x

tanx

]
>

2(x/ sinx) + x/ tanx

3
> 1 (1.6)

for 0 < |x| < π/2. This can be seen to involve the Wilker and Huygens inequalities (1.1) and
(1.2), together with their inverted forms and the inequality (1.4).

The final inequality we consider is the Papenfuss-Bach inequality. In [20], Papenfuss proposed
the following problem to establish the inequality

x sec2 x− tanx ≤ 8π2x3(
π2 − 4x2

)2 , 0 ≤ x < π/2. (1.7)

Bach [2] proved (1.7) and obtained a sharper upper bound in which the numerator 8π2x3 is
replaced by 2π4/3. Ge [9, Theorem 1.3] presented a lower bound in (1.7) and proved that

64x3(
π2 − 4x2

)2 < x sec2 x− tanx ≤ (2π4/3)x3(
π2 − 4x2

)2 , 0 ≤ x < π/2, (1.8)

where the constants 64 and 2π4/3 are the best possible.
Sun and Zhu [23, Theorem 1.5] obtained better lower and upper bounds for the Papenfuss-Bach

inequality inequality in the form

2π4

3 x3 +
(

8π4

15 −
16π2

3

)
x5(

π2 − 4x2
)2 < x sec2 x− tanx <

2π4

3 x3 +
(

256
π2 α− 8π2

3

)
x5(

π2 − 4x2
)2 (1.9)

with α = 513/511. They also posed the following open problem:

Open problem 1.1. Let 0 < x < π/2. Then (1.9) holds with α = 1, where the constants
8π4

15 −
16π2

3 and 256
π2 − 8π2

3 are best possible.

Our aim in Sections 2 and 3 is to develop the inverted forms of the Wilker and Huygens
inequalities given in (1.5) and the last inequality in (1.6) to produce sharp inequalities. In
Section 4, we present a series representation of the remainder in the expansion for t sec2 t− tan t.
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Based on this representation, we establish new bounds for x sec2 x − tanx when 0 < x < π/2.
We also answer the open problem in (1.9).

2. A Wilker-type inequality

We first consider the Wilker-type inequality in (1.5). It is well known [10, p. 42] that

cotx =
1

x
−
∞∑
k=1

22k|B2k|
(2k)!

x2k−1, |x| < π. (2.1)

Differentiating the expression in (2.1), we find( x

sinx

)2
= 1 +

∞∑
k=1

22k(2k − 1)|B2k|
(2k)!

x2k, |x| < π. (2.2)

From (2.1) and (2.2), we obtain that for |x| < π,( x

sinx

)2
+

x

tanx
= 2 +

∞∑
k=1

k · 22k+3|B2k+2|
(2k + 2)!

x2k+2. (2.3)

It follows from (2.3) that for every N ∈ N,

N · 22N+3|B2N+2|
(2N + 2)!

x2N+2 <
( x

sinx

)2
+

x

tanx
−

(
2 +

N−1∑
k=1

k · 22k+3|B2k+2|
(2k + 2)!

x2k+2

)
(2.4)

for 0 < |x| < π/2.
In view of (2.4) it is natural to ask: What are the largest number λN and the smallest number

µN such that the inequality

λNx
2N+2 <

( x

sinx

)2
+

x

tanx
−

(
2 +

N−1∑
k=1

k · 22k+3|B2k+2|
(2k + 2)!

x2k+2

)
< µNx

2N+2

holds for x ∈ (0, π/2) and N ∈ N? Theorem 2.1 answers this question. In what follows we shall
require the summations

∞∑
k=1

1

k2n
=

22n−1π2n

(2n)!
|B2n|,

∞∑
k=1

(−1)k−1

k2n
=

(22n−1 − 1)π2n

(2n)!
|B2n|,

∞∑
k=1

1

(2k − 1)2n
=

(22n − 1)π2n

2(2n)!
|B2n|, (2.5)

where Bn denote the Bernoulli numbers, defined by the following generating functions:

t

et − 1
=

∞∑
n=0

Bn
tn

n!
(|t| < 2π)

Theorem 2.1. Let N ≥ 1 be an integer. Then for 0 < t < π/2,

λN t
2N+2 <

(
t

sin t

)2

+
t

tan t
−

2 +

N−1∑
j=1

j · 22j+3|B2j+2|
(2j + 2)!

t2j+2

 < µN t
2N+2 (2.6)

with the best possible constants

λN =
N · 22N+3|B2N+2|

(2N + 2)!
(2.7)
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and

µN =
64N

π2N+2

∞∑
k=1

1

k2N−2(4k2 − 1)2
− 16(N − 1)

π2N+2

∞∑
k=1

1

k2N (4k2 − 1)2
. (2.8)

Proof. It follows from [19, p. 118] that

csc2 t =
1

t2
+ 2

∞∑
k=1

t2 + π2k2

(t2 − π2k2)2
, cot t =

1

t
+ 2t

∞∑
k=1

1

t2 − π2k2
. (2.9)

This then yields(
t

sin t

)2

= 1 +

∞∑
k=1

2t4 + 2π2k2t2

(t2 − π2k2)2
. (2.10)

From (2.10) and the second expansion in (2.9), we obtain(
t

sin t

)2

+
t

tan t
= 2 + 4t4

∞∑
k=1

1

(π2k2 − t2)2
= 2 + 4t4

∞∑
k=1

1

π4k4
(
1− ( t

πk )2
)2 . (2.11)

Using the following identity:

1

(1− q)2
=

N−1∑
j=1

jqj−1 +
NqN−1

1− q
+

qN

(1− q)2
(q 6= 1) (2.12)

and the first sum in (2.5), we then have(
t

sin t

)2

+
t

tan t
= 2 + 4t4

∞∑
k=1

1

π4k4
(
1− ( t

πk )2
)2

= 2 + 4t4
∞∑
k=1

1

π4k4

N−1∑
j=1

j

(
t

πk

)2j−2

+
N( t

πk )2N−2

1− ( t
πk )2

+
( t
πk )2N

(1− ( t
πk )2)2


= 2 +

N−1∑
j=1

j · 22j+3|B2j+2|
(2j + 2)!

t2j+2 +

∞∑
k=1

4Nt2N+2

π2Nk2N (π2k2 − t2)
+

∞∑
k=1

4t2N+4

π2Nk2N (π2k2 − t2)2

= 2 +

N−1∑
j=1

j · 22j+3|B2j+2|
(2j + 2)!

t2j+2 +
4t2N+2

π2N
VN (t),

where

VN (t) =

∞∑
k=1

Nπ2k2 − (N − 1)t2

k2N (π2k2 − t2)2
.

Differentiation yields

V ′N (t) =

∞∑
k=1

2t
(

(N + 1)π2k2 − (N − 1)t2
)

k2N (π2k2 − t2)3
> 0.

Hence, VN (t) is strictly increasing for t ∈ (0, π/2), and we have

λN t
2N+2 <

(
t

sin t

)2

+
t

tan t
−

2 +

N−1∑
j=1

j · 22j+3|B2j+2|
(2j + 2)!

t2j+2

 < µN t
2N+2
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with

λN =
4

π2N
VN (0) and µN =

4

π2N
VN

(π
2

)
.

Direct computations yield

VN (0) =
N

π2

∞∑
k=1

1

k2N+2
=
N · 22N+1π2N |B2N+2|

(2N + 2)!

and

VN

(π
2

)
=

16N

π2

∞∑
k=1

1

k2N−2(4k2 − 1)2
− 4(N − 1)

π2

∞∑
k=1

1

k2N (4k2 − 1)2
.

Hence, the inequality (2.6) holds with the best possible constants given in (2.7) and (2.8). The
proof of Theorem 2.1 is complete. �

Remark 2.1. Direct computations yield

λ1 =
2

45
, µ1 =

4(π2 − 8)

π4

and

λ2 =
8

945
, µ2 =

8(−720 + 90π2 − π4)

45π6
.

We then obtain from (2.6) that for 0 < t < π/2,

2 +
2

45
t4 <

(
t

sin t

)2

+
t

tan t
< 2 +

4(π2 − 8)

π4
t4, (2.13)

where the constants 2
45 and 4(π2 − 8)/π4 are the best possible, and

2 +
2

45
t4 +

8

945
t6 <

(
t

sin t

)2

+
t

tan t
< 2 +

2

45
t4 +

8(−720 + 90π2 − π4)

45π6
t6, (2.14)

where the constants 8
945 and 8(−720 + 90π2 − π4)/(45π6) are the best possible.

The classical Euler gamma function is defined (for x > 0) by

Γ(x) =

∫ ∞
0

tx−1e−tdt.

Its logarithmic derivative, denoted by ψ(x) = Γ′(x)/Γ(x), is called the psi (or digamma) function,
and ψ(k)(x) (k ∈ N) are called the polygamma functions.

Theorem 2.2. Let N ≥ 0 be an integer. Then for 0 < x < π/2,

αNx
4 <

( x

sinx

)2
+

x

tanx
−

(
2 + 4x4

N∑
k=1

1

(π2k2 − x2)2

)
< βNx

4 (2.15)

with the best possible constants

αN =
2ψ′′′(N + 1)

3π4
and βN =

8
(

(2N + 1)2ψ′(N + 1
2 )− 4(N + 1)

)
(2N + 1)2π4

. (2.16)



6 C.-P. CHEN AND R.B. PARIS

Proof. Write (2.11) as( x

sinx

)2
+

x

tanx
= 2 + 4x4

N∑
k=1

1

(π2k2 − x2)2
+ 4x4AN (x),

where

AN (x) =

∞∑
k=N+1

1

(π2k2 − x2)2
.

Obviously, AN (x) is strictly increasing for x ∈ (0, π/2). Hence, for 0 < x < π/2, we have

αNx
4 <

( x

sinx

)2
+

x

tanx
−

(
2 + 4x4

N∑
k=1

1

(π2k2 − x2)2

)
< βNx

4

with

αN = 4AN (0) =
4

π4

∞∑
k=N+1

1

k4
and βN = 4AN

(π
2

)
=

64

π4

∞∑
k=N+1

1(
4k2 − 1

)2 .
From the following formula (see [1, p. 260, Eq. (6.4.10)]):

ψ(n)(z) = (−1)n+1n!

∞∑
k=0

1

(z + k)n+1
, z 6= 0,−1,−2, . . . ,

we obtain
∞∑

k=N+1

1

k4
=
ψ′′′(N + 1)

6
. (2.17)

We find1

∞∑
k=N+1

1(
4k2 − 1

)2 =
1

8
ψ′
(
N +

1

2

)
− N + 1

2(2N + 1)2
. (2.18)

Hence, the inequality (2.15) holds with the best possible constants given in (2.16). The proof of
Theorem 2.2 is complete. �

Remark 2.2. The choice N = 0 in (2.15) yields (2.13). The choice N = 1 in (2.15) yields

2 +
4x4

(π2 − x2)2
+

2(π4 − 90)

45π4
x4 <

( x

sinx

)2
+

x

tanx
< 2 +

4x4

(π2 − x2)2
+

4(9π2 − 88)

9π4
x4

(2.19)

for 0 < x < π/2, where the constants 2(π4 − 90)/(45π4) and 4(9π2 − 88)/(9π4) are the best
possible.

Remark 2.3. There is no strict comparison between the two lower bounds in (2.14) and (2.19).
Likewise, there is no strict comparison between the two upper bounds in (2.14) and (2.19).

Theorem 2.3 proves Conjecture 2 in [5].

1The formula (2.18) is established by induction on N in the appendix.
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Theorem 2.3. Let N ≥ 1 be an integer. Then for 0 < x < π/2, we have

2 +

N−1∑
k=1

k · 22k+3|B2k+2|
(2k + 2)!

x2k+2 + pNx
2N+1 tanx <

( x

sinx

)2
+

x

tanx

< 2 +

N−1∑
k=1

k · 22k+3|B2k+2|
(2k + 2)!

x2k+2 + qNx
2N+1 tanx (2.20)

with the best possible constants

pN = 0 and qN =
N · 22N+3|B2N+2|

(2N + 2)!
. (2.21)

Proof. By (2.3), for pN = 0, the first inequality in (2.20) holds. We now prove the second
inequality in (2.20) with qN = N · 22N+3|B2N+2|/(2N + 2)!. Using (2.3) and the following
expansion (see [10, p. 42]):

tanx =

∞∑
k=1

22k(22k − 1)|B2k|
(2k)!

x2k−1, |x| < π

2
, (2.22)

we find

N · 22N+3|B2N+2|
(2N + 2)!

x2N+1 tanx−

(( x

sinx

)2
+

x

tanx
− 2−

N−1∑
k=1

k · 22k+3|B2k+2|
(2k + 2)!

x2k+2

)

=
N · 22N+3|B2N+2|

(2N + 2)!
x2N+1

∞∑
k=1

22k(22k − 1)|B2k|
(2k)!

x2k−1 −
∞∑

k=N+1

(k − 1) · 22k+1|B2k|
(2k)!

x2k

=

∞∑
k=N+2

{
N · 22N+3|B2N+2|

(2N + 2)!

22k−2N (22k−2N − 1)|B2k−2N |
(2k − 2N)!

− (k − 1) · 22k+1|B2k|
(2k)!

}
x2k,

(2.23)

where we note that the term corresponding to k = N + 1 vanishes.
We claim that for k ≥ N + 2,

N · 22N+3|B2N+2|
(2N + 2)!

22k−2N (22k−2N − 1)|B2k−2N |
(2k − 2N)!

>
(k − 1) · 22k+1|B2k|

(2k)!
. (2.24)

Using the inequality (see [1, p. 805])

2

(2π)
2n

(1− 21−2n)
>
|B2n|
(2n)!

>
2

(2π)
2n , n ≥ 1, (2.25)

it is sufficient to prove that for k ≥ N + 2,

N · 22N+3 · 2
(2π)

2N+2

22k−2N (22k−2N − 1) · 2
(2π)

2k−2N >
2(k − 1) · 22k+1

(2π)
2k

(1− 21−2k)
,

which can be rearranged as

N

(
22k

22N
− 1

)
>
π2

2
(k − 1)

(
1 +

2

22k − 2

)
, k ≥ N + 2.

Noting that π2/2 < 5, it is enough to prove the following inequality:

N

(
22k

22N
− 1

)
> 5(k − 1)

(
1 +

2

22k − 2

)
, k ≥ N + 2,
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which can be rearranged as

N

22N
22k − 5(k − 1) > N +

10(k − 1)

22k − 2
, k ≥ N + 2.

Noting that the sequence

N

22N
22k − 5(k − 1)

is strictly increasing for k ≥ N + 2, and the sequence

10(k − 1)

22k − 2

is strictly decreasing for k ≥ 2, it is enough to prove the following inequality:

N

22N
22(N+2) − 5(N + 1) > N +

10(N + 1)

22(N+2) − 2
,

which can be rearranged as

(2N − 1)22N+3 > 3N, N ≥ 1.

Obviously, the last inequality holds. This proves the claim (2.24). From (2.23), we obtain the
second inequality in (2.20) with qN = N · 22N+3|B2N+2|/(2N + 2)!.

Write (2.20) as

pN <

(
x

sin x

)2
+ x

tan x − 2−
∑N−1
k=1

k·22k+3|B2k+2|
(2k+2)! x2k+2

x2N+1 tanx
< qN .

We find that

lim
x→π

2

(
x

sin x

)2
+ x

tan x − 2−
∑N−1
k=1

k·22k+3|B2k+2|
(2k+2)! x2k+2

x2N+1 tanx
= 0

and

lim
x→0

(
x

sin x

)2
+ x

tan x − 2−
∑N−1
k=1

k·22k+3|B2k+2|
(2k+2)! x2k+2

x2N+1 tanx
=
N · 22N+3|B2N+2|

(2N + 2)!
.

Hence, the inequality (2.20) holds with the best possible constants given in (2.21). The proof of
Theorem 2.3 is complete. �

3. A Huygens-type inequality

We now turn our attention to the inverted form of the Huygens inequality in (1.2). Using
(2.1) and the following expansion (see [10, p. 43]):

cscx =
1

x
+

∞∑
k=1

2(22k−1 − 1)|B2k|
(2k)!

x2k−1, |x| < π,

we find

2
( x

sinx

)
+

x

tanx
= 3 +

∞∑
k=2

(22k − 4)|B2k|
(2k)!

x2k, |x| < π. (3.1)

It follows from (3.1) that for every N ∈ N,

(22N+2 − 4)|B2N+2|
(2N + 2)!

x2N+2 < 2
( x

sinx

)
+

x

tanx
−

(
3 +

N∑
k=2

(22k − 4)|B2k|
(2k)!

x2k

)
(3.2)
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for 0 < |x| < π/2.
In view of (3.2) it is natural to ask: What are the largest number aN and the smallest number

bN such that the inequality

aNx
2N+2 < 2

( x

sinx

)
+

x

tanx
−

(
3 +

N∑
k=2

(22k − 4)|B2k|
(2k)!

x2k

)
< bNx

2N+2

holds for x ∈ (0, π/2) and N ∈ N? Theorem 3.1 answers this question.

Theorem 3.1. Let N ≥ 1 be an integer. Then for 0 < |x| < π/2,

aNx
2N+2 < 2

( x

sinx

)
+

x

tanx
−

3 +

N∑
j=2

(22j − 4)|B2j |
(2j)!

x2j

 < bNx
2N+2 (3.3)

with the best possible constants

aN =
(22N+2 − 4)|B2N+2|

(2N + 2)!
(3.4)

and

bN =
8

π2N+2

( ∞∑
k=1

(−1)k+1

k2N (2k − 1)
−
∞∑
k=1

(−1)k+1

k2N (2k + 1)

)

− 4

π2N+2

( ∞∑
k=1

1

k2N (2k − 1)
−
∞∑
k=1

1

k2N (2k + 1)

)
. (3.5)

Proof. By [6, Theorems 4, 5], we have

2
( x

sinx

)
= 2 +

N∑
j=1

(22j+1 − 4)|B2j |
(2j)!

x2j + x2N+2
∞∑
k=1

4(−1)k+1

(kπ)2N
(
(kπ)2 − x2

) (3.6)

and

x

tanx
= 1−

N∑
j=1

22j |B2j |
(2j)!

x2j − x2N+2
∞∑
k=1

2

(kπ)2N
(
(kπ)2 − x2

) . (3.7)

Adding these two expressions, we obtain

2
( x

sinx

)
+

x

tanx
= 3 +

N∑
j=2

(22j − 4)|B2j |
(2j)!

x2j +
2x2N+2

π2N
UN (x),

where

UN (x) =

∞∑
k=1

(−1)k+1 2− (−1)k+1

k2N
(
(kπ)2 − x2

) .
Differentiation yields

U ′N (x)

2x
=

∞∑
k=1

(−1)k+1αk, αk =
2− (−1)k+1

k2N
(
(kπ)2 − x2

)2 . (3.8)

Then it is easily seen that αk > αk+1 for k ∈ N, 0 < x < π/2 and N ∈ N; thus for every N ≥ 1,
we have U ′N (x) > 0 for 0 < x < π/2. Hence, for all 0 < x < π/2 and N ∈ N, we have

UN (0) < UN (x) < UN

(π
2

)
.
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Using (2.5), we find

aN =
2UN (0)

π2N
= 4

∞∑
k=1

(−1)k+1

(kπ)2N+2
− 2

∞∑
k=1

1

(kπ)2N+2

=
4(22N+1 − 1)

(2N + 2)!
|B2N+2| −

2 · 22N+1

(2N + 2)!
|B2N+2| =

(22N+2 − 4)|B2N+2|
(2N + 2)!

and

bN =
2UN (π/2)

π2N
= 4

∞∑
k=1

(−1)k+1

(kπ)2N
(
(kπ)2 − (π/2)2

) − 2

∞∑
k=1

1

(kπ)2N
(
(kπ)2 − (π/2)2

)
=

8

π2N+2

( ∞∑
k=1

(−1)k+1

k2N (2k − 1)
−
∞∑
k=1

(−1)k+1

k2N (2k + 1)

)

− 4

π2N+2

( ∞∑
k=1

1

k2N (2k − 1)
−
∞∑
k=1

1

k2N (2k + 1)

)
.

The proof of Theorem 3.1 is complete. �

Clearly,

a1 =
1

60
and a2 =

1

504
.

Direct computations yield
∞∑
k=1

(−1)k+1

k2(2k − 1)
= π − 2 ln 2− π2

12
,

∞∑
k=1

(−1)k+1

k2(2k + 1)
= 4− 2 ln 2− π +

π2

12
,

∞∑
k=1

1

k2(2k − 1)
= −π

2

6
+ 4 ln 2,

∞∑
k=1

1

k2(2k + 1)
= −4 + 4 ln 2 +

π2

6
,

∞∑
k=1

(−1)k+1

k4(2k − 1)
= 4π − 8 ln 2− π2

3
− 3

2
ζ(3)− 7π4

720
,

∞∑
k=1

(−1)k+1

k4(2k + 1)
= 16− 4π − 8 ln 2 +

π2

3
− 3

2
ζ(3) +

7π4

720
,

∞∑
k=1

1

k4(2k − 1)
= 16 ln 2− 2π2

3
− 2ζ(3)− π4

90
,

∞∑
k=1

1

k4(2k + 1)
= −16 + 16 ln 2 +

2π2

3
− 2ζ(3) +

π4

90
,

where ζ(s) is the Riemann zeta function. Then, we obtain from (3.5)

b1 =
16(π − 3)

π4
and b2 =

960π − π4 − 2880

15π6
.

From (3.3), we have, for 0 < |x| < π/2,

3 +
1

60
x4 < 2

( x

sinx

)
+

x

tanx
< 3 +

16(π − 3)

π4
x4, (3.9)
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where the constants 1
60 and 16(π − 3)/π4 are the best possible, and

3 +
1

60
x4 +

1

504
x6 < 2

( x

sinx

)
+

x

tanx
< 3 +

1

60
x4 +

960π − π4 − 2880

15π6
x6, (3.10)

where the constants 1
504 and (960π − π4 − 2880)/(15π6) are the best possible.

The formula (3.1) motivated us to establish Theorem 3.2.

Theorem 3.2. Let N ≥ 1 be an integer. Then for 0 < x < π/2, we have

3 +

N∑
j=2

(22j − 4)|B2j |
(2j)!

x2j + ρNx
2N+1 tanx < 2

( x

sinx

)
+

x

tanx

< 3 +

N∑
j=2

(22j − 4)|B2j |
(2j)!

x2j + %Nx
2N+1 tanx (3.11)

with the best possible constants

ρN = 0 and %N =
4(22N − 1)|B2N+2|

(2N + 2)!
. (3.12)

Proof. By (3.1), for ρN = 0, the first inequality in (3.11) holds. We now prove the second
inequality in (3.11) with %N = 4(22N − 1)|B2N+2|/(2N + 2)!. Using the expansion [10, p. 44]

tan t =

∞∑
k=1

8t

π2(2k − 1)2 − 4t2
(3.13)

and (3.1), we find

4(22N − 1)|B2N+2|
(2N + 2)!

x2N+1 tanx−

2
( x

sinx

)
+

x

tanx
− 3−

N∑
j=2

(22j − 4)|B2j |
(2j)!

x2j


=

4(22N − 1)|B2N+2|
(2N + 2)!

x2N+1
∞∑
k=1

22k(22k − 1)|B2k|
(2k)!

x2k−1 −
∞∑

k=N+1

(22k − 4)|B2k|
(2k)!

x2k

=

∞∑
k=N+2

{
4(22N − 1)|B2N+2|

(2N + 2)!

22k−2N (22k−2N − 1)|B2k−2N |
(2k − 2N)!

− (22k − 4)|B2k|
(2k)!

}
x2k.

(3.14)

We claim that for k ≥ N + 2,

4(22N − 1)|B2N+2|
(2N + 2)!

22k−2N (22k−2N − 1)|B2k−2N |
(2k − 2N)!

>
(22k − 4)|B2k|

(2k)!
. (3.15)

Using the inequality (2.25), it is sufficient to prove that

4(22N − 1) · 2
(2π)

2N+2

22k−2N (22k−2N − 1) · 2
(2π)

2k−2N >
(22k − 4) · 2

(2π)
2k

(1− 21−2k)
, k ≥ N + 2,

which can be rearranged as(
1− 1

22N

)(
22k

22N
− 1

)
>
π2

2

(
1− 2

22k − 2

)
, k ≥ N + 2.

Noting that π2/2 < 5, it is enough to prove the following inequality:(
1− 1

22N

)(
22k

22N
− 1

)
> 5

(
1− 2

22k − 2

)
, k ≥ N + 2,
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which can be written as(
1− 1

22N

)
22k

22N
+

1

22N
+

10

22k − 2
> 6, k ≥ N + 2.

It is enough to prove the following inequality:(
1− 1

22N

)
22k

22N
+

1

22N
> 6, k ≥ N + 2. (3.16)

Clearly,(
1− 1

22N

)
22k

22N
+

1

22N
≥
(

1− 1

22N

)
22N+4

22N
+

1

22N
= 16− 15

22N
, k ≥ N + 2.

In order to prove (3.16), it suffices to show that

16− 15

22N
> 6, N ≥ 1,

that is,

22N+1 > 3, N ≥ 1.

Obviously, the last inequality holds. This proves the claim (3.15). From (3.14), we obtain the
second inequality in (3.11) with %N = 4(22N − 1)|B2N+2|/(2N + 2)!.

Write (3.11) as

ρN <
2
(

x
sin x

)
+ x

tan x − 3−
∑N
j=2

(22j−4)|B2j |
(2j)! x2j

x2N+1 tanx
< %N .

We find

lim
x→π

2

2
(

x
sin x

)
+ x

tan x − 3−
∑N
j=2

(22j−4)|B2j |
(2j)! x2j

x2N+1 tanx
= 0

and

lim
x→0

2
(

x
sin x

)
+ x

tan x − 3−
∑N
j=2

(22j−4)|B2j |
(2j)! x2j

x2N+1 tanx
=

4(22N − 1)|B2N+2|
(2N + 2)!

.

Hence, the inequality (3.11) holds with the best possible constants given in (3.12). The proof of
Theorem 3.2 is complete. �

Remark 3.1. For 0 < |x| < π/2, we have

3 + ax3 tanx < 2
( x

sinx

)
+

x

tanx
< 3 + bx3 tanx (3.17)

with the best possible constants

a = 0 and b =
1

60
. (3.18)

There is no strict comparison between the two upper bounds in (3.9) and (3.17).
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4. The Papenfuss-Bach inequality

In this section we consider refinements to the Papenfuss-Bach inequality stated in (1.7) and
answer the open problem in (1.9).

It follows from [10, p. 44] that

sec2
πx

2
=

4

π2

∞∑
k=1

{
1

(2k − 1− x)2
+

1

(2k − 1 + x)2

}
.

Replacement of x by 2t/π yields

sec2 t =
4

π2

∞∑
k=1

{
1

(2k − 1− 2t
π )2

+
1

(2k − 1 + 2t
π )2

}
. (4.1)

From (3.13) and (4.1), we have

t sec2 t− tan t =
64t3

π4

∞∑
k=1

1

(2k − 1)4
(

1−
(

2t
π(2k−1)

)2)2 . (4.2)

Using (2.12) and the third summation in (2.5), we obtain from (4.2) the series representation of
the remainder in the expansion for sec2 t− tan t/t:

t sec2 t− tan t

=
64t3

π4

∞∑
k=1

1

(2k − 1)4

N−1∑
j=1

j

(
2t

π(2k − 1)

)2j−2

+
N
(

2t
π(2k−1)

)2N−2
1−

(
2t

π(2k−1)
)2 +

(
2t

π(2k−1)
)2N(

1−
(

2t
π(2k−1)

)2)2


=

N−1∑
j=1

2j · 22j+2(22j+2 − 1)|B2j+2|
(2j + 2)!

t2j+1 + κN (t), (4.3)

where

κN (t) =
N · 22N+4t2N+1

π2N

∞∑
k=1

1

(2k − 1)2N
(
π2(2k − 1)2 − 4t2

)
+

22N+6t2N+3

π2N

∞∑
k=1

1

(2k − 1)2N
(
π2(2k − 1)2 − 4t2

)2 . (4.4)

Theorem 4.1. Let N ≥ 1 be an integer. Then for 0 < t < π/2, we have

LN (t) < t sec2 t− tan t−
N−1∑
j=1

2j · 22j+2(22j+2 − 1)|B2j+2|
(2j + 2)!

t2j+1

− N · 22N+4t2N+1

π2N (π2 − 4t2)
− 22N+6t2N+3

π2N (π2 − 4t2)2
< MN (t), (4.5)

where

LN (t) =
N · 22N+4t2N+1

π2N+2

{
(22N+2 − 1)π2N+2|B2N+2|

2 · (2N + 2)!
− 1

}
+

22N+6t2N+3

π2N+4

{
(22N+4 − 1)π2N+4|B2N+4|

2 · (2N + 4)!
− 1

}
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and

MN (t) =
N · 22N+2t2N+1

π2N+2

∞∑
k=2

1

(2k − 1)2Nk(k − 1)

+
22N+2t2N+3

π2N+4

∞∑
k=2

1

(2k − 1)2Nk2(k − 1)2
.

Proof. Write (4.3) as

t sec2 t− tan t =

N−1∑
j=1

2j · 22j+2(22j+2 − 1)|B2j+2|
(2j + 2)!

t2j+1

+
N · 22N+4t2N+1

π2N (π2 − 4t2)
+
N · 22N+4t2N+1

π2N
IN (t)

+
22N+6t2N+3

π2N (π2 − 4t2)2
+

22N+6t2N+3

π2N
JN (t), (4.6)

where

IN (t) =

∞∑
k=2

1

(2k − 1)2N
(
π2(2k − 1)2 − 4t2

)
and

JN (t) =

∞∑
k=2

1

(2k − 1)2N
(
π2(2k − 1)2 − 4t2

)2 .
Obviously, IN (t) and JN (t) are both strictly increasing for t ∈ (0, π/2). We then obtain from
(4.6) that

N · 22N+4t2N+1

π2N
IN (0) +

22N+6t2N+3

π2N
JN (0)

< t sec2 t− tan t−
N−1∑
j=1

2j · 22j+2(22j+2 − 1)|B2j+2|
(2j + 2)!

t2j+1

− N · 22N+4t2N+1

π2N (π2 − 4t2)
− 22N+6t2N+3

π2N (π2 − 4t2)2

<
N · 22N+4t2N+1

π2N
IN

(π
2

)
+

22N+6t2N+3

π2N
JN

(π
2

)
.

Direct computations yield

LN (t) =
N · 22N+4t2N+1

π2N
IN (0) +

22N+6t2N+3

π2N
JN (0)

=
N · 22N+4t2N+1

π2N+2

∞∑
k=2

1

(2k − 1)2N+2
+

22N+6t2N+3

π2N+4

∞∑
k=2

1

(2k − 1)2N+4

=
N · 22N+4t2N+1

π2N+2

{
(22N+2 − 1)π2N+2|B2N+2|

2 · (2N + 2)!
− 1

}
+

22N+6t2N+3

π2N+4

{
(22N+4 − 1)π2N+4|B2N+4|

2 · (2N + 4)!
− 1

}
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and

MN (t) =
N · 22N+4t2N+1

π2N
IN

(π
2

)
+

22N+6t2N+3

π2N
JN

(π
2

)
=
N · 22N+2t2N+1

π2N+2

∞∑
k=2

1

(2k − 1)2Nk(k − 1)

+
22N+2t2N+3

π2N+4

∞∑
k=2

1

(2k − 1)2Nk2(k − 1)2
.

The proof of Theorem 4.1 is complete. �

With the evaluations
∞∑
k=2

1

(2k − 1)4k(k − 1)
= 9− π4

24
− π2

2

and
∞∑
k=2

1

(2k − 1)4k2(k − 1)2
= −59 +

13π2

3
+
π4

6
,

the choice N = 2 in (4.5) yields

P (x)(
π2 − 4x2

)2 < x sec2 x− tanx <
Q(x)(

π2 − 4x2
)2 , 0 < x <

π

2
, (4.7)

where

P (x) =
2π4

3
x3 +

8π2(π2 − 10)

15
x5 +

2(322560 + 1680π4 − 672π6 + 17π8)

315π4
x7

+
16(168− 17π2)

315
x9 +

32(17π8 − 161280)

315π8
x11

and

Q(x) =
2π4

3
x3 +

32(156− 6π2 − π4)

3π2
x5 +

64(−657 + 37π2 + 3π4)

3π4
x7

+
512(285− 19π2 − π4)

3π6
x9 +

512(−354 + 26π2 + π4)

3π8
x11.

The inequality (4.7) is an improvement on the inequality (1.9).

Remark 4.1. In fact, the lower bound in (4.7) is larger than the one in (1.9), and the upper
bound in (4.7) is smaller than the one in (1.9). Hence, the inequality (1.9) holds true. If we
write (1.9) as

8π4

15
− 16π2

3
<

(x sec2 x− tanx)(π2 − 4x2)2 − 2π4

3 x3

x5
<

256

π2
− 8π2

3
,

we find that

lim
x→0

(x sec2 x− tanx)(π2 − 4x2)2 − 2π4

3 x3

x5
=

8π4

15
− 16π2

3

and

lim
x→π/2

(x sec2 x− tanx)(π2 − 4x2)2 − 2π4

3 x3

x5
=

256

π2
− 8π2

3
.
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Hence, the inequality (1.9) holds for 0 < x < π/2, and the constants 8π4

15 −
16π2

3 and 256
π2 − 8π2

3
are the best possible.

Appendix: A proof of (2.18)

For N = 0 in (2.18), we find that
∞∑
k=1

1(
4k2 − 1

)2 =
π2 − 8

16
and

1

8
ψ′
(

1

2

)
− 1

2
=
π2 − 8

16
.

This shows that the formula (2.18) holds for N = 0.
Now we assume that the formula (2.18) holds for some N ∈ N0 := N ∪ {0}. Then, for

N 7→ N + 1 in (2.18), by using the induction hypothesis and the following relation:

ψ′(z + 1) = ψ′(z)− 1

z2
,

we have
∞∑

k=N+2

1(
4k2 − 1

)2 =

∞∑
k=N+1

1(
4k2 − 1

)2 − 1(
4(N + 1)2 − 1

)2
=

1

8
ψ′
(
N +

1

2

)
− N + 1

2(2N + 1)2
− 1(

4(N + 1)2 − 1
)2

=
1

8
ψ′
(
N +

1

2

)
− 1

8(N + 1
2 )2
− N + 2

2
(
2N + 3

)2
=

1

8
ψ′
(
N +

3

2

)
− N + 2

2
(
2N + 3

)2 .
Thus, by the principle of mathematical induction, the formula (2.18) holds for all N ∈ N0.
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