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HYPO-¢-NORMS ON A CARTESIAN PRODUCT OF NORMED
LINEAR SPACES

SILVESTRU SEVER DRAGOMIR1!:2

ABSTRACT. In this paper we introduce the hypo-g-norms on a Cartesian prod-
uct of normed linear spaces. A representation of these norms in terms of
bounded linear functionals of norm less than one, the equivalence with the
g-norms on a Cartesian product and some reverse inequalities obtained via the
scalar Shisha-Mond, Birnacki et al. and other Griiss type inequalities are also
given.

1. INTRODUCTION

Let (E,||-||) be a normed linear space over the real or complex number field K.
On K" endowed with the canonical linear structure we consider a norm ||-||,, and
the unit ball

B([-I,) == {x = (A1, M) € K" A, < 1}
As an example of such norms we should mention the usual p-norms
max {|A1],..., | |} if p=oc;
(1.1) 1AL, == )
p_ PP i pe i o).
The Fuclidean norm is obtained for p = 2, i.e.,

n

2

Ao = D Al
k=1

It is well known that on E™ := E X --- X E endowed with the canonical linear
structure we can define the following p-norms:

2

max {[[z[,. ., lzn [} if p = oo;

||X||n7p =

(1.2) )
(k= lzellP)? if pe[l,00);
where x = (x1,...,2,) € E™.
Following [6], for a given norm ||-||, on K", we define the functional |||, ,, :
E™ — [0, 00) given by

n
(1.3) %[, == sup Zx\jxj ,
reB(|,) [|5=1

where x = (x1,...,2,) € E™.
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2 S.S. DRAGOMIR

It is easy to see, by the properties of the norm ||-||, that:
(i) [1xlly,,, >0 for any x € E™;
(11) HX + y||h7n S ||X||h7n + ||y||h7n fOr a‘ny X) y S ET‘L’
(i) [lexll, ,, = lal %]}, ,, for each a € K and x € E™;
and therefore [|-||;, ,, is a semi-norm on E™. This will be called the hypo-semi-
norm generated by the norm ||-||,, on E™.
We observe that [|x|[, ,, = 0 if and only if >>7_, Aja; = 0 for any (A1,...,\,) €
B (||Il,,) - If there exists A9, A =£ 0 such that ()\(1),0, ...,0), (O,)\g, 1)
(0,0,..., )\g) € B(||-],,) then the semi-norm generated by ||-||,, is a norm on E™.
If by By, , with p € [1,00] we denote the balls generated by the p-norms ||-||,, ,
on K", then we can obtain the following hypo-g-norms on E™ :

(]‘4) ||x||h,n,q ‘= Sup Z)\Jx] )
AEBn, |7
J
Withq>1and%+%:1ifp>17q:1ifp:ooandq:ooifp:l.
For p = 2, we have the Euclidean ball in K", which we denote by B,,, B,, =
{)\ = (A, A) RPN < 1} that generates the hypo-Euclidean norm
on E", i.e.,

(15) Il = sup
EE’!L

n
pIRVE
j=1

Moreover, if E = H, H is a inner product space over K, then the hypo-FEuclidean
norm on H" will be denoted simply by

(1.6) ]|, := sup
AeB

n

n
E A
=1

Let (H;(-,-)) be a Hilbert space over K and n € N, n > 1. In the Cartesian
product H"™ := H X --- x H, for the n—tuples of vectors x = (z1,...,2,), y =
(y1,-..,Yyn) € H™, we can define the inner product (-,-) by

n

(1.7) (xy) =Y (wy), x yeH"

j=1

which generates the Euclidean norm |[|-||, on H", i.e.,

1

2

2 n
(1.8) elly o= { D llal* |, xeH™
j=1

The following result established in [6] connects the usual Euclidean norm ||-||
with the hypo-Euclidean norm ||-||, .

Theorem 1 (Dragomir, 2007, [6]). For any x € H™ we have the inequalities
1
(1.9) 7 1] < [l < x5

i.e., |||l and ||-||, are equivalent norms on H™.
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The following representation result for the hypo-Euclidean norm plays a key role
in obtaining various bounds for this norm:

Theorem 2 (Dragomir, 2007, [6]). For any x € H" with x = (21,...,2,), we
have

2

n
(1.10) x|, = sup | > [, ;)
lz]|<1 j=1

Motivated by the above results, in this paper we introduce the hypo-g-norms on
a Cartesian product of normed linear spaces. A representation of these norms in
terms of bounded linear functionals of norm less than one, the equivalence with
the g-norms on a Cartesian product and some reverse inequalities obtained via the
scalar Shisha-Mond, Birnacki et al. and other Griiss type inequalities are also given.

2. GENERAL RESULTS

Let (E,||-||) be a normed linear space over the real or complex number field K.
We denote by E* its dual space endowed with the norm ||-|| defined by

|l fll := sup |f (z)| < oo, where f € E™.
llzll<1

We have the following representation result for the hypo-g-norms on E™.

Theorem 3. Let (E, ||-||) be a normed linear space over the real or complex number
field K. For any x € E™ with x = (x1,...,%,), we have

N 1/q
(2.1) [l g = sup $ [ D1 ()]
llflI<1 =1
where p, ¢ > 1 with%—i—%:l,
(2.2) €[l 01 = sup &> 1f (25)]
IFI<1 | 5=
and
2.3 X =||x = max zil|l}-
(23) [l e = e = e {1}
In particular,
1/2

n

(2.4) Il = sup §( D_IF (@)

IflI<1 j=1

Proof. Using Holder’s discrete inequality for p, ¢ > 1 and % + % = 1 we have

1/p 1/q

n n n

P q
>_ o) < | X lal P11
j=1 j=1 j=1
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which implies that

(2.5) sup Z%ﬁ <18l

lleell, <

where a = (a1,...,a,) and 8= (84,...,5,,) -
For (B4,...,8,) # 0, consider a = (a1, ..., q,) with

_ B 18,1
(0, 18:D”

for those j for which 3; # 0 and a; = 0, for the rest.
We observe that

n n F|ﬁ|q_2 27:1 iﬁjiq
;] = J 1”3 Bl = J
Z Y ;@;;1 Bl (S 18D

1/q

i FR T

and

B8, 2] n (|5-|q71)p
P _ P = ‘
||o<\|p—j§:1:|ajl Z(Zk 1B ; (7 1Bl

ST LA S
k1 18T = (k= 18]T)
Therefore, by (2.5) we have the representation

(2.6) sup Zagﬁ — |18,

flall, <1

for any 8 = (64,...,0,) € K™
By Hahn-Banach theorem, we have for any v € FE, u # 0 that

(2.7) lul = sup |f (u)].
I71<1

Let @ = (a1, ...,a,) € K" and x € E" with x = (21,...,%,) . Then by (2.7) we
have

(2.8) Zajm] = sup Zajxj = sup Zajf(xj) .

\f\|<1 I71<1 5=
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By taking the supremum in this equality we have

n
sup Zajxj = sup sup Zajf(xj)

S i ladl, <t \ <1 |52
1/2

= sup sup Zajf(xj) = sup Z|f(xj)\q :

i< \Jlall, <1 |5=3 IFi<1 \ 5=

where for the last equality we used the representation (2.6).
This proves (2.1).
Using the properties of the modulus, we have

Zajﬁ < _emax |aJ|Z‘B‘

,,,,,

which implies that

(2.9) sup Zam <181,

llarlloo <1

where a = (a1,...,a,) and = (84,...,06,,) -
For (B4,...,5,) # 0, consider & = (a1, ..., ay) with a; :

. \5 |
which 8; # 0 and a; = 0, for the rest.
We have
n n /87 n
PITARS Z— = > 18; = 18I,
= j=1 6 j=1
and

= max |oj|= max

o
ledloc je{l,...n} je{l,...n}

and by (2.9) we get the representation
(2.10) e Zagﬁ =181,

for any g = (84,...,0,,) € K".
By taking the supremum in the equality (2.8) we have

n
sup Za]xj = sup sup Zajf(xj)

ol <11|5=1 llallo <1 \NFI<T {55

= sup sup Zajf(xj) = sup Z|f(%)| )

1711 \ llall o<1 | 5= i<t \ 5=

where for the last equality we used the equality (2.10), which proves the represen-
tation (2.2).
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Finally, we have

Z%ﬁ <ZI%\ max |3

which implies that

(2.11) sup Z%B < 18]l o

el <1

where a = (a1,...,a,) and 8= (84,...,5,,) -
For (ﬁlv...?ﬁn) 7é 0, let Jo € {1,,7’1} SU-Chithat ||ﬁ||oo = MaXje{1,...,n} ‘ﬂ]‘ =

’Bjo‘ . Consider a = (o, ..., a,) with o, and a; = 0 for j # jo. For this

— Bjo
. |ﬁjo ‘
choice we get

Z|aj|— } =1 and Zajﬁ "Z)j:o‘ﬁjo

therefore by (2.11) we obtain the representation

(2.12) sup_ Zagﬁ = 118l

lleell <

for any g = (84,...,0,,) € K".
By taking the supremum in the equality (2.8) and by using the equality (2.12),
we have

n

n
sup Zajxj = sup sup Zajf(xj)

llally <1 )[5=1 llally <1\ IFIST )52

= sup sup Zajf(xj) = sup ( max |f(mj)|)

A< \ el <155 IFl1<1 \J€{l,....,n}

= maxn} < sup |f($J)|> =  max {||x]||}7

je{1,..., IFI<t je{1,...,n}

which proves (2.3). For the last equality we used the property (2.7). O

Corollary 1. With the assumptions of Theorem 8 we have for ¢ > 1 that

1
(2.13) —17q 1llng < 1%llp,nq < Il g
for any any x € E™.
In particular, we have

(2.14) < %l pe < Il

L x|
— ||IX
o/ Xl

for any any x € E™.
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Proof. Let x € E™ with x = (z1,...,2,) and f € E* with ||f|| < 1, then for ¢ > 1

1/q N 1/q 1/q

Do) < DoA™ = D Ll | = 1AL,
Jj=1 j=1

Jj=1

and by taking the supremum over ||f|| < 1, we get the second inequality in (2.13).
By the properties of complex numbers, we have

1/q

maxn}{\f(wjﬂ} < Z|f($j)|q

je{1,...,
and by taking the supremum over ||f|| < 1, we get
2.15 sup < max x; ) < sup z;)|?
@15 o (e (7l S If @)

and since

sup (| max (17 (2} ) = {sup f(xj)l}

<t \IE{Lm} Je{dnt L1111
= emax | Allzlly = lxll o
then by (2.15) we get
(2.16) %[00 < 1%, ,,,, for any x € E™.
Since
n 1/q )
1/4q
Solaslt | < (nlxlg ) =0l
j=1
then also
(2.17) .y 1%, 4 < 1%, 00 for any x € E™.

By utilising the inequalities (2.16) and (2.17) we obtain the first inequality in (2.13).
(I

Remark 1. In the case of inner product spaces the inequality (2.14) has been
obtained in a different and more difficult way 6] by employing the rotation-invariant
normalised positive Borel measure on the unit sphere.

Corollary 2. With the assumptions of Theorem 8 we have for r > q > 1 that
r—q
(218) ||X||h,n,'r < ||X||h,n,q <na ||X||h,n,r

for any any x € E™.
In particular, for ¢ > 2 we have

q—2
(2.19) 1%l < Ml e <n72 (1%,
and for 1 < g < 2 we have
2-q
(220) ||X||h,e < HX‘ h,n,q <n 2 HX‘ h,e

for any any x € E™.
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Proof. We use the following elementary inequalities for the nonnegative numbers
a;, j=1,...,nand r > g > 0 (see for instance [8])

n 1/r " 1/q n 1/r
r T r
CRTRN § 51 I Do) Iy O ot
j=1 j=1 j=1

Let x € E™ with x = (21,...,2,) and f € E* with ||f|| <1, then for r > ¢ > 1 we
have

" 1/r 1/q 1/r

@2) (Y@ ] < [Xlf@)rr] <o | Xl

j=1

By taking the supremum over f € E* with ||f|| < 1 and using Theorem 3, we get
(2.18). O

Remark 2. If we take g =1 in (2.18), then we get
r=1
(223) ||X||h,n,r S ||X||h,n,1 S nr ||x||h,n,r

for any any x € E™.
In particular, for r =2 we get

(2.24) HXHh,e < HXHh,n,l < \/EHXH}L,e
for any any x € E™.
3. SOME REVERSE INEQUALITIES

Recall the following reverse of Cauchy-Buniakowski-Schwarz inequality [4] (see
also [5, Theorem 5. 14])

Lemma 1. Leta, Ae Randz = (21,...,2n), Y = (Y1,---,Yn) be two sequences
of real numbers with the property that:

(3.1) ay; < z; < Ay; foreach je{l,...,n}.
Then for any w = (w1,...,w,) a sequence of positive real numbers, one has the
inequality

2 2

n

n n n
1 2
(3.2) 0< g wjzjz E wjy? - g wizjy; | < i (A—a) g wjyjz
=t j=1 i=1

i=1
The constant 1 is sharp in (3.2).

O. Shisha and B. Mond obtained in 1967 (see [9]) the following counterparts of
(CBS)- inequality (see also [5, Theorem 5.20 & 5.21])

Lemma 2. Assume that a = (ai,...,a,) and b = (by,...,b,) are such that there
exists a, A, b, B with the property that:
(3.3) 0<a<a; <A and 0<b<b;<B foranyje{l,...,n}

then we have the inequality

2 2
n n n A n n
(34) D add (D ab;| < (ﬁ— @) > ab; > b3
j=1 j=1 j=1

j=1 =1
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and

Lemma 3. Assume that a, b are nonnegative sequences and there exists v, I' with
the property that

(3.5) 0§7§%§1"<oo forany j€{1,...,n}.
J

Then we have the inequality

n n 2 n F—’}/)Q n
3.6 o< (Y@ | S ap < L0 s
SR BE 090 o) IO SRS (R Dok

I

j=1  j=
We have the following result:

Theorem 4. Let (E,||-||) be a normed linear space over the real or complex number
field K and x € E™ with x = (x1,...,2,). Then we have

1 9 1 9
3.7 0< 2 _ = < =
(37) I~ -l g < g R

2 L2

(38) 0< ||X||h,e - ﬁ ||X||h,n,1 < ||XHh,n,1 HXHn,oo
and

1 1
(3.9) 0 <[l — N el < VR o

Proof. Let x € E™ with x = (21,...,2,) and put R = max;jeqy .oy {/75]} =
1%l 00 - I f € E* with [|f|| <1 then [f (z;)] < [|f[| z;]| < R forany j € {1,...,n}.
If we write the inequality (3.2) for z; = |f (z;)|, w; =y; =1, A= R and a = 0,
we get
2

0<n Y1)l (Sl @l] < R
j=1

for any f € E* with || f]| < 1.
This implies that

(3.10) S @< - (X)) +gnr?
j=1 j=1
for any f € E* with | f] < 1.
By taking the supremum in (3.10) over f € E* with || f|| < 1 we get (3.7).
If we write the inequality (3.4) for a; = |f (z;)|, bj =1, b=B =1,a =0 and
A = R, then we get
2

0<n If @) = [ 21F @)l | <nRY IS ()],

for any f € E* with || f]| < 1.
This implies that

SHES

(3.11) Sl [ S @l] +RY I @l

1

J
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for any f € E* with || f]| < 1.
By taking the supremum in (3.11) over f € E* with ||f|| <1 we get (3.8
Finally, if we write the inequality (3.6) for a; = |f (x;)], b = 1, b =
v =0and I' = R we have

).
B=1,

2

0< (21| 31 @)l < gnk
j=1

j=1
for any f € E* with ||f] < 1.
This implies that

1

2

for any f € E* with || f] < 1.
By taking the supremum in (3.12) over f € E* with || f|| <1 we get (3.9). O
Further, we recall the Cebysev’s inequality for synchronous n-tuples of vectors

a=(ai,...,a,) and b = (by,...,by,), namely if (a; — ax) (b; — b)) > 0 for any j,
ke {l,...,n}, then

(3.13) liajbj 2 liajlibj
nj:l nj:l nj:l

In 1950, Biernacki et al. obtained the following discrete version of Griiss’ inequality

Lemma 4. Assume that a = (ai,...,a,) and b = (by,...,b,) are such that there
exists real numbers a, A, b, B with the property that:
(3.14) a<a; <A and b<b; <B foranyje{l,...,n}.
Then
I s 1¢
(315) 7Zajbj - 72(@726]‘
Jj=1 j=1 j=1
<1 2] I [21) (A-a)(B-)
T nl2 nl2
1 [n? 1
|5 u-aw-o<ju-am-o,

where [x] gives the largest integer less than or equal to .
The following result also holds:

Theorem 5. Let (E, ||-||) be a normed linear space over the real or complex number
field K and x € E™ with x = (x1,...,2,). Then for ¢, v > 1 we have

N

(3.16) et Lsdtt sl 4 [ ] et
h,n,qg+r — n h,n,q hn,r n 4 n,oo

1 1 N
3 g 3¢+ 7 I -

IN
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Proof. Let x € E™ with x = (21,...,2,) and put R = max;jeqy .oy {/75]} =
%[5, 00 - I f € E* with [|f|| <1 then [f (z;)] < [|f[| [=;]| < Rforany j € {1,...,n}.

If we take into the inequality (3.15) a; = | f (x;)|?, bj = |f (x;)|", a =0, A = RY,
b=0and B = R", then we get

1< Jjar 1 n? oir
@10 LS - LS @) Zlf [JRQ.

] 1

On the other hand, since the sequences {a; }jzl,i..,n , {bj};—, ., are synchronous,

then by (3.13) we have

Z\f N Z|ij Z\f(xjn”.

[ [
Using (3.17) we then get

n n 2
(3.18) Z|f < SN @ I !+ | | R
j=1 j=1

for any f € E* with || f]] < 1.
By taking the supremum in (3.18), we get

ZI ()"

LN

\|f|\<1 i=1
1 n n 1 2
SRR D IIACHID DIV [ | ree
LAES! ; ; 4
1 . 1 [n?
<L I e s IS b |
ns< | o ESH et n |4
which proves the first inequality in (3.16).
The second part of (3.16) is obvious. O
Corollary 3. With the assumptions of Theorem 5 and if r > 1, then we have
1 2r
(319)  IIxlli o < — | Il < || X[l + 2 Il
In particular, for r =1 we get
2 L2 1 [n? 2
(320)  [xlle < Ixllhnn + o | | Xl < ||x||hn s 4n [/

The first inequality in (3.20) is better than the second inequality in (3.7).

4. REVERSE INEQUALITIES VIA FORWARD DIFFERENCE

For an n-tuple of complex numbers a = (a1,...,a,) with n > 2 consider the
(n — 1)-tuple built by the aid of forward differences Aa = (Aay, ..., Aa,—1) where
Aay = ap41 — ar where k € {1,...,n —1}. Similarly, if x = (z1,...,2,) € E"
is an n-tuple of vectors we also can consider in a similar way the (n — 1)-tuple
Ax = (A.Il, T AIEn_l) .

We obtained the following Griiss’ type inequalities in terms of forward differences:
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Lemma 5. Assume that a = (a1,...,a,) and b = (by,...,b,) are n-tuples of
complex numbers. Then

(41) %Zajbjf%Zaj%ij
j=1 j=1 j=1

175 (n? = 1) | Aal| |Ab|],,_1 o [7],

n— l,oo‘

IN

2_
Bt I8l 8Bl g where a 5> 1, L5 =1, 12,

n—1,a |

% (1 - %) ||Aa||n71,1 HAanle , 13l
The constants &5, & and 1 are best possible in (4.1).

The following result also holds:

Theorem 6. Let (E, ||-||) be a normed linear space over the real or complex number
field K and x € E™ with x = (x1,...,2,). Then for ¢, v > 1 we have

1
+
(42) xR g < o Il g 11

+r—2
aqr (n? *1)n||X||q 1Aax];

n—1,00"

+r—2
+ (15 (” - 1) qr ||X||q - HAX”h,nA@ HAXHh,nfl,B
where a, B > 1, a—l—ﬁ—l,

+r—2 2
3 (=1 qr x| A% g -

Proof. Let x € E™ with x = (21,...,2,) and f € E* with ||f| < 1. If we take into
the inequality (4.1) a; = |f (x;)|%, b; = |f (z;)|", then we get

48 | 2l q”—;;wxj
= Z

15 (n* = 1) maxj—y o1 [A[F (25)| | maxj—y -1 [Af (2)]]

n

DI

Jj=1

3\'—‘

e (Al a)l) T (S alr ar)

where o, 8 > 1, +%:

IN

1
a

S (=5 SIS AL @) 5 1AL ()]

We use the following elementary inequality for powers p > 1

la” — | < R [a — ]

where a,b € [0, R].

Put R =maxjc(1,..ny {2/} = X[, o - Then for any f € E* with | f]| <1 we
have | ()| < [I£]|lz;|| < B for any j € {1, ..,n}.

Therefore
44 JALf @) = f @)l = 1 @) < qRTH|F (2j0)] = 1 ()]
<GRT|f(zj41) = f(z))] = qRT | f (Azy)|
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for any j =1,...,n — 1, where Az; = x;41 — x; is the forward difference.
On the other hand, since the sequences {a;},_, ., {bj};_, , are synchro-
nous, then we have

(45) 0< iZ o) iZ @)l i;ww

and by the first inequality in (4.3) we get

48 Sl

+ = (n2 —1) an‘F1 max |f (Az;)|rR™™'  max |f(Azj)|

j=1,....n—1 j=1,....n—1

%Z f(z; ‘QZU ;)|

1 2
q+r—2 f .
12 (n* = 1) narR <j—_f?.?ﬁ_1 | (A%)')

for any f € E* with || f]| < 1.

Taking the supremum over f € E* with ||f|| <1 in (4.6) we get the first branch
in the inequality (4.2).

We also have, by (4.4), that

1/ 1/«
n—1 n—1
SOIALF ()" < | (@RTH* D If (Azy)|®
j=1 j=1
n—1 Vo
=qR7 | Y If (D)
j=1
and, similarly,
o 1/8 o 1/8
STAlf @) <R YD If (A
j=1 j=1

where o, § > 1, = —|—%—1
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By the second inequality in (4.3) and by (4.5) we have

(4.7) DoIf

=
< S irEr
0 o s v
g -) (;mum)ﬂ“) (;mw»rﬁ)
< S rEr Y e
"~ ~ el Ve s 1/
3 (= 1) R (Z |f<ij>|a) (Z s <ij>ﬂ)

for any f € E* with ||f|| <1, where o, 3 > 1, é-&-%:l.

Taking the supremum over f € E* with ||f|| < 1 in (4.7) we get the second
branch in the inequality (4.2).

We also have, by (4.4), that

n—1

n—1
STIAIf (@) < qRTHY D |f (Axy))
Jj=1 j=1
and
n—1 n—1
DAL @) <rRTEY S (Awy)l.
Jj=1 j=1

By the third inequality in (4.3) and by (4.5) we have

@) @) < S I )l
j=1 j=1 j=1

n—1 n—1

5001 S IAI @) Y IAS @)l

Z L @I Y 1F ()]

j=1

<

S|

n—1 n—1
5 ) g RS | ()| Y1 (M)
j=1 j=1

for any f € E* with || f] < 1.

Taking the supremum over f € E* with ||f|| < 1 in (4.8) we get the third branch
in the inequality (4.2).

]
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Corollary 4. With the assumptions of Theorem 6 and if r > 1, then we have

2 1 2
(49) Xl < L IXIE
2r—2 2
1ar” (0 = 1)l e 1A%y o0

2r—2
%,’.2 (n2 o ]‘) HXHnToo ”AX”h,n—l,a ”AX”h,n—l,ﬁ

where a, B > 1, é+%:1,

2r—2 2
%7"2 (TL - 1) ||X||n7,‘oo ||AX||h,n71,1 :

In particular, for r =1 we get

2
% (n2 - 1) n ”AX”n_LOO )
2 1, 2 5 (0 =) A%, 0 1A%,
< — sn—L, n—1,8
(4.10) HXHh,e =5 HXHh,n,l + where o, B> 1, é‘f' % -1,
2
3= Ax[l} 1,
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